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ABSTRACT

We consider a simple environment in which individuals receive income shocks that are unob-
servable to others and can privately store resources. We show that this ability to privately
store can undercut the ability to shift resources across individuals to the extent that the
efficient allocation only involves consumption smoothing over time, as opposed to insurance
(consumption smoothing over states) if the rate of return on savings is not too far below the
rate of time preference, or, alternatively, if the worst possible outcome is sufficiently dire.
We also show that unlike environments without unobservable storage, the symmetric efficient
allocation is decentralizable through a competitive asset market in which individuals trade
risk-free bonds among themselves.

*We would like to thank Christophe Chamley, V.V. Chari, Ed Green and Tim Kehoe for comments and
suggestions. The views expressed herein are the those of the authors and not necessarily those of the Federal
Reserve Bank of Minneapolis or the Federal Reserve System.



1. Introduction

There is a wide body of empirical evidence that indicates that the complete markets
paradigm provides an inadequate description of the cross-sectional behavior of individual con-
sumption. Instead, a consensus view appears to be that the data on individual consumption
are more consistent with the predictions of a dynamic incomplete markets model in which
individuals cannot directly insure themselves against income risk but instead are only able
to buy and sell risk-free bonds over time while facing a short-sales limit.! However, the re-
strictions on asset trade in this type of model lack explicit micro-foundations. Instead, as
in Geanakoplos (1990), it is typical to refer loosely to various factors, the most important
of which are the moral hazard or adverse selection considerations arising from incomplete
information.?

Unfortunately, this loose motivation has not survived rigorous scrutiny. In particular,
Green (1987) shows that the efficient allocation of consumption in an environment with
unobservable individual income is considerably different from the equilibrium allocation of
any dynamic incomplete markets model.® His results have been extended by Thomas and

Worrall (1990), Phelan and Townsend (1991), Atkeson and Lucas (1992), and others to

L Among others, see Zeldes (1989), Cochrane (1991), Carroll (1992), Deaton (1992), Deaton and Paxson
(1994) and Hayashi, Altonji and Kotlikoff (1996). Similar negative findings have been found at more aggregate
levels; for example, Backus, Kehoe and Kydland (1992) document that consumption is less correlated than
output across countries.

2Qther factors include non-concurrent life spans and transactions costs. Of these, only the problems arising
from incomplete information seem capable of rationalizing the sparse nature of income insurance possibilities
assumed within this literature. Transactions costs have a hard time explaining why there are many state
contingent business contracts but so few income insurance contracts, especially since the bookkeeping costs
associated with such contracts have steadily declined. The existence of non-concurrent lifespans only rules
out a very limited set of trades, and does not rule out partial income insurance, given one’s initial conditions.

3Green (1987) characterizes the efficient allocations in multi-period environments in which individuals
have unobservable income shocks, and further shows that these efficient allocations are Pareto superior to
any allocation implemented by competitive unmonitored trade of a set of securities (no matter how big or
small this set might be).



settings with unobservable productivity or preference shocks.* Simply put, the lesson of this
literature is that asymmetric information alone does not rationalize the use of incomplete
security markets to allocate resources.

In this paper, we consider the symmetric efficient allocation of resources in an environ-
ment with two frictions. First, as in Green (1987), individual income is private information.
Second, unlike Green (1987) or the subsequent literature, individuals can privately store with-
out the knowledge of others. We show that this ability to privately store greatly undercuts
the ability to shift resources across individuals. Hence an efficient allocation only involves
consumption smoothing over time, as opposed to insurance (consumption smoothing over
states) if the rate of return on storage is not too much less than the rate of time preference,
or, alternatively, if the worst possible outcome is sufficiently dire. We use this characterization
of a symmetric efficient allocation to prove that it is equivalent to the unique equilibrium allo-
cation of a dynamic incomplete markets economy in which individuals competitively trade in
non-contingent bonds at each date as in Bewley (1993), Huggett (1993) and Aiyagari (1994).

There is a simple intuition for our result. If the rate of return on storage is sufficiently
high or if the worst possible outcome of individual income is sufficiently low, then it is efficient
for society to store resources to help individuals against idiosyncratic risk. Because of the
positive social storage, it is inefficient for any agent to be credit-constrained by his own
transfer scheme, or, a fortiori, by the transfer scheme received by somebody with a lower

income. (Here, we use “credit-constrained” to refer to individuals for whom the multiplier

4There is a rich literature on dynamic incentive contracts in settings with private information, but without
storage or capital accumulation. Other important contributions include Spear and Srivastava (1987), Abreu,
Pearce and Stacchetti (1990), Taub (1990), Green and Oh (1991), Atkeson and Lucas (1995), Aiyagari and
Alvarez (1995), Phelan (1995), and Wang (1995).



on the constraint guaranteeing nonnegative storage is positive.)

Hence, on the one hand, to be efficient and incentive-compatible, the net present value
of the transfers received by high income individuals must be at least as large as the net present
value of the transfers received by low income individuals. On the other hand, risk-sharing
considerations imply that it is inefficient for high income individuals to receive more net
present value than low income individuals. It follows that the net present value of all transfer
schemes should be the same across all individuals (that is, zero). Given this restriction, the
efficient allocation has to correspond to the equilibrium allocation.

Atkeson (1991), Marcet and Marimon (1992), and Khan and Ravikumar (1996) char-
acterize efficient allocations in environments with dynamic accumulation of resources and
private information. However, in all of their models, all payoff-relevant state variables are
observable at the beginning of each period. In contrast, in our model, individual storage
levels are an unobservable state variable. This difference forces us to develop a new line of
attack relative to the current literature.

It is important to emphasize that, despite a superficial similarity, our model is in fact
considerably different from those of Allen (1985) and Fudenberg, Holmstrom, and Milgrom
(FHM) (1990). These papers characterize optimal principal-agent contracts in dynamic set-
tings in which both parties are allowed to freely borrow and lend without the knowledge
of the other.” But borrowing and lending contracts typically require some kind of outside

enforcement, which in turn requires that they be observable by some aggregate institution.

5In Allen’s model, as in ours, the agent receives income that is not observed by the principal. In such
an environment, if the agent is allowed to freely borrow and lend without the knowledge of the principal,
then only the Walrasian outcome is in fact incentive-feasible. In the setting that we study, with unobservable
storage, there are many incentive-feasible outcomes with binding resource constraints; our main result is that
the Walrasian allocation is in fact efficient relative to the other incentive-feasible outcomes.



If we equate the aggregate institution undertaking the transfer system with a national gov-
ernment, then this is a serious weakness of Allen’s and FHM’s models, since this is the same
institution which enforces domestic contracts. Private storage does not give rise to any need
for outside enforcement.

Perhaps more importantly, another interpretation of private storage is that it repre-
sents the ability to save with some other agent which the aggregate institution cannot observe.
Under this interpretation, there is some party that issues fully enforceable debt contracts.
A well-known example of such agents are the Swiss banks who allow almost anyone to save
with them and keep the magnitudes of these savings anonymous. It is an interesting question
as to how these countries have overcome their incentive to repudiate this debt, but their
having done so to a significant degree seems uncontestable. Hence from the perspective of a
US institution, this ability to safely save abroad in a manner that is largely undetectable is

equivalent to private storage.

2. The model world: feasibility and efficiency
There is a continuum of identical agents who each live for three periods. There is a
single consumption good in every period. In period s, individual preferences over consumption

streams are representable by the utility function:
3
Es Z ﬂt_su(ct)u
t=s

where we assume that u(-) is continuous and concave, u’ is positive and continuous, and that

lim, o t/(c) = co. We also assume that u displays nonincreasing absolute risk aversion; this

°Lim and Townsend (1996) document the importance of currency and grain as methods of saving and
dissaving in south Indian villages. Townsend has argued that it seems unlikely that individual holdings of
currency are observable to others in the village.



implies that «' is strictly convex.

In each period ¢, an individual receives an unobservable stochastic endowment, 6,
which is drawn from a finite set © = {#,...,6”} of nonnegative reals. We assume that the
probability of a draw is i.i.d. both across individuals and across time, and that the probability
of an individual’s receiving endowment 6 is m; > 0; we also assume that 6" < o,

Goods are storable, with gross return equal to R > 0. Individuals can store goods in
a private storage unit that is unobservable to others, or in a public storage facility that is
observable to all. We define an allocation to be a triple of individual consumption functions
(¢1,ca,c3), where ¢; maps O into the nonnegative reals, and a pair of individual storage
functions (s1, s2), where s; maps ©' into the nonnegative reals. An allocation is physically
feasible if in each period, the per capita levels of consumption and storage are less than or
equal to the sum of per capita endowments and the per capita proceeds from storage in the
prior period.

An allocation mechanism is a description of how resources are to be distributed across
agents. Specifically, an allocation mechanism consists of a message space A, a sequence of
transfer functions (71, 79, 73) such that 7, maps A’ into the reals, and a pair of storage levels
(S1,52). In each period, after receiving his endowment, an agent sends a message (some
selection from A) to a social planner; the transfer functions then determine the transfer of
consumption to be made to the agent based on his current and past messages. (Of course,
the transfer may be negative, in which case the agent gives resources to the planner.) The
planner then publicly stores the amount of goods specified by the mechanism in the public
storage facility. (Throughout the paper, S; represents public storage and s; represents private

storage.)



An allocation is incentive-feasible if it is implemented by some allocation mechanism;
that is, the allocation is the Bayesian-Nash equilibrium outcome of agents’ playing the game
defined by the mechanism. It is simple to show that the Revelation Principle applies here.
Hence, we can find the complete set of incentive-feasible allocations of resources by restricting
attention to incentive-compatible mechanisms in which the message space A is the same as
the space © of endowment realizations, and in which it is weakly optimal for every individual
to announce his true realization of 6 given that he has always done so in the past.

Given this standard result, an allocation (¢q, ¢o, 3, 51, S2) is incentive feasible if there

exists an incentive-compatible mechanism (71, 79, 73,51, S2) such that

Cl(gi) = 02 + 7_1(‘92') — Sl(ei)
co(0,607) = 07 +75(0°,07) — 55(0°,67) + Rs1(6")

(1) e3(07,67,0%) = 0° +73(0°,607,0%) + Rso(0',67)

i 7 k

2 {ZZZ[M@"» 4 Bulea(0,0))m, + Frule 0, e‘“>>]mw}

> 05 Sa[u(0 4+ 71(ar) — 81) + Bu(6” + To(a1, a2(67)) + Rs| — s5(67))
> max
(1_166781120 2 k 7 J pk 1 (nJ
a3(67)€0,5(67)20 +0°u(0" + 73(a1, a2(07), az(07,0%)) + Rsy(¢V))|mim;my,
a3 (07,0%)co

(3) Y mmi(0)+S5 <0
(4) Zzﬂ-iﬂ-jTQ(Q’i,gj)—‘f_SQ S RSl
i g

() ZZmem(eﬂeﬂe’“) < RS,
i i k

(6) 51,5.>0



(1) c1(6") > 0,c0(0°,67) > 0,c5(0°,67,0%) > 0.

The last five conditions (3-7) guarantee that the allocation is physically feasible. The
incentive constraint (2) ensures that the mechanism is in fact incentive-compatible by re-
quiring that truth-telling is optimal. The ez-ante form of the incentive constraint may seem
unfamiliar to some readers. Because period ¢ actions are allowed to be arbitrary functions
of period t information, this ex-ante incentive constraint is equivalent to writing down a
sequence of ex-post incentive constraints.

The incentive constraint embeds the idea that to ensure that truth-telling is optimal,
we have to trace out the full implications of deviating from truth-telling. It is important to
note that the presence of the unobservable storage makes this task more difficult. Without
unobservable storage, an individual finds truth-telling optimal even if he has defected from
truth-telling in the past. In the environment that we are studying, failing to announce the
truth may lead the individual to change his level of storage, and may thereby affect whether
he finds truth-telling optimal in the following periods. In the language of Green (1987), it is
not true that in this environment, temporary incentive-compatibility implies full incentive-
compatibility.

Our goal in this paper is to characterize the set of symmetric efficient incentive-feasible
allocation(s) (that is, efficient allocations in which all individuals receive the same ex-ante

utility ). Given the symmetry restriction, these allocations will be the solution to

T1,72,73

(Slvs2)

(8) 3 Zzzkju(@,(ei, 07, 6F) )iy

P1 : (max)Zu(cl(gi))wi—1—52211(02(,92"90)77@%3-+



subject to (1) — (7).

It is not obvious how this problem can be made recursive. This is because there is
not a set of publicly observable state variables upon which we can condition that is sufficient
to determine individual outcomes from that point onwards. In the papers by Green (1987)
and Atkeson and Lucas (1992), the continuation utility level promised under the mechanism,
conditional upon the history of past reports, was sufficient. However, since different levels of
private storage will lead individuals to value different sequences of transfers differently, this
is not possible in our setting. In Khan and Ravikumar (1996) the level of storage is public
information, and hence the state can be taken to be the level of storage x the utility promise.
However, since here storage can be private information, this is not possible. This will force

us to take a different approach to characterizing the symmetric efficient allocation.

3. Characterizing efficient allocations

In this section, we characterize the set of symmetric efficient allocations when either
the gross return on storage is close to the inverse of the discount factor, or the lower bound
of the support of the endowment distribution is close to zero. To do so, we first write down a
simpler maximization problem, which we will label P2, in which the constraint set is at least
as large as the constraint set in P1. We characterize the solution to this problem. Then, we
show that the solution to this new optimization problem actually lies in P1. We therefore
conclude that the solution to the new optimization problem is in fact the solution to P1.

In order to simplify P1, note first that the incentive constraint (2) implies that reports

in the last period will be chosen so as to maximize the level of the transfer, and hence it is



incentive-infeasible for the transfer level in the third period to depend upon the realized
shock. Therefore, without loss of generality, we can restrict the transfer in period three to
simply be a function of the first two shocks and drop this incentive constraint entirely.

The next proposition also allows us to simplify much of the following discussion.

PROPOSITION 1. Given any incentive-feasible allocation, there exists an incentive-compatible
mechanism which implements the same consumption allocation and under which all individ-

uals find it optimal not to store.

Proof. Assume that we have an incentive-compatible mechanism of the form (71, 72, 73, S1, S2).
Suppose that under this mechanism, individuals find it optimal to choose storage functions

{51, 82}. Then consider the following mechanism:

710" = T1(0") — 51(0")
Fo(01,67) = T9(0',07) — s5(0°,67) + Rs1(6")
73(0°,07) = 73(0",67) + Rso(6',6%)
S, = Z?Tisl(gi)—l-sl

Sy = ZZWZ‘WjSQ(@i,gj)"_SQ.

]

We claim that this mechanism is also incentive-compatible and that it implements the same
allocation. To see why, note that if an individual always tells the truth, he receives exactly
the same consumption stream if he never stores as he did under the original mechanism when
he saved optimally. Since he could have chosen to store more under the original mechanism,

and did not, he will choose not to store in this new mechanism.



Will any individual ever lie under the new mechanism? If he lies, then he receives a
stream of consumption that he could have attained under the old mechanism by choosing the
right stream of storage. Since he did not choose this stream of consumption, the utility asso-
ciated with lying is no larger under the new mechanism than under the original mechanism.

Hence, no individual finds it optimal to lie. O

Consider the following alternative optimization problem.

P2 : max Z u(cq (0 7rl—|—ﬁzz (ca (0", 9]))71'%]

(71,72,73)
(51,52)

9) s ZZZU(C3(0i,9j,0k))7Ti7Tj7Tk

subject to

ad) = 0 +71.(0)
(10) ca(0°,07) = 07+ 1o(0",6)

c3(67,67,0%) = 0F +73(0",67)

(11) VO = u(cr(69) + B> ulea(0,07))m; + 82D u(es(0°,67,0%))mjmy >
J ik
?glaex }u(@i +71(ay) — s7) + ﬁZu(@j + 79(a1, 07) + Ry — s5(67))7;
al€ i pni—1 j
s!,sh(67)>0

+623 > u(0® + 73(ar, 07) + Rsy(67))mjm,
ik

V(O 07) : u(ea(07,607) 4+ B ules(07,67,60%))my >
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12 max  u(0? 4+ 74(0", as) — s5) +
(12) e ( 2(0", a2) — 85)
s5,>0

B u(6* + 75(0°, as) + Rsh)my,
k

(13) ZmTl(Qi) +5: <0

(14) ZZT{Z'TF]'TQ(Qi, 9]) + SQ S RSl

i
Z Z mmm3(0°,07) < RSy
i g

(15) 51,8, >0
(16)  71(0%) > —0",79(0",67) > —07, 75(0",67) > —0".

To understand this problem, first recall that the endowment realizations are ordered
from smallest to largest. Second, note that when i = 1, 6° ! is set equal to §'. Third, note
that we have taken advantage of proposition 1. to restrict attention to solutions in which there
is zero private savings. Finally, note that the third (last) period transfer is independent of
the last period report to the planner, but cannot be more negative that the smallest possible
endowment level.

The set of consumption allocations that satisfy the constraints of P2 is larger than the
set of mechanisms that satisfy the constraints of the original problem P1. This is because the
incentive constraints (11) and (12) in P2 require that the mechanism be robust to a much
smaller set of deviations. First, an individual can only tell one type of lie about himself: if he
receives endowment realization 6%, he is allowed to claim that he received 6°~', but he cannot
claim that he received any other shock. (Agents who receive the lowest shock realization 6*
are not allowed to lie at all, but they are allowed to adjust their saving.) Second, after an

11



individual lies in the current period, he is required to tell the truth in future periods, even
though that behavior may be suboptimal. In the rest of this section, we provide necessary
conditions for any solution to P2 and show that these necessary conditions imply that any
solution lies in the (smaller) constraint set of P1.

We first prove that resource constraints must bind in any solution to P2.

PRrROPOSITION 2. In any solution to P2, the aggregate resource constraints hold with equality.

Proof. Suppose the aggregate resource constraints don’t hold with equality in period three.
If this is so, in period three, give € units of consumption to anyone who announces that he
received the highest realization of 6 in periods one and two. By the nature of the incentive
constraints, no agent is allowed to claim that he got the highest shock if he did not, so the
incentive constraints can’t be violated. Also, giving more consumption to agents in period
three will not lead them to save more. If the resource constraints don’t hold with equality in
periods 1 and 2, the planner should store ¢ units more consumption until period three and
then give these extra resources to anyone who announces that he got the highest shock in

periods one and two. O

In what follows, the positive storage condition

(17) Sy >0fort=1,2

plays a central role. We prove that if all solutions to P2 satisfy this condition, then the
solutions to P2 and P1 are equivalent. We do so in three steps. First, any solution to P2 that

satisfies the positive storage condition must satisfy a consumption smoothing condition

12



that says that individuals are marginally indifferent between storing and not storing, or

for all 0%, u/(c1(6')) = BRY u/(ca(0',67))m;

(18) for all (6%,07), u/(c2(67,67)) = BRY u(cs(6',67,60%))my.
k

We then prove that any solution to P2 that satisfies both of these conditions must also satisfy
a net present value of transfers (NPV) condition that says that the sum of all transfers,
discounted at the rate of return on storage, is the same across all individuals regardless of

their shocks, and hence equal to zero, or
(19)  71(0") + 79(6",0))R™ + 13(0",6°)R™* =0 for all #" and ¢’

The third step is to show that any solution to P2 which satisfies these three conditions will
also satisfy the incentive condition (2) in P1, and hence is a solution to that problem is as
well.

The following proposition proves the first step in this chain of logic. The proof is
simple: given an allocation in which per-capita storage is positive and some agent’s zero
storage constraint is binding, then the agent’s utility can be improved by allowing him to

“borrow” by lowering the amount being stored by the planner.

PROPOSITION 3. Any solution to P2 that satisfies the positive storage condition (17) must

also satisfy the consumption smoothing condition (18).

Proof. First, we show that in any solution to P2 in which Sy > 0, u/(cs) = SREU/(c3).

Suppose this is not true for some (#*,67), and instead
u'(cp(6",67)) > ﬂRZUI(Cg(Qi, 67, 0%))my..
2

13



Then, set Sy = Sy— em;m; units of consumption, 75(6°,67) = 75(6",67)+ ¢ units of consump-

tion, and 75(6",67) = 13(0",67) — &, where

u(co(0°,67) + €) + ﬁ;u(c3(9i,9j, 0F) — 8) i = u(ca (6, 67)) + ﬂZu(@(Qi, 07, 0%))my,

k

and
u'(co(0,07) + ) >ﬂRZu (6°,07,0%) — &)y

Clearly, since u/(ca(60",67)) > BRY v (cs(6",67,0%))mk, & > €R, and so this reshuffling is
physically feasible and can be used to improve ex-ante utility. We still have to check the
incentive constraints. Any individual who received the shock 6™ in period 2 would not

announce #’, because concavity implies that
u(ca(0°,607) + €) — u(ca(6°,67)) > u(ca(67,67) + e + 07T — 07) — u(co(67,67) + 60711 — 97)

and so

u(eo(0°,67) + 1 — 07 +€) + B> u(es(0°,67,0%) — 8)my, <
k

u(ea(0°,07) + 077 —07) + B u(cs(6°, 67, 6%))my,
k

6! in period one would not announce #° under this

Similarly, anyone who received the shock
new mechanism, because he gets the same utility as before from announcing #* and not storing
after making this announcement, and they get less utility than before from announcing 6" and
choosing any positive level of storage (using the same concavity argument). Finally, any agent

who announces ¢’ will not choose to store now, because he is receiving more consumption in

period 2. Hence, all individuals are marginally indifferent between storing or not in period 2.

14



If S; > 0, we can use the same logic as above that individuals are marginally indifferent

between storing and not storing in period 1. O

We have established our first step: if the positive storage condition is satisfied, then
the consumption smoothing condition is satisfied. The next step is to describe how solutions
to P2 behave across states of nature if the positive storage and (by implication) consumption
smoothing conditions are satisfied. The following proposition proves that any solution to P2
that satisfies these conditions has the feature that every possible transfer sequence has the

same net present value (or NPV'), and so condition (19) holds as well.

PROPOSITION 4. Any solution to P2 that satisfies the positive storage condition (17) and

consumption smoothing condition (18) also satisfies the NPV condition (19).

Proof. In Appendix.O

The proof is analytically tedious, but its logic is simple. We first note that any transfer
scheme that gives an individual with a lower endowment shock a higher NPV sequence of
transfers must lie outside the constraint set of P2. Then we show that if the NPV of the
transfer to an individual with a higher endowment shock was also higher, then it is possible
to construct a set of alternative transfers which yield the same ex-ante utility level and satisfy

the incentive constraints, but require less resources.

PROPOSITION 5. Any solution to P2 that satisfies the positive storage condition (17) is a

solution to P1.

Proof. To see this, we need only prove that any solution to P2 that satisfies the positive

storage condition must lie in the constraint set of P1. Note first that any solution to P2

15



in which storage is positive in periods 1 and 2 satisfies the N PV property, so all transfer
schemes deliver the same N PV after any history of shocks. Also, if an agent tells the truth,
his consumption is optimally smoothed. Hence, agents weakly prefer to tell the truth and

not store, and so the constraints of P1 are satisfied.O

This proposition establishes the importance of the positive storage condition. To see
this in a stark way, suppose the environment is specified in such a way that all solutions
to P2 satisfy the positive storage condition. Then, the proposition guarantees that the set
of consumption allocations that solve P2 is exactly the same as the set of consumption
allocations that solve P1. Thus, we know a lot about the symmetric efficient allocations
(that is, the solutions to P1) for any specification of the environment in which all solutions
to P2 satisfy the positive storage condition.

The next proposition provides two sets of conditions on R, § and the support of 6 that
are sufficient to guarantee that the positive storage condition is satisfied for any solution to
P2. Essentially, we need either the return to storage to be sufficiently high, or the lowest

possible realization of 6 to be sufficiently low.

PROPOSITION 6. All solutions to P2 satisfy the positive storage condition (17) if either of

the following two conditions is satisfied:

i.R > p7!

ii. 98 = 0.

(Recall that 6" is the lowest possible realization of .)
Proof. In Appendix.O

16



The intuition behind case (i) is that the incentive problem requires individuals to
absorb some idiosyncratic risk into their consumptions. The presence of this idiosyncratic
risk, combined with the convexity of marginal utility, means that the solutions to P2 feature
positive aggregate storage whenever R > 3!, The intuition behind case (i) is that because
of the incentive problem, there is no insurance in period three. Hence, if §' = 0, then it
is always optimal for society to store from periods two to three to guard against this bad
outcome. We can then use backward induction to prove the theorem.

We can conclude that under either condition (7) or condition (i7), any solution to P2 is
a solution to P1, and hence any solution to P1 must satisfy the positive storage condition, the
consumption smoothing condition and the N PV condition. It is worth noting that conditions
(7) and (i7) can be relaxed. Since storage is strictly positive, the Theorem of the Maximum
tells us that for small changes in the rate of return or small changes in ', per-capita storage
must still be positive in any solution to P2. Hence, the characterizations of the solutions to
P1 and P2 are still valid for R sufficiently close to 3! or for #* sufficiently low.

Finally, we want to show that if it is known that all solutions to P2 satisfy the positive
storage condition, then there is in fact a unique symmetric efficient allocation. We begin by
showing that given this requirement, any allocation of consumption in a solution to P1

actually solves the following optimization problem.

(20) P3: [ max Z ZZ (0" + 71(07)) + Bu(6? 4 12(6,67)) + B2u(0" + 73(6%,67))]mimjmi

(51782)

subject to

T1(0%) + 726, 0)R 1 + 736, 6))R 2 = 0 for all 6,07

17



ZTl(ei)Wi—l-Sl = 0
SN (0,6 + % = RS
t g

Z Z Tg(‘gi, Gj)ﬂiﬂj = RSQ

1 J
51,5, 20
T1(6") > —0', 75(6,67) > =67, 75(6",67) > —0"

Note that the objective function in P3 is strictly concave, and the constraint set is
convex. Hence, if we can find an element (71,72, 73,S51,52) of the constraint set of P3 such

that S; > 0 for all ¢ and such that the first order conditions

WO +711(0") = BRY w67 + 12(6°,67)) for all 0;
J

(0 +7o(60°,67) = BRY m (0" +75(6°,67)) for all 6;,0;
k

are satisfied, then (71,79 73,51, 52) is the unique solution to P3.

Now, we know that the objective function in P2 is continuous and the constraint set
is compact. Hence, there is a solution to P2. Moreover, we know that any solution to P2
that satisfies the positive storage condition must also satisfy the consumption smoothing, and
NPV conditions. This means that any solution to P2 lies in the constraint set of P3 and
satisfies the above first order conditions; any solution to P2 that satisfies the positive storage

condition is a solution to P3. We can therefore deduce the following proposition.

PropoOSITION 7. If all solutions to P2 are known to satisfy the positive storage condition,

then the unique solution to P3 is the unique solution to P2; and furthermore all solutions to

18



P1 have the same allocation of consumption as this unique solution to P2 and P3.

Note that there are always multiple solutions to P1 because there are many efficient
ways to divide per-capita storage between private and public storage. However, Proposition
7. guarantees that as long as all solutions to P2 are known to satisfy the positive storage
condition, then all solutions to P1 feature the same allocation of consumption as in the unique

solution to P3.

4. Supporting the efficient arrangement

We now consider the equilibrium outcomes of a dynamic incomplete markets economy
embedded in our physical and informational environment. In this trading arrangement, in-
dividuals competitively trade consumption and risk-free one period bonds that are available
in zero net supply at each date. There is complete enforcement in this economy; individuals
must pay off their debts in every state of the world, and they cannot end their lives in debt.
We show if all solutions to P2 are known to satisfy the positive storage condition (as is true,
for example, if R > 1 or if ' = 0), then any symmetric efficient allocation is decentralizable
in the sense that it is an equilibrium allocation for this incomplete markets economy. Also,
we prove a partial converse that says that if SR > 1, or if #* = 0, then there is a unique
equilibrium allocation and it is efficient.

The dynamic incomplete markets economy takes the following form. In each period,
individuals trade consumption in exchange for risk-free bonds that promise one unit of con-
sumption next period. The individuals treat interest rates (that is, the relative price between
bonds and consumption in each period) as given. They derive wealth in a given period from

public and private storage, from the interest payments on their bonds, and from their income.
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Individuals can use their wealth in three ways: they can store it publicly or privately, they
can consume it, or they can use it to buy or sell bonds.

Hence, individuals choose consumption, bondholdings, private storage, and public
storage (cy, by, 8¢, 3¢);_,, where each of the components of this vector is a function mapping
©! into the reals. Treating the interest rates rjand ry as fixed, the individuals make these

choices so as to solve the following problem.
max Elu(c;) + Bu(cy) + f2u(cs)]
subject to
t=1,23:c,+b+s+5<0;,+b 1(1+7r)+ Rs; 1+ R5 4
bs >0
S, >0,t=1,2,3
bp=0,50=0,50=0

An equilibrium in this economy is a sequence of interest rates (r1,rs), and a solution

(¢, by, 8¢, 8¢)3_1 to the individual’s decision problem such that for ¢ =1, ..,3:

E{b} = 0

E{c)} + E{s;} + B{3} = RE{s,.}+RE{5_ .}

where E represents the unconditional expectation of the random variable. The first equation
requires that per-capita bondholdings equal zero, and the second equation requires that per-
capita demand and per-capita supply are equated in the goods market.
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Given this definition of equilibrium, we can prove that any symmetric efficient alloca-

tion is decentralizable.

PROPOSITION 8. Suppose it is known that all solutions to P2 satisfy the positive storage
condition. Then, the unique symmetric efficient allocation of consumption is a dynamic

incomplete markets equilibrium allocation of consumption.

Proof. We have already established that if all solutions to P2 are known to satisfy the
positive storage condition, then the unique symmetric efficient allocation is a solution to P3.

So, consider any solution (71, T2, T3, 51, S2) to P3. Define

b1 = —Sl —T1
b2 = —T2—82+R51+Rb1
b3 = —T3 + RSQ + Rb2

s1 = 0; 51 =51
sy = 0; §9 = 59

S3 = 0, 53:0

We claim that this is an equilibrium allocation in which the equilibrium interest rates
are both equal to R—1. We know that in the solution to P3, the individual’s first order condi-
tions are satisfied because consumption is smoothed. Also, the aggregate resource constraints
are satisfied because the per-capita bond holdings are zero from the resource constraints in

P3. We need only show that the solution to P3 satisfies the individual budget constraints in
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the asset market. The period ¢ flow constraint follows from the reasoning

015 — St + RSt_l — bt + Rbt—l = 1975 — St + RSt_l + 7+ St — RSt_l
= ‘975 + Tt

= Ct.

Also, the constraint that b3 > 0 is a consequence of

b3 = —T3 + RSQ + Rbg
= —73— Rro+ R*Si + Rl

= —T3 — RTQ — R27'1

It follows that the allocation of consumption in the solution to P3 (that is, to P1) is

an equilibrium allocation of consumption.O

Finally, we can show that if the gross rate of return on storage is at least 3%, or zero

is the lower support of the endowment distribution, then the reverse holds as well.

PROPOSITION 9. If R > 37!, or if ' = 0, then any dynamic incomplete markets equilibrium

allocation of consumption is the unique symmetric efficient allocation of consumption.

Proof. We first prove that if R > 7" or ' = 0, then all agents must smooth consumption
over time in any equilibrium allocation. Consider any equilibrium allocation in which per-

capita storage is positive at the end of period ¢. It is immediate in such an equilibrium that
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ry equals R — 1 and that consumption is smoothed over time:

u'(c1) = RBE (c2)

u'(c) = RBE(c3).

where E; represents the expectation conditional on (61, ...,0;). Hence, if per-capita storage is
positive, then all agents smooth consumption.

Now suppose that R > 3. Suppose there is an equilibrium in which consumption is
not smoothed from periods ¢ to (¢t + 1) for all individuals. Then for some history of shocks

through period ¢, and when we use the convexity of v/,
u'(c;) > ROEw (cip1) > v/ (Erciiq)
It follows from the concavity of u that

E{e} < E{cy1}

and so per-capita storage is positive from period ¢ to period (¢ 4+ 1). But from the argument
in the previous paragraph, we know that this contradicts the hypothesis that consumption is
not smoothed for everyone.

Now suppose that ' = 0 and R > 0. Suppose there is an equilibrium in which
consumption is not smoothed between periods ¢ and (¢ + 1) for some individual. In this case,

b, > 0. Then for all 6, > 0",
u/(Qt + (1 + Tt)bt_l + R(St + gt)) < RﬂEtu/(QtH) S R/@EtUI(Ct+1),

and so any individual with a positive income in period ¢ wants to store. Hence, zero storage
cannot occur in equilibrium in this case as well.
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Next, construct a transfer/storage scheme by defining 7, = 6, — ¢; and defining S;
to be per-capita storage (both public and private) in equilibrium. This must be an element
of P3’s constraint set because the NPV of the difference between income and consumption
must be zero in the equilibrium. Moreover, because consumption smoothing is satisfied, this
must be a solution to P3 (and also to P1). Thus, any equilibrium allocation of consumption

is efficient. O

The conditions in proposition 9. are sufficient but not necessary. Since total storage
is strictly positive under the conditions of the proposition, we can once again make us of the
Theorem of the Maximum to argue that for returns on storage close to 7' or endowment

distributions where the lower support is close to zero, our results will go through.

5. Concluding Comments

In this paper, we consider a simple environment in which individuals receive income
shocks that are unobservable to others and can privately store resources. We have established
several important characteristics of efficient arrangements for this environment if the rate of
return on savings is not too much less than the rate of time preference, or, alternatively, if the
worst possible outcome is sufficiently dire. The presence of the unobservable storage forces
all efficient arrangements to smooth consumption over time. This severely reduces the ability
of the society to share risk, as can be seen from the fact that after any history of shocks,
there is no transfer of wealth among agents with different endowment realizations. We also
show in this case that the symmetric efficient allocation is decentralizable through a dynamic
incomplete markets trading arrangement in which individuals competitively trade risk-free

bonds among themselves and face infinite costs of dying in debt. Thus, apparently ad hoc

24



restrictions on the securities available for trade are consistent with the implementation of the
efficient allocation in this setting.

We prove our results in a three period environment since this allows us to reduce
the notational complexity, and still have it be easy to see how to generalize our results to
any finite horizon. While many of the papers in this literature have used infinite horizon
models, this choice appears to be one of analytic convenience. This is in particular true of
the result that efficient allocations cannot be decentralized using competitive trade in various
securities. Thomas and Worrall (1990) formally show that in their model that the infinite
horizon efficient allocation is the limit of a sequence of efficient allocations of finite horizon
models. Extending our results to an infinite horizon is an interesting topic for future research.
Since our current results depend on a backward induction argument, it is not obvious how

this can be done.

25



Appendix
Appendix

A1l. Proof of proposition 4.:

Consider some #* and some 6’. Suppose first that in a solution to P2, 75(6,67) +
73(0°,67) /R < 79(60",6°"1) 4+ 75(6°,6°"") /R. Condition (18) implies that #’~! agents are mar-
ginally indifferent between storing and not storing when they tell the truth. This means that
since §’ agents receive more endowment in period 2, they are not storage-constrained if they
announce # . But then 6’ individuals should announce 6! to get the higher NPV transfer
scheme.

Now suppose that 75(6",67) + 73(0°,67)/R > 79(60",6""") + 73(6",6°~")/R. Since ¢’
agents are not storage-constrained by either transfer scheme, they strictly prefer telling the
truth to lying:

(A1) u(@? + 72(6",67)) + B u(@" +73(6", 7))y, >

k
m>ag<u(9j +7o(0°, 6077 — 5) + B u(0F + 75(6°,60°7") + Rs)y,
7= k

We claim that we can construct a new mechanism that satisfies the constraints of
P2 and increases the objective. Define a new mechanism (79, 73) which is identical to the

previous one, except

%Q(Qi,Qj) = Tg(ei,ej)—é

Fo0,6°71) = 1o(0",071) +(e)m; /7y
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F3(0°,67) = To(0',6"") — RS(e)

T3(00,07) = 73(0",07") + Ry(e)mj/mi
where (€,1(€),7(€),6(€)) satisfy the following requirements

Z[ (07 + 75(6",67)) +ﬂz (0% + 75(0,07))mp)m;

Z (07 + 1o(6,67)) +ﬂz (0% + 73(67,07))mi]7;
J

W07+ F2(07,0°) = BRI (0" + 7(07,67))m,
k

WO+ FA0,07Y) = BRY W5+ F(0 00 )me
k

Hence, the new mechanism takes from the person with the higher endowment shock in period
two and gives to the person with the lower endowment shock in period two, while leaving
unchanged the ex-ante utility level conditional on the period one endowment shock. The
changes are smoothed so that the agents are marginally indifferent between storing and not
storing.

We want to show that this new mechanism gives rise to extra resources (that can
be given to the individuals in period three who claimed the high shock in the previous two

periods). To do this, we totally differentiate the ex-ante utility of someone who announced
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6" in period 1 with respect to € around € =0 :

0 = —u/(0/ +72(0°,6°))m; — BRY  myptd (6* + 75(6°,67))m;6'(0)
P
(A2) ' (0771 + 7o(6, Hj_l))ﬂjl//(()) + ﬂRZWku’(Gk + 75(6", Gj_l))ﬂjyl(())
P

= (07 + 720", 0)) (1 + 8(0)) + /(67 + 79(0°, 67 1)) m; (' (0) ++'(0)).

Agent j receives more consumption in period 2 than agent (j—1), because both are smoothing
and agent j gets a higher NPV transfer scheme. This implies that agent j’s marginal utility
is lower than (j —1)’s, and so (14 6'(0)/R) > (¢'(0) ++/(0)/R). Hence, at least for small ¢,
the new mechanism frees up resources (note that this conclusion exploits the result from the
above Proposition that Sy > 0).

We now want to show that the new mechanism satisfies the truth-telling and zero-
storage constraints of P2. We know that neither 6/ agents or 6’ ! agents will want to store
more. As long as € is sufficiently small, #/ agents will not want to switch to #'; also, /1
agents will not switch to #’ because the new mechanism makes announcing ¢’ less attractive
than before.

This serves to verify that the new mechanism satisfies the truth-telling and zero-storage
constraints in period two. Now we have to check period one. First, will #° agents want to

store more? To answer this, define
Vo(W) = maxu(c) + 8> u(0” + s'R)my,
c,s’ A
s.t. c+s <W.

Given any mechanism that smooths consumption from period two to period three, type @
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agents will not want to store if
u (0" +71(0") = RBY V5 (W)
J

where W; = 07 +74(6°,67) + 73(6",67) / R. We know that under the old mechanism, the above
marginal condition was in fact an equality. The new mechanism reduces W; by e+6(¢)/R and
increases W;_y by [¢(¢€) + v(e)/R]m;/m;_1. Totally differentiating 3=, V5 (W;)7r; with respect

to € around € = 0, we get

=V (Wj)m;(1+6'(0)/R) + V5 (W;—1)(4(0) ++'(0)/ R)w;

= [VE (W) Vo (Wy) + Vo' (Wi 1) [ Ve (W] K,

where the equality with the second expression came from noting that (A2) implies that we

can define
k= /(07 + 726, 67))m;(1+6'(0)/R) = /(6 + 726", 67 1))m; (¢'(0) ++/(0)/ R),

where k is a positive number. We know from Neave (1971) that if u exhibits nonincreasing
absolute risk aversion, so does Vs. It follows that since W; > W,_;, the total derivative is
negative; for small €, the new mechanism makes ° agents less willing to store in period 1.

In period one, do #""! agents want to lie under the new mechanism? If they do so, then
they get the same utility from lying and not storing as they would under the old mechanism.
If they lie and store, then by using a similar argument as in the above paragraph, we can
conclude that the new mechanism gives them less utility than the old mechanism.

This proves that in any solution to P2, 7o(6",67) 4+ 73(6",6”)/R is independent of 6.

Now suppose that in some solution to P2, 71(6") + 72(6",6?) /R + 13(6",67) /R? > 7,(6" ') +
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72(0 1 07) /R + 15(6" 1, 67) / R?. Lower 71(6") by € units of consumption and raise 75(6" !, 67)
by R?em;/m;_y for all j. Since 6° + 71(6") > 6! +7,(6"""), this increases ez-ante utility. If
is small enough, " agents will not want to lie. Also, the change is designed so that the agents
do not want to store.

It follows that the NPV of agent 6"’s transfer scheme must be no larger than that of
6!, However, because any solution to P2 smooths consumption, we know that the NPV of

agent #"s transfer scheme can’t be smaller than that of 7. Physical feasibility then dictates

that 71(60") + 72(6",67) /R + 73(6",67) /R? = 0 for all §* and ¢’. The theorem follows. O

A2. Proof of proposition 6.:
We first prove (7). We know individuals must find it optimal not to store any con-

sumption from period two to period three; thus,
0 € arg rsr;g%(u(cQ — S9) + BEsu(cs + Rs2).
This implies that
u'(co) > BREU (c3).

From the strict convexity of «/(.), it follows that Fou'(cs) > u/(FE2c3), where this inequality is
strict if ¢3 depends on period 3 endowment shocks (for any realization of endowment shocks in
period 2 or before). We know that for all N ), ¢s depends on 65, because T3 is independent

of 3. This implies that
for all (6",67),u/(cy(6",67)) > ﬁRZﬂku’(c;;(Gi,Gj,@k)) > u’(Zwk03(9i,9j,9k))
2 k
and in turn, it follows that
ZZZ[CQ(ei, 07) — c3(0°, 67, 0")|mym;my, < O
i j ok
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which implies that Sy > 0, since we know from Proposition 2 that the resource constraints
hold with equality.

We now prove that S; > 0. We proceed as we did in regard to S,. Suppose ¢y (6, 67) is
independent of ¢, From Proposition 3., we know that u/(cy (6%, 7)) = BR Y, mxt! (s (6", 67, 6%)),
and so 3, mpu (c3(6°,67,0%)) is independent of 6. It follows that 75(6",#7) cannot depend on
¢’. But then the incentive constraints can only be satisfied if 75(¢’,6”) is independent of 67,
which contradicts the hypothesis that c,(6",6) is independent of 6. We can then exploit the
convexity of v’ as above to conclude that S; > 0. This completes the proof of (7).

We next prove (i7). We know from condition (16) that 75(6;,6,) > 0 for all ¢, j (since
the individual could receive an endowment of 0 in the last period). Next, we know from
proposition 2. that the resource constraint binds in every period. Hence in each period, either
savings is positive or consumption is positive for some type. If second period consumption

was zero for all types, then S, > 0, but if for some 4, j, c2(6,67) > 0, then for these agents
(A3) /(c2(0,0;)) > BRY mpd (0F + 73(0°,67)).
k

This along with the assumption that «'(0) = oo implies that 73(6;,6;) > 0. Physical feasibility
would then tell us that Sy > 0.

Given that S, is positive, we know from Proposition 3. that (A3) holds as an equality.
We can then proceed as in the proof of proposition 4. to establish the NPV property with

respect to the last two periods:

79(0",67) + 73(6°,67) /R is the same for all j.
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Physical feasibility dictates that 74(6",0) > 0. Hence, from our NPV property for

the last two periods, and given that 73(6;,6;) > 0, it follows that:
(A4) 79(6",67) + 73(6",67) /R > 0 for all i,

and furthermore that this inequality is strict for any (4, j) such that 74(6",67) > 0.
For any agent 6 such that ¢;(6") > 0, either 75(6",0") > 0 or he will store for any
R. Hence the NPV of the transfer scheme going to (6’,0") from the second period onwards

(which is given by A4) is positive. Thus, S; > 0 must hold.O
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