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ABSTRACT

A standard approach to estimating structural parameters in life-cycle models imposes sufficient as-
sumptions on the data to identify the “age profile” of outcomes, then chooses model parameters
so that the model’s age profile matches this empirical age profile. I show that this approach is
both incorrect and unnecessary: incorrect, because it generally produces inconsistent estimators of
the structural parameters, and unnecessary, because consistent estimators can be obtained under
weaker assumptions. I derive an estimation method that avoids the problems of the standard ap-
proach. I illustrate the method’s benefits analytically in a simple model of consumption inequality
and numerically by reestimating the classic life-cycle consumption model of Gourinchas and Parker
(2002).
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1. Introduction

A large literature investigates how economic choices and characteristics change over the

life cycle. A well-known difficulty in such research is that it is impossible to separately identify

the effects of age, time, and birth cohort on the outcome of interest. In this paper, I show

that a standard solution to this age-time-cohort identification problem will, in general, cause

researchers to make incorrect inferences about the structural parameters of their economic

models. I provide a simple alternative that allows accurate identification of the structural

parameters, even though age, time, and cohort effects remain unidentified.

Consider an economic model that describes how age affects some outcome of interest,

all else equal. Canonical examples include models that describe how age affects the share of a

portfolio allocated to stocks (Ameriks and Zeldes, 2004), how inequality among a fixed group

of people changes as they age (Deaton and Paxson, 1994a), or how a household optimally

arranges consumption over the course of its life (Gourinchas and Parker, 2002). Suppose

that, according to the model, an outcome y depends on age a according to

y(a) = ξ0 + q(a;θ∗), (1)

where ξ0 is an intercept, q is a known function, and θ∗ is a vector of structural parameters of

the model, such as parameters of a utility function or of the stochastic process for income. A

researcher who has data on the age profile y(a) might seek to estimate θ∗ by choosing θ∗ so

that the model’s predicted age profile, as given by the right-hand side of (1), comes as close

as possible to the observed age profile.

Example. Gourinchas and Parker (2002) build a model in which the mean consumption of

households of age a depends on the rate of time preference and the coefficient of relative risk

aversion, as well as other parameters. They estimate the model by finding the rate of time

preference, risk aversion coefficient, and other parameters that make the model’s predicted

age profile of consumption come as close as possible to the observed empirical age profile of

consumption.1

1Other papers that estimate or calibrate structural parameters by minimizing the distance between a



Equation (1) is oversimplified: In the real world, outcomes y depend not only on age

but also on a host of other variables. In particular, outcomes may depend on time and birth

cohort. For example, in a study of portfolio choice, an investor’s allocation to stocks may

depend not only on her age but also on expected returns this year (time) and on whether

she is averse to stocks because she grew up during the Great Depression (birth cohort). A

researcher who wishes to confront a model of the form (1) with data therefore has two choices:

The researcher can enrich the model to describe time and cohort effects, or the researcher

can remove time and cohort effects from the data before taking the model to the data.

In some applications, the theoretical source of time and cohort effects is clear, and it is

straightforward to enrich the model to include them. For example, in De Nardi et al. (2010),

cohort effects arise in consumption choices during retirement because some cohorts of retirees

had higher lifetime incomes than others. This relationship can be modeled structurally. But

in other applications, a researcher may not want or be able to take a strong stand on how

time and cohort effects enter the model – yet may still want to make inferences based on the

age profile. A semistructural approach that models only age effects but not time and cohort

effects may allow the researcher to impose fewer ad hoc assumptions about functional form,

avoid reliance on assumptions about time and cohort effects that are not central to the issue

being analyzed, or make the model more computationally tractable. A researcher who takes

this semistructural approach will prefer to remove time and cohort effects from the data.

This paper is concerned with how best to do so, in situations where explicitly modeling the

time and cohort effects is not viewed as a good option.

Researchers who seek to remove time and cohort effects from the data must estimate

“the effect of age on y, holding time and cohort constant,” and then compare the model’s

predictions with these estimates. Unfortunately, it is not possible to identify “the effect of

age, holding time and cohort constant,” even with a controlled experiment. To find the effect

of age on y, all else equal, a researcher must collect data at the same instant on two people

model’s age profile and an empirical age profile include the study of health expenses and saving among the
elderly by De Nardi, French, and Jones (2010); the study of household investments by Wachter and Yogo
(2010); and the studies of life-cycle consumption and inequality by Huggett, Ventura, and Yaron (2011),
Kaplan (2012), and Aguiar and Hurst (2013). Deaton and Paxson (1994a,b), Ameriks and Zeldes (2004), and
Heathcote, Storesletten, and Violante (2005) follow a similar but more qualitative procedure by comparing
various models’ broad predictions to the observed relationship between y and a.
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who were born simultaneously but are now different ages. But this is impossible: If the

people are different ages, either they were born at different times or the researcher collected

the data at different times. The researcher cannot vary age without varying time or birth

cohort. Thus, “what is the effect of age on y, holding time and cohort constant?” is a

“fundamentally unidentified question” in the sense of Angrist and Pischke (2009, p. 5).

Recall, though, that estimating the effect of age, holding time and cohort constant,

was meant to be only an intermediate step toward estimating the structural parameters θ∗.

The parameters may be identified even if the age profile is not. This paper analyzes methods

for identifying θ∗ despite the impossibility of identifying the age profile.

A. The standard solution

Suppose that ya,t, an outcome of interest for people who are age a in year t, depends

on their age a, on the year t, and on their birth year or cohort c = t−a in a linear, additively

separable manner:

ya,t = ξ0 + αa + βt + γc, (2)

where ξ0 is an intercept and αa, βt, and γc are the coefficients on dummy variables for age,

period, and cohort, respectively. The age coefficients αa represent the age profile of y after

controlling for period and cohort effects, and given estimates of the αa’s, one could estimate

the structural parameters θ∗ by choosing them to minimize the difference between q(a;θ∗)

and αa.

However, the age effects αa in (2) are not identified. One problem is that a complete

set of dummy variables would be collinear with the intercept; to avoid this issue, I impose

throughout the innocuous normalization that each set of effects is normalized to sum to zero:∑
a αa =

∑
t βt =

∑
c γc = 0, and assume that q(a;θ∗) is normalized similarly.2 Even with

this normalization, however, equation (2) is not identified because, if (2) holds, then for any

real number k, the following equation also holds:

ya,t = ξ0 + (αa + ka− kā) + (βt − kt+ kt̄) + (γc + kc− kc̄), (2′)

2Equivalently, one could omit one dummy variable from each category, but this would complicate the
notation.
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where ā, t̄, and c̄ are the arithmetic means of the possible values of a, t and c.3 Thus, if

(ξ0, αa, βt, γc) are coefficients that fit the data on ya,t, then for any real number k, (ξ0, αa +

ka−kā, βt−kt+kt̄, γc+kc−kc̄) are an alternative set of coefficients that fit the data equally

well.

The standard method for solving this identification problem is to impose a normaliza-

tion on either the period or the cohort effects to pin down the unknown real number k, so

that the age effects αa can be identified and the structural parameters θ∗ can be estimated.

Two commonly used normalizations are the following:

Cohort view: Secular trends appear only in cohort effects, so that the period effects either

are orthogonal to a time trend (
∑

t βt(t − t̄) = 0), are all zero (βt = 0 for all t), or

can be replaced with observed variables such as the unemployment rate that measure

cyclical economic variation.

Period view: Secular trends appear only in period effects, so that the cohort effects either

are orthogonal to a time trend (
∑

c γc(c− c̄) = 0) or are all zero (γc = 0 for all c).

Some authors maintain one of these normalizations throughout the analysis; for example,

Deaton and Paxson (1994a,b), Gourinchas and Parker (2002), and De Nardi et al. (2010)

adopt the cohort view. Others, such as Ameriks and Zeldes (2004), Heathcote et al. (2005),

Wachter and Yogo (2010), Huggett et al. (2011), Kaplan (2012), and Aguiar and Hurst

(2013), investigate how their results depend on the choice between the cohort view and the

period view; if similar estimates of θ∗ are obtained using both normalizations, the researcher

typically argues that the results are not sensitive to the choice of normalization.4

3Notice that (2′) continues to satisfy the normalization that each set of effects sums to zero.
4There is an important but sometimes overlooked difference between normalizing the period or cohort

effects to be orthogonal to a trend and normalizing the period or cohort effects to be all zero. If the data cover
T time periods and C cohorts, the all-zero normalization imposes T or C restrictions on the coefficients in (2),
whereas the orthogonal-to-trend normalization imposes just one restriction. Only one restriction is needed to
identify the coefficients, so the all-zero normalization involves overidentifying restrictions. Conclusions about
the structural parameters θ∗ might depend on these overidentifying restrictions; thus, if one takes the period
or cohort view, it would generally be better to use the orthogonal-to-trend normalization and avoid imposing
additional, unnecessary restrictions. In the remainder of the paper, I abstract from the consequences of the
overidentifying restrictions in the all-zeros normalizations and assume that researchers have imposed only one
linear restriction on the coefficients in (2).
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B. The flaw in the standard solution

The period view and the cohort view do not span the space of the possible restrictions

that could be imposed to identify the age effects in (2). Therefore, even if the period view and

the cohort view lead to similar estimates of the structural parameters θ∗, other restrictions

on (2) might have led to entirely different estimates of θ∗.

To see this point more clearly, assume that the data satisfy (2) with αa = q(a;θ∗).

Let βt and γc be the true period and cohort effects, respectively. Equation (2′) shows that,

for any real number k, the alternative parameters

αa(k) = αa + ka− kā, βt(k) = βt − kt+ kt̄, γc(k) = γc + kc− kc̄

will fit the data on y just as well as αa, βt, and γc. Effects estimated under the cohort-view

normalization correspond to a particular value of k, call it kcohort , that solves
∑

t βt(k
cohort)(t−

t̄) = 0. Effects estimated under the period-view normalization correspond to a different value,

k = kperiod , that solves
∑

c γc(k
period)(c − c̄) = 0. The standard approach is to choose the

structural parameters θ∗ so that the model’s predicted age profile comes as close as possible to

either αa(k
cohort) or αa(k

period), and if αa(k
cohort) and αa(k

period) have similar implications for

θ∗, to conclude that the results are not sensitive to the normalization. This reasoning is flawed

because there is a continuum of possible normalizations indexed by k, with a corresponding

continuum of estimated age profiles αa(k), and we can conclude that the results are not

sensitive to the normalization only if we obtain similar values of θ∗ for all values of k.

As a trivial example, suppose that the theoretical model depends on a scalar parameter

θ∗, and suppose the model predicts that the outcome y increases with age if and only if θ∗ > 0.

If the age effects as estimated under both the period view and the cohort view increase with

age, it would be tempting to conclude that θ∗ > 0. But this conclusion would be incorrect.

For k sufficiently negative, αa(k) = αa + ka− kā decreases with age, and if a restriction were

chosen that corresponded to such a negative value of k, one would obtain age effect estimates

that implied θ∗ ≤ 0. Thus, in this example, the conclusion about the structural parameter

θ∗ is not robust to changes in the assumptions used to identify the age effects, even though

the period view and the cohort view give similar results.
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C. An alternative solution

The method proposed in this paper exploits the fact that, as (2′) shows, the age effects

in (2) are identified up to a single constant k. The method treats this constant as a nuisance

parameter to be estimated. In other words, to estimate the structural parameters θ∗, the

method estimates the age effects αa using any one normalization on (2), then chooses k and

θ∗ such that αa + ka− kā is as close as possible to q(a;θ∗).5

There may or may not be a unique pair k,θ∗ that minimizes the distance between

αa + ka− kā and q(a,θ∗). For example, if q is linear in a for all θ, the solution is not unique

because any effect on the objective function of a change in θ can be offset by some change

in k. (Conditions for uniqueness are discussed in more detail below.) If the solution is not

unique, then θ∗ is not identified. The method therefore does not guarantee identification of

the structural parameters. However, the method makes clear whether identification of the

structural parameters relies on the choice of a normalization for the age, time, and cohort

effects: If the solution is not unique, then it is impossible to identify the structural param-

eters without an arbitrary normalization, whereas if the solution is unique, the structural

parameters are identified even though the age effects themselves are not identified.

This paper’s method amounts to identifying θ∗ from second and higher derivatives

of the age profile. A linear trend is removed from both the model age profile q(a,θ∗) and

the empirical age profile αa, and the structural parameters θ∗ are then chosen so that these

detrended age profiles match. Thus, this paper’s method does not use any information about

the first derivative of the age profile to identify the structural parameters. The method there-

fore uses strictly weaker assumptions than the standard method, which relies on making some

assumption about the first derivative of the age profile (or, equivalently, the first derivative

of the time or cohort effects). Hall (1968) shows that the second and higher derivatives of the

5This approach is similar to estimating θ∗ in

ya,t = ξ0 + q(a;θ∗) + βt + γc + ua,t

by nonlinear least squares. However, this paper’s two-step approach of first estimating an age profile and
then matching the model q(a;θ∗) to the estimated age profile will be more computationally tractable if the
number of cohorts and time periods is large or the function q is expensive to evaluate, and it is feasible even
if the researcher has access only to an estimated age profile αa and not to the original data ya,t. Both of
these situations arise commonly in practice.
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age profile are identified even though the first derivative is not. McKenzie (2006) uses the

second derivative to characterize the reduced-form relationship between a and y. The inno-

vation here is that I show how to use the second and higher derivatives to identify structural

parameters of economic models.

The paper proceeds as follows. Section 2 formally describes my proposed method for

estimating θ∗ and states conditions under which the structural parameters are identified.

The section also shows that, in general, the standard method does not identify the structural

parameters. Section 3 illustrates the benefits of this paper’s method relative to the standard

method by analytically solving a simple life-cycle model of consumption inequality. Section 4

shows quantitatively that this paper’s method produces substantially different results when

estimating the life-cycle consumption model of Gourinchas and Parker (2002). Section 5

concludes.

2. The method

I assume the researcher has data on a variable ya,t for various ages a = 1, . . . , A in

various time periods t. The researcher defines cohorts by c = t − a. The researcher also

has a theoretical model that says that, in the absence of time effects, cohort effects, and

measurement error, y is related to age a and a parameter vector θ∗ according to (1), where

the functional form of q is known, and where we normalize
∑

a q(a;θ∗) = 0.

This paper’s method for estimating θ∗ is as follows.

1. Estimate the linear model

ya,t = ξ0 + αa + βt + γc + ua,t, (3)

where ξ0, αa, βt, γc are parameters and ua,t is an unobservable measurement error, by

ordinary least squares subject to the normalization
∑

a αa =
∑

t βt =
∑

c γc = 0 and to

any one additional linear restriction that identifies the parameters. For example, one

could assume that the time effects are orthogonal to a trend or that the cohort effects

for two adjacent cohorts are equal. The choice of restrictions does not matter so long

as there is exactly one, the minimum number required for the matrix of regressors in
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(3) to be nonsingular given the normalization
∑

a αa =
∑

t βt =
∑

c γc = 0.

2. Let α̂ be the vector of estimated age effects from step 1. Also define the column vectors

a = [1, . . . , A]′ and, for any θ, q(θ) = [q(1,θ), . . . , q(A,θ)]′. Choose θ̂ and k̂ to solve

(θ̂, k̂) ∈ arg min
θ,k

[q(θ)− α̂− ka + kā]′W[q(θ)− α̂− ka + kā], (4)

where W is an A × A symmetric, positive definite weighting matrix. (For example,

W could be the identity matrix or an efficient weighting matrix based on the variance-

covariance matrix of α̂.) If this problem has a unique solution θ̂, then that solution is

the estimator of θ∗. If the solution for θ̂ is not unique, then I conclude that θ∗ is not

identified.

The estimated structural parameters will not depend on the normalization used to

estimate (3) in step 1. Changing the normalization merely adds a linear trend to the estimated

age effects. This trend can be removed by changing the choice of k in problem (4). Thus, the

normalization affects the estimator of the nuisance parameter k̂ but not the estimator of the

parameters of interest θ̂.

Notice, also, that the standard method is identical to this paper’s method but imposes

k = 0 in (4). Thus this paper’s method relaxes the assumptions of the standard method.

A. Identification

I have claimed that, if time and cohort effects are additive, this paper’s method cor-

rectly identifies θ∗ or correctly reports that the parameters are not identified, whereas the

standard method may not do so. I now formalize this claim.

Time and cohort effects may enter the data in many ways. I assume that they are

additive, so that the linear model (3) is appropriate. Specifically:

Assumption 1. The observed data satisfy

ya,t = ξ0 + q(a;θ∗) + βt + γc + ua,t (5)
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for some intercept ξ0, time effects βt, cohort effects γc, and measurement errors ua,t satisfying

E[ua,t|a, t] = 0 (6)

and the normalizations

∀θ
∑
a

q(a;θ) = 0,
∑
t

βt =
∑
c

γc = 0. (7)

Measurement errors may arise in many ways. I assume that the data ya,t are sample

moments calculated from a random sample of Na,t individuals who are age a in time period

t, so that ua,t arises from sampling variation that causes the sample moments to differ from

population moments. Then, in the limit as the sample size goes to infinity, we can assume

ua,t is asymptotically normal:

Assumption 2. For all a and t,
√
Na,tua,t

d→ N(0, s2u) in the limit as Na,t →∞.

We then have the following result:

Proposition 1. Under assumptions 1 and 2 and standard regularity assumptions, in the

limit as Na,t goes to infinity for all a and t, either the solution θ̂ to problem (4) converges in

probability to a unique vector, which is θ∗, or the solution to problem (4) does not converge

to a unique vector and θ∗ cannot be identified from the age profile.

Proof. Under assumptions 1 and 2 and standard regularity assumptions, when the researcher

follows step 1 of this paper’s method, his estimates satisfy

α̂ = q(θ∗)− k∗a + k∗ā+ ε (8)

for some constant k∗ and some asymptotically normal random vector ε that is orthogonal to

a in finite samples and that converges in probability to zero as Na,t goes to infinity. Problem

(4) in step 2 then becomes

(θ̂, k̂) ∈ arg min
θ,k

[q(θ)−q(θ∗)+(k∗−k)(a− ā)−ε]′W[q(θ)−q(θ∗)+(k∗−k)(a− ā)−ε]. (9)

9



Under standard regularity conditions, the objective function in (9) converges uniformly in

probability to

[q(θ)− q(θ∗) + (k∗ − k)(a− ā)]′W[q(θ)− q(θ∗) + (k∗ − k)(a− ā)]. (10)

Thus, the set that solves (9) converges in probability to the set that solves

(θ̃, k̃) ∈ arg min
θ,k

[q(θ)− q(θ∗) + (k∗ − k)(a− ā)]′W[q(θ)− q(θ∗) + (k∗ − k)(a− ā)]. (11)

(If the solution is not unique, convergence is in the Hausdorff distance between sets and

follows from Theorem 3.1 of Chernozhukov, Hong, and Tamer, 2007.) One solution to (11)

is k̃ = k∗ and θ̃ = θ∗. If this is the unique solution, then we have shown that θ̂ converges in

probability to θ∗. If (11) has multiple solutions, there exist (k̃, θ̃) 6= (k∗,θ∗) such that

q(θ̃)− q(θ∗) = (k̃ − k∗)(a− ā). (12)

If (12) holds, then either there are two parameter vectors that generate the same age profile

(so q(θ̃)−q(θ∗) = 0) or the difference between the age profiles generated by the two parameter

vectors is linear in age. In the former case, the age profile is clearly not sufficient to identify

the parameters. In the latter case, the fact that the age profile is identified only up to an

unknown linear trend is an insurmountable obstacle to identifying the parameters from the

age profile; only by imposing an untestable, possibly incorrect normalization would we be

able to identify the parameters. Hence, if (11) has multiple solutions, θ∗ cannot be identified

from the age profile.

B. Remarks

Interpretation in terms of detrended age profiles. One way to interpret the new

method is that it chooses the structural parameters θ∗ so that the detrended age profile from

the model matches, as closely as possible, the detrended age profile in the data. Specifically,

we can decompose the model’s age profile as

q(a;θ∗) = cmodel(a− ā) + q̌(a;θ∗), (13)

10



where cmodel is the slope in a linear regression of q(a;θ∗) on a and, therefore, by construction,

q̌(a;θ∗) is orthogonal to a linear trend in a. Because q̌(a;θ∗) is orthogonal to a, we can

describe q̌(a;θ∗) as the detrended age profile from the model. Similarly, if α̂ is the vector of

age effects estimated in the data under any just-identified normalization on (3), then we can

write

α̂a = cnormalization(a− ā) + α̌a, (14)

where cnormalization is the slope in a linear regression of α̂a on a and, by construction, α̌a is

orthogonal to a. The minimization problem (4) in step 2 of the method can now be rewritten

as

(θ̂, k̂) ∈ arg min
θ,k

[q̌(θ) + cmodel(a− ā)− α̌− cnormalization(a− ā)− ka + kā]′

W[q̌(θ) + cmodel(a− ā)− α̌− cnormalization(a− ā)− ka + kā], (15)

and because α̌a and q̌ are both orthogonal to a, the solution to (15) is

k = cmodel − cnormalization , (16a)

θ̂ ∈ arg min
θ

[q̌(θ)− α̌]′W[q̌(θ)− α̌]. (16b)

Equation (16b) shows that the method detrends the age profiles from both the data and the

model, then chooses the structural parameters to make the two detrended age profiles as close

as possible. This procedure is invariant to the normalization that is used to estimate the age

profile in the data, because equation (2′) demonstrates that changing the normalization will

change cnormalization but not the detrended estimated age profile α̌a.

A special case: estimation using second differences of age profiles. One special

case of the method is that the researcher could choose the structural parameters θ∗ so that

the second-differenced age profile from the model matches the second-differenced age profile

11



in the data. Specifically, let the weighting matrix be W = W̃′W̃, where

W̃ =


1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

· · ·

0 0 0 0 · · · 1 −2 1

 . (17)

(Admittedly, this W is not positive definite, but this does not change the results.) For any

k,

W̃[q(θ)− α̂− ka + kā] =
{[q(3,θ)− q(2,θ)]− [q(2,θ)− q(1,θ)]} − {[α̂3 − α̂2]− [α̂2 − α̂1]}

...

{[q(A,θ)− q(A− 1,θ)]− [q(A− 1,θ)− q(A− 2,θ)]} − {[α̂A − α̂A−1]− [α̂A−1 − α̂A−2]}

 .
(18)

Thus, the objective function for this choice of W is the mean squared deviation between the

second-differenced age profile from the model and the second-differenced age profile from the

data. Because — as shown by Hall (1968) — the second-differenced age profile from the data

is invariant to the normalization used to estimate the age profile, the objective function is

invariant to the normalization and so will be the estimated structural parameters.

Incorrect results from the standard method. The standard method will generally pro-

duce incorrect results even when this paper’s method produces correct results. The standard

method proceeds as follows: Let α̃ be the vector of estimated age effects obtained by im-

posing the period-view normalization. (Analogous results apply if one uses the cohort view.)

The standard method estimates the structural parameters by

θ̃ = arg min
θ

[q(θ)− α̃]′W[q(θ)− α̃]. (19)

12



Let γc be the true cohort effects and γ̃c be the cohort effects estimated under the period view.

Then γ̃c = γc + k(c− c̄) for some number k. Under the period view,
∑

c γ̃c(c− c̄) = 0, which

implies

k = kperiod ≡ −
∑

c(c− c̄)γc∑
c(c− c̄)2

. (20)

Now, since the data satisfy (5), the researcher will obtain

α̃ = q(θ∗) + kperiod(a− ā) + ε. (21)

The researcher using the standard method therefore estimates the structural parameters by

θ̃ = arg min
θ

[q(θ)− q(θ∗)− kperiod(a− ā)− ε]′W[q(θ)− q(θ∗)− kperiod(a− ā)− ε]. (22)

Unless kperiod = 0 — that is, unless the normalization imposed in the standard method is

correct — θ∗ generally does not solve problem (22).

Age profiles of multiple variables. In many applications, researchers fit a model to

the age profiles of two or more variables. In general, there is no reason to use the same

normalization on the age, time, and cohort effects for all variables. Hence, a different slope

kj should be estimated for each variable j. (However, if theory suggests restrictions on the

relationship between the slopes of different variables’ age profiles, these restrictions could be

imposed in estimation.)

Example. Suppose that the theoretical model makes predictions about the age profiles of

both income i and consumption c:

i(a) = ξ0,i + qi(a;θ∗),

c(a) = ξ0,c + qc(a;θ∗).
(23)

The structural parameters should be estimated as follows. First, estimate (3) separately for

income and consumption, obtaining estimated age effects α̂i and α̂c. Second, estimate the
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structural parameters by solving

(θ̂, k̂i, k̂c) ∈ arg min
θ,ki,kc

qi(θ)− α̂i − kia + kiā

qc(θ)− α̂c − kca + kcā

′W
qi(θ)− α̂i − kia + kiā

qc(θ)− α̂c − kca + kcā

 , (24)

where W is now a (2A)× (2A) symmetric, positive definite weighting matrix.

Uniqueness. As indicated in (12), identification obtains unless there is some θ̃ 6= θ∗ such

that q(a; θ̃)−q(a;θ∗) is linear in age. Thus, identification requires not only that q varies with

θ and that q is nonlinear in age, but also that the nonlinearity varies with θ. This result is

not surprising, since the method identifies θ∗ from the nonlinearity of the age profile.

However, identification does not require that q be nonlinear in a for all a or all θ or

that the nonlinearity depend on θ for all θ. All that is needed is some nonlinearity in a

that depends on whether θ = θ∗. More specifically, the necessary and sufficient condition for

identification is that for each θ 6= θ∗, there exist observed ages a1 < a2 < a3 such that

[q(a2;θ)− q(a2;θ∗)]− [q(a1;θ)− q(a1;θ∗)]
a2 − a1

6= [q(a3;θ)− q(a3;θ∗)]− [q(a2;θ)− q(a2;θ∗)]
a3 − a2

,

(25)

where the values of a1, a2, a3 may be different for each θ. A simpler sufficient condition is

that the second derivative of q with respect to a is a nontrivial function of θ for all θ.

3. Analytic example: consumption inequality over the life cycle

In this section, I exhibit a simple analytic example in which the standard method does

not identify the structural parameters of an economic model but this paper’s method does.

A. The economic model

An agent i is born in year c and lives for A + 1 periods, t = c, c + 1, . . . , c + A. The

agent begins life with assets xi,0,c > 0 and receives a stochastic income yi,a,t in each period

t = c, c+ 1, . . . , c+A. Income is independently and identically distributed across agents and

dates with mean µ and variance σ2. Let Ci,a,t(y
t
i) be i’s consumption in year t, when he is

age a = t− c, after a history of income shocks yti ≡ (yi,0,c, . . . , yi,a,t). The agent’s preferences
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are represented by

−1

2
Ec

A∑
a=0

ρa[C̄ − Ci,a,t(yti)]2, (26)

where ρ is the rate of time preference and C̄ is a bliss level of consumption. The agent can

borrow or save without limit at the nonstochastic gross interest rate (1 + r) = ρ−1, except

that the agent cannot borrow at age A. Thus, the law of motion of assets x for a < A is

xi,a+1,t+1(y
t
i) = (1 + r)[xi,a,t(y

t−1
i ) + yi,a,t − Ci,a,t(yti)], a = 0, . . . , A− 1. (27)

To keep the notation concise, in the remainder of the analysis, I suppress the dependence

of x and C on the history yti . The agent maximizes (26) by choice of {Ci,a,t, xi,a+1,t+1}Aa=0,

subject to (27) and

Ci,A,c+A = xi,A,c+A + yi,A,c+A, (28)

taking r and xi,0,c as given. It can be shown (see, e.g., Krueger, 2007, section 3.2) that the

solution to the agent’s problem is

Ci,a,c+a = (1 + φa)
−1(xi,a,c+a + yi,a,c+a + µφa), (29)

where

φa =
A−a∑
s=1

ρs = ρ
1− ρA−a

1− ρ
. (30)

It can also be shown that

Ci,a+1,c+a+1 − Ci,a,c+a = (1 + φa+1)
−1(yi,a+1,c+a+1 − µ). (31)

It follows from (31) that the cross-sectional variance of consumption among agents who are

age a and born in cohort c is

Var[ci,a,c+a|a, c] = (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
s=0

(1 + φs)
−2. (32)
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B. Identification

The parameters of the economic model are A, ρ, and σ2. I assume A is known. I

now show that, under reasonable assumptions on measurement error, this paper’s method

identifies ρ and σ2 despite the age-time-cohort identification problem. (In addition, the

distribution of xi,0,c is a nuisance parameter; I will not discuss identification of it here.)

Suppose that, as in Deaton and Paxson (1994a), an econometrician observes consump-

tion in repeated cross sections of agents of various ages at various dates. Assume that i’s

consumption is measured with error: The econometrician observes

Ĉi,a,t = Ci,a,t + εi,a,t, (33)

where the measurement error εi,a,t is independent of Ci,a,t, uncorrelated across agents, and

has mean νa,t and variance η2t at date t. (The bias νa,t and measurement error variance η2t

could change over time due to, for example, changes in the survey instrument. I show below

that the structural parameters can be identified without identifying νa,t and η2t .)

Since the econometrician has repeated cross sections and not a true panel, he cannot

estimate the parameters by looking at the time series of an agent’s consumption. However,

he can construct moments of consumption for each age and date and create a synthetic panel.

The mean of observed consumption is uninformative because of the age- and time-varying

bias νa,t. The variance of observed consumption among people who are age a at date t is

Var[Ĉi,a,t|a, t] = η2t + Var[Ci,a,t|a, t] = η2t + (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
s=0

(1 + φs)
−2. (34)

This is identical to (2) with ξ0 = 0, αa = σ2
∑a

s=0(1 + φs)
−2, βt = η2t , and γc = (1 +

φ0)
−2Var[xi,0,c]. It follows that this paper’s method identifies σ2 and ρ as long as the following

equations have a unique solution σ̂2 = σ2, ρ̂ = ρ, k = 0:

σ2

a∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= ka+ σ̂2

a∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
, a = 0, . . . , A. (35)

It is clear that σ̂2 = σ2, ρ̂ = ρ, k = 0 is one solution to the equations; therefore, we need to

16



prove only that there is no other solution. Specializing to a = 0, 1, 2, we have

σ2

(
1 + ρ

1− ρA

1− ρ

)−2
= σ̂2

(
1 + ρ̂

1− ρ̂A

1− ρ̂

)−2
(36a)

σ2

1∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= k + σ̂2

1∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
(36b)

σ2

2∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= 2k + σ̂2

2∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
. (36c)

Using (36a) to substitute for σ̂2 in (36b) and (36c), then using (36b) to eliminate k and

simplifying, we have

(
1− ρA−1

1− ρA+1

)−2
−
(

1− ρA

1− ρA+1

)−2
=

(
1− ρ̂A−1

1− ρ̂A+1

)−2
−
(

1− ρ̂A

1− ρ̂A+1

)−2
. (37)

For ρ̂ ∈ (0, 1), the right-hand side of (37) is monotonically increasing in ρ̂; therefore, (37) has

a unique solution, which is ρ̂ = ρ. We then obtain σ̂2 = σ2 from (36a) and k = 0 from (36b).

Thus, the solution is unique, and the method identifies σ2 and ρ. By contrast, the standard

method will not identify σ2 and ρ unless the cohort or period effects happen to be orthogonal

to a linear trend.

4. Quantitative example: revisiting Gourinchas and Parker (2002)

Gourinchas and Parker (2002) estimate the structural parameters of a life-cycle model

in which households receive a stochastic income and decide how much to consume and how

much to save. In this section, I investigate how the results change when I use this paper’s

method instead of the standard method that they employed to estimate the parameters.

A. Model

I briefly review the model here and refer readers to the original paper for details.

Households work for T = 40 periods and then retire. Their preferences are given by

E

[
T∑
t=1

βt
(Ct/Zt)

1−ρ

1− ρ
+ βT+1κ(ζT+1/ZT+1)

1−ρ

]
, (38)
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where β is the rate of time preference, ρ is the coefficient of relative risk aversion, Zt is a

deterministic family size adjustment for households of age t, κ is a constant, and ζT+1 is

terminal liquid and illiquid wealth. Households choose consumption and savings at each age

to maximize utility given an initial liquid wealth level W1, the constraint that terminal liquid

wealth WT+1 is non-negative, and the budget constraint

Wt+1 = R(Wt + Yt − Ct). (39)

Income Yt evolves according to

Yt = PtUt, Pt = GtPt−1Nt, (40)

where Pt is the permanent component of income, Nt is an i.i.d. permanent shock, Gt is the

deterministic growth rate of permanent income, and Ut is an independent and identically

distributed (i.i.d.) transitory shock. The transitory shocks are 0 with probability p and

otherwise follow a log-normal distribution with mean 0 and variance σ2
u. The permanent

shocks follow a log-normal distribution with mean 0 and variance σ2
n.

It can be shown that if terminal illiquid wealth is HT+1 = hPT+1, where h is a constant,

then the terminal value function κ(ζT+1/ZT+1)
1−ρ induces the household to follow a terminal

consumption rule that is linear in liquid wealth normalized by permanent income,

CT+1

PT+1

= γ0 + γ1
WT+1 + YT+1

PT+1

, (41)

where γ1 is the marginal propensity to consume out of terminal wealth and γ0 = hγ1. In the

remainder of the analysis, the model is expressed in terms of γ0 and γ1 instead of κ and h.

B. Original estimation procedure

In the first stage of their estimation procedure, Gourinchas and Parker (2002) use

external data to estimate the interest rate R, the variances of the income shocks σ2
u and σ2

n,

the probability of zero income p, and the mean initial wealth level W1.

Next, Gourinchas and Parker (2002) use repeated cross sections from the Consumer
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Expenditure Survey to estimate age profiles of consumption, income, and family size. The age

profile of consumption is estimated by an equation analogous to (2), with log consumption

as the dependent variable, but dummy variables for family size are added to control for

differences in family size among households of the same age, and the time effects are replaced

by the unemployment rate to solve the identification problem. The age profile of the across-

ages family size adjustment Zt is calculated as the mean of the coefficients on the age dummies,

weighted by the distribution of family sizes among households of age t; thus, there are assumed

to be no period or cohort effects in the family size adjustment Zt. (Notice that there are

two adjustments for family size. Controlling for family size in the consumption regression

removes within-age differences in family size. Including the family size age profile Zt in the

structural model accounts for how deterministic changes in average family size as an average

family ages affect the marginal utility of consumption.) Finally, income is normalized by the

estimated family size adjustment, and the age profile of normalized income is estimated from

an equation analogous to (2) but with time effects replaced by the unemployment rate.

The remaining parameters of the model are β, ρ, γ0, and γ1. They are chosen by

the Method of Simulated Moments to fit the age profile of consumption, given the first-

stage parameters and the estimated age profiles of income and family size. That is, given

a parameter vector θ = (β, ρ, γ0, γ1) and first-stage parameters χ, Gourinchas and Parker

(2002) calculate the household’s consumption rule in the model, simulate the behavior of a

large number of households, and solve

min
β,ρ,γ0,γ1

[lnCt − ̂lnCt(θ, χ)]′W[lnCt − ̂lnCt(θ, χ)], (42)

where lnCt is the estimated age profile of log consumption in the data, ̂lnCt(θ, χ) is the mean

of log consumption among simulated households of age t, and W is a weighting matrix.

C. Replication

Before implementing this paper’s method of identifying structural parameters, I repli-

cated the results of Gourinchas and Parker (2002) using their estimation method. Jonathan

Parker kindly shared with me the estimated age profiles and the GAUSS code used to es-

timate the parameters for the original paper. Because so much time has passed since the
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original code was written, I could not obtain access to a copy of the GAUSS software that

was capable of running the original code, so I wrote new code in C++ to reproduce the

original code.6 My code follows as closely as possible all of the decisions made in the original

code, such as the grid and interpolation method used to approximate the consumption rule.

These decisions are largely documented in the appendix to Gourinchas and Parker (2002),

and my new code is available to interested readers upon request.

The parameters that minimize my implementation of the objective function (42) are

close but not identical to the estimates published by Gourinchas and Parker (2002). Table

1 shows the original parameter estimates from Gourinchas and Parker (2002) as well as the

parameters that minimize my implementation of the objective function. Following Gourinchas

and Parker (2002), I focus on results using a robust weighting matrix based on the variance

of the estimated age profile; results using the optimal weighting matrix proved to be unstable

due to the need to numerically differentiate the objective function to estimate the optimal

weights. The discrepancy between my results and those of Gourinchas and Parker (2002)

for identical estimation procedures could be due to differences in the random number draws

used for the simulations, differences in the accuracy of the nonlinear equation solver that

is used to solve the household’s Euler equation,7 or differences in the numerical accuracy of

the calculations. (For example, the numerical gradient estimates used to calculate standard

errors depend on a tolerance whose value in GAUSS I could not determine; the standard error

estimates are very sensitive to this tolerance, perhaps explaining why my standard errors are

quite different from those in the published paper.) In all, though, the discrepancies in the

point estimates are small and show that my replication essentially reproduces the published

point estimates. If there are economically significant differences in the point estimates when

I apply this paper’s new estimation method, those differences must be due to the change in

method — not to differences between my replication code and the original code.

6I use the nonlinear optimization package of Johnson (2012), random number generators from the Intel
Math Kernel Library, and some utilities from Galassi et al. (2011).

7Gourinchas and Parker (2002) use a built-in solver in GAUSS. I was unable to determine details of its
implementation.
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D. Estimation without normalizations on the age profiles

Gourinchas and Parker’s (2002) estimation procedure uses arbitrary normalizations

to estimate the age profiles of consumption, income, and family size. I now use the new

estimation method described in section 2 to examine the consequences of these normalizations

for the estimates of the structural parameters β, ρ, γ0, γ1.

Gourinchas and Parker (2002) actually impose more normalizations than are necessary

to solve the age-time-cohort identification problem and identify the age profiles: For consump-

tion and income, they restrict the time effects to move in parallel with the unemployment

rate, whereas for family size, they restrict the cohort and time effects to be zero. To maintain

comparability with the original results, I do not relax the extra restrictions. Instead, I treat

Gourinchas and Parker’s (2002) estimated age profiles as if they were estimated using only

the minimum required restrictions — i.e., one arbitrary normalization on the first derivative

of each age profile — and then apply this paper’s estimation method. Because there are three

age profiles, I estimate three arbitrary slopes along with the structural parameters.

The model in Gourinchas and Parker (2002) suffers from an additional identification

problem that is unrelated to the age-time-cohort problem. Suppose that Rβ = 1 and ρ = 0.

Then the household is indifferent as to the timing of consumption, and any observed age

profile of consumption that satisfies the budget constraint is consistent with the model. In

practice, if Rβ = 1 and ρ = 0, the simulated age profile of consumption from the model will

mirror the initial guess that is used to find a consumption rule that satisfies the household’s

Euler equation. Thus, when applying the new estimation method, if there is some slope k

such that the observed age profile minus this slope is close to the initial guess used to solve

the Euler equation, the new estimation method will converge to Rβ = 1 and ρ = 0. These

estimates, of course, are not meaningful. Therefore, I impose Rβ < 1 and ρ > 0.

Table 2 shows the results. For reference, column 1 repeats my estimates using the

standard method. (Results from the new method should be compared with my estimates

using the standard method, rather than with the published estimates, because my code pro-

duces results slightly different from the published estimates even when applying the standard

method.) Column 2 allows an arbitrary trend in the age profile of consumption; this change

causes the estimated coefficient of relative risk aversion to more than double — to 1.78 from
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0.74 — and decreases γ1, the marginal propensity to consume out of final wealth, by nearly

20 percent. In columns 3 and 4, I instead allow arbitrary trends in family size or income in-

stead of consumption; these changes have relatively little effect on the structural parameters.

Finally, in column 5, I allow arbitrary trends in all three age profiles — consumption, family

size, and income. With all three trends allowed, the coefficient of relative risk aversion is

similar to that obtained using a consumption trend and the marginal propensity to consume

out of final wealth is even lower. Allowing arbitrary trends also significantly improves the

model fit as measured by the χ2 statistic.

Because the consumption profile is the one in which allowing an arbitrary trend has

the largest consequences for the structural parameters, it is instructive to examine the age

profile of consumption that the model generates under different parameters. Figure 1 shows

detrended age profiles of the natural logarithm of consumption — specifically, the figure plots

residuals from regressing the age profile of log consumption on a linear trend in age.8 By

removing a linear trend in age, I remove the effect of the normalization on the empirical

age profile and make it possible to focus on the curvature of the age profile, which is what

this paper’s method uses to identify the structural parameters. Figure 1 shows that the

new method brings the curvature of the age profile of consumption in the model closer to the

curvature in the data, compared with the standard method, by choosing structural parameters

that make the age profile less curved during the first half of the life cycle.

As table 2 shows, the structural parameters that best match the curvature of the age

profile of consumption include substantially higher risk aversion and a lower propensity to

consume from final wealth than the parameters estimated by the standard method. Of course,

changing these parameters has implications not only for the curvature of the age profile but

also for its first derivative. Figure 2 plots the age profile of the level of consumption as

simulated with the parameters estimated by the standard method and by the new method.

The dashed blue line shows the age profile that the model predicts when the parameters are

estimated by the standard method, while the dashed orange line shows the age profile that

8The figure shows log consumption rather than the level of consumption because Gourinchas and Parker,
2002, estimate the age profile of log consumption in the data and use it to construct their moment conditions;
thus, the age-time-cohort normalization most directly affects the profile of log consumption.
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the model predicts when the parameters are estimated by the new method. The new method

estimates higher risk aversion. Hence, the precautionary motive is stronger, and households

save more early in life, implying that consumption rises faster with age. Such a pattern would

be grossly inconsistent with the age profile of consumption that Gourinchas and Parker (2002)

estimate in the data using the normalization they chose, illustrated with the solid blue line.

Therefore, the standard method strongly rejects a high coefficient of relative risk aversion.

But the first derivative of the age profile is unidentified and is a function of the normalization,

not of the data. This paper’s method does not allow this unidentified first derivative to drive

inferences about the structural parameters. Instead, the new method identifies the structural

parameters by matching the curvature, as shown in figure 1. Then, the new method allows

the age profile in the data to rotate freely by adding or subtracting a linear trend, so that the

empirical age profile is made consistent with the age profile that the structural parameters

predict. The solid orange line in figure 2 illustrates this rotated age profile.

Table 2 shows that allowing arbitrary trends increases some standard errors but de-

creases others. In general, the parameter estimates remain relatively precise even after allow-

ing for arbitrary trends. Hence, in the model of Gourinchas and Parker (2002), the structural

parameters remain well identified without having to resort to unneeded normalizations on age

profiles, but removing those normalizations substantially changes one’s conclusions about the

true values of the parameters — significantly increasing the coefficient of relative risk aver-

sion and reducing the marginal propensity to consume out of final wealth. One caveat is

that, both under the original estimation method and when we remove the normalizations on

age profiles, the χ2 statistics imply that the overidentifying restrictions are strongly rejected.

Thus, there may be some doubt as to how well the model describes the data.

5. Conclusion

In estimating structural life-cycle models, an age-time-cohort identification problem

arises when researchers project two-dimensional data — data that vary with both age and

time — onto a one-dimensional model that varies only with age. There are many ways to make

such projections. A standard estimation strategy assumes a particular projection is correct,

then estimates the structural parameters conditional on that assumption. This paper shows
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that such an assumption is unnecessary and, in general, leads to incorrect results. I provide

an alternative approach that does not have this pitfall. The new method demonstrates that

the structural parameters can be identified even without imposing enough assumptions to

identify the age profile.

As I have discussed, the new method identifies the structural parameters from their

effect on the curvature and higher derivatives of the age profile, rather than on its slope.

If the curvature and higher derivatives are not precisely estimated or if parameters have

only weak effects on these derivatives, then confidence intervals for the structural parameters

will be large, although in practice, the new method did not greatly increase the standard

errors on structural parameters in a replication of Gourinchas and Parker (2002). Adding

assumptions, as in the standard method, has the potential to make the confidence intervals

smaller — but only at the price of potentially producing incorrect estimates. The new method

allows researchers to determine what they can learn about the structural parameters with

only a minimal set of assumptions.

The new approach does, however, make some significant assumptions. The additive,

linear model (2) assumes that time effects have the same impact on people of all ages and

that time effects matter only contemporaneously. Schulhofer-Wohl and Yang (2016) argue

that many important economic and social phenomena violate these assumptions and propose

a model that avoids them. However, their model requires many years of data and minimal

measurement error. In this paper, I have focused on the widely used and easy-to-estimate

linear model and asked how best to employ it to estimate structural parameters. Analysis of

more complex models is left for future research.
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Table 1: Replication of Gourinchas and Parker
(2002).

(1) (2)
Published Replication

discount factor (β) 0.9598 0.9533
(0.0179) (0.0080)

risk aversion (ρ) 0.5140 0.7440
(0.1707) (0.2516)

γ0 0.0015 0.0002
(3.85) (0.4734)

γ1 0.0710 0.0663
(0.1244) (0.0450)

χ2(36) 174.10 149.40

Column (1) shows the parameter estimates and
χ2 statistic published by Gourinchas and Parker
(2002). Column (2) shows the parameter esti-
mates and χ2 statistic produced in a replica-
tion exercise using the same method as Gourin-
chas and Parker (2002). Estimates using robust
weighting matrix. Standard errors (in paren-
theses) and χ2 statistics corrected for first-stage
estimation.
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Table 2: Comparison of estimation methods.

Standard New method

(1) (2) (3) (4) (5)

Structural parameters:
discount factor (β) 0.9533 0.9570 0.9533 0.9520 0.9582

(0.0080) (0.0180) (0.0055) (0.0061) (0.3512)
risk aversion (ρ) 0.7440 1.7802 0.7452 0.8395 1.6527

(0.2516) (0.2995) (0.1922) (0.2335) (0.3747)
γ0 0.0002 0.0005 4.28×10−5 4.29×10−5 1.37×10−5

(0.4734) (0.3404) (0.2685) (0.2221) (0.0397)
γ1 0.0663 0.0546 0.0661 0.0629 0.0363

(0.0450) (0.0228) (0.0630) (0.0199) (0.0294)

Slope nuisance parameters:
kconsumption 0 0.0150 0 0 0.0129

- (0.0081) - - (0.2208)
kfamily size 0 0 -0.0004 0 -0.0162

- - (0.0516) - (0.2303)
kincome 0 0 0 -0.0018 -1.45×10−5

- - - (0.0010) (0.2214)

χ2 149.40 109.12 147.15 136.15 108.43
d.f. 36 35 35 35 33

Column (1) shows the parameter estimates produced in the replication of Gourinchas
and Parker (2002) using that paper’s estimation method. Columns (2) through (5)
show the parameter estimates produced using this paper’s method. In column (2),
the slope of the consumption age profile is allowed to vary freely, while the slopes of
the family size and income age profiles are fixed at those estimated by Gourinchas
and Parker (2002). In column (3), the slope of the family size age profile is allowed
to vary freely, while the slopes of the consumption and income age profiles are fixed,
and in column (4), only the slope of the income age profile is allowed to vary freely.
Column (5) allows the slopes of all three age profiles to vary freely. Standard errors
(in parentheses) and χ2 statistics corrected for first-stage estimation. “d.f.” indicates
degrees of freedom.
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Figure 1: Detrended age profiles of ln(consumption).

Graph shows residuals from regressing age profiles of the natural logarithm of consumption on a
linear trend in age. Lines labeled “estimated model (standard method)” and “estimated model
(new method)” are simulated from the model using parameter values in table 2, columns 1 and 5,
respectively.
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Figure 2: Age profiles of consumption.

Lines labeled “estimated model (standard method)” and “estimated model (new method)” are
simulated from the model using parameter values in table 2, columns 1 and 5, respectively. The
line labeled “data (rotated according to new method)” is the age profile in the data, rotated by the
estimated consumption trend shown in table 2, column 5.
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