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ABSTRACT

We consider the nature of optimal cyclical monetary policy in three different stochastic models with
various shocks. The first is a pure liquidity effect model, the second is a cost of changing prices model,
and the third is an optimal seignorage model. In each case we solve for the optimal monetary policy and
describe how money growth and interest rates respond to shocks under the optimal policy. The shocks
we consider are money demand shocks, productivity shocks, and government consumption shocks. All
of the models have the feature that the Friedman rule of setting the nominal interest rate to zero is not
optimal. Optimal policies are always time inconsistent even though lump sum taxation is allowed. At
least in some instances we find that optimal policy dictates responses of money growth and interest rates
which run counter to conventional wisdom.

*Both, Federal Reserve Bank of Minneapolis. The views expressed herein are those of the authors and not
necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.



1. Introduction

The purpose of this paper is to conduct a preliminary exploration into
the nature of optimal cyclical monetary policy. We solve for the optimal
monetary policy in three different stochastic models and describe how money
and interest rates respond to a variety of shocks under the optimal policy.
The goal is to gain some intuition into how monetary policy should respond
to different types of shocks in the context of some simple models. At least
in some instances we find that optimal policy dictates responses of money
growth and interest rates which run counter to conventional wisdom. For
example, we find that the optimal cyclical response of the money growth rate
need not be countercyclical and may depend on the nature of the shock that
affects output.

We view the research undertaken in this paper as the first step toward
formulating and analyzing models which, hopefully, will lead to reasonable
prescriptions for the conduct of cyclical monetary policy. It may also lead
to useful insights into business fluctuations. As Sims [1996] has observed
(p. 118), "...most of the observed variation in monetary policy instruments
- interest rates and monetary aggregates - cannot be treated as exogenously
generated by random shifts in policy...because monetary contraction is
rarely a spontaneous policy decision, the apparently eloquent fact that
monetary contractions are followed by recession is hard to interpret."

The exercises we undertake in this paper are closely related to those
undertaken by Taylor [1993]. In that book Taylor writes down a system of
equations describing an economy. Many of these equations are interpreted as
describing the optimizing behavior of households or firms; they could be
thought of as the stochastic Euler equations arising from a dynamic

stochastic optimization problem. However, Taylor does not indicate



explicitly the objective functions and constraints of households or firms
which presumably lead to these equations. One consequence of this is that
there is no clear basis for attributing any particular objective function
for a policy maker. For example, a particular Euler equation containing past
values as well as expectations of future Qalues might be Jjustified by
appealing to dynamic adjustment costs. However, these adjustment cosis are
not considered in the policy maker’s objective.

In contrast to Taylor’'s approach, our exercises are undertaken in
models with a representative household so that we not only make clear what
the objective functions and constraints are which lead to particular Euler
equations but we also have a natural objective function for the policy
maker. This is not to say that our models are free of ad hoc features. But,
whatever ad hoc features we put into our models they are explicitly embedded
in either objective functions or constraints, the Euler equations are
consistent with the postulated objective functions and constraints for
households, and the policy maker’s objective function is the natural one of
maximizing the welfare of the representative household. Therefore 1if we
postulate some adjustment costs for the household these adjustment costs
will also appear in the policy maker’s cbjective function.

We hasten to add that we do not intend the above remarks as criticisms
of Taylor’s [1993] work. His work is far more ambitious in scope than ours
and it will be no easy task to extend our analysis of extremely simple
models to much more complex ones which contain many more of the essential
features of real econcmies.

We believe that an essential ingredient of any model which attempts to
study the nature of optimal monetary policy is that in the corresponding

deterministic version of the model, the Friedman rule, Iinterpreted as



setting the nominal interest rate to zero, should not be optimal. Otherwise
the problem of optimal monetary policy 1is trivial. We consider three
different stochastic models with the feature that the Friedman rule is not
optimal. All three are of the standard cash-in-advance (CIA) type monetary
models. In each case our Interest is in understanding how money growth and
interest rates respond to a variety of different shocks under the optimal
policy.

In the literature one can distinguish among (at least) three different
ways in which money affects the economy. First, money affects asset prices
in financial markets through liquidity type effects. Second, money affects
goods markets due to the fact that goods prices are posted in nominal terms
and are costly to change. Third, money is a source of seignorage revenue to
the government which may be useful when other forms of raising revenues
involve costs. Each of our three models is designed to focus on one of the
above features.

Our first model is a pure liquidity effect model. Here the household
faces some convex costs of going to the financial market te adjust its
portfolio of money and interest bearing securities. We interpret this as an
analytically tractable general equilibrium version of a Baumol-Tobin
transaction cost model of money demand. In any model with a Baumol-Tobin
style transaction cost for converting securities into money an injection of
money into the financial market (whether anticipated or not) must lead
initially te a drop in the nominal interest rate. The reason is that
households face costs of converting securities into money and vice versa
and, hence, a drop in the nominal interest rate is required to induce
households to go to the financial market and pick up the money injection.

Thus, both anticipated as well as unanticipated money injections will



produce a liquidity effect type response of the nominal interest rate which,
furthermore, will be persistent. We assume the transaction costs to be
convex in order to maintain the convenience of working with a representative
household model. Because of these costs the Friedman rule will not be
optimal. We consider how money growth and interest rates respond to money
demand shocks, productivity shocks, and government consumption shocks under
the optimal policy.

Qur second model is a model of costly price changes, very similar to
the model in Rotemberg [1994]. Here the representative producer faces costs
of changing nominal prices. A permanent increase in the money supply will,
therefore, lead to a gradual rise in the price level to its new steady state
value. During this time output will initiall§ rise aﬁove its steady state
value and then gradually return to its initial steady state value. Again,
due to the costs of price change it will not be optimal to implement the
Friedman rule by deflating the money supply. We do not permit the government
to pay interest on currency in circulation. Thus, it will not be possible to
implement the Friedman rule by paying interest on money financed by lump sum
taxes thus keeping the money supply and the price level constant and
avoiding the costs of price change. We consider how money growth and
interest rates respond to productivity shocks and government consumption
shocks under the optimal pelicy.

Our third model is one of optimal seignorage. Here while the government
has access to lump sum taxes there is some loés in reQenues received by the
government relative to the taxes levied. One can think of this simply as
there being a leaky bucket which transports taxes paid by households to tax
revenues collected by the government. Consequently, it will be optimal to

finance some portion of government consumption by selgnorage. Again the



Friedman rule will not be optimal. We describe how money growth and interest
rates respond to money demand, productivity, and government consumption
shocks under the optimal policy.

The rest of this paper is organised as follows. In sections 2, 3 and 4
we describe the liquidity effect model, the cost of price change model, and
the optimal seignorage model, respectively. In section 5 we describe the
cyclical characteristics of the optimal policies faor each of the three

models. Section 6 summarizes and suggests some directions for future work.

2. A Pure Liquidity Effect Model

The representative household maximizes
t
{2.1a) E0 tho B {U(clt,CZt,et) - ¢(zt/mt)}
subject to the following constraints:

(2.1b) z,/p, = (mt+bt+Tt)/pt - bt+1/[(1+Rt)pt] = Ciys

(2.1¢) [mt+bt+'l‘t}/pt - bt+1/[(1+Rt)pt] “Ciy Y~ C = 0.

2t T Mp1/Py

In the above problem Cyt and C,y are the household’s purchases of cash

goods and credit goods in period t, respectively, and et is a random shock

to the relative desirability of cash goods and credit goods (a proxy for a
money demand shock). The household consists of a seller and a shopper. The
seller receives a random endowment of Vi units of goods in period t. The

shopper starts period t with m, units of money and b, units of nominal bonds

t L

and proceeds to the financial market. There he receives nominal transfers of

T, and engages in financial market transactions which leave him with =z

t t



units of money which he takes to the cash goods market. The function ¢ in
the household’s preferences reflects a cost (in terms of disutility) of
undertaking financial market transactions in order to change money balances.
We assume that ¢(1) = ¢‘(1) = 0 and that ¢ is convex. Thus, the household
could avoid these costs if the shopper chose to proceed directly to the cash

goods market with its starting money balances m However, attempting to

£
change the amount of cash to be taken to the cash goods market requires
financial market transactions which impose some costs, OQur intent is to
capture a Baumol-Tobin type transaction demand for money in a general
equilibrium setting in a way that is tractable and preserves the convenience
of the representative household model.

To complete the description, Py and Rt denote the price level and the
nominal interest rate, respectively. Constraint (2.1b) is the CIA constraint
and constraint (2.1c¢) is the budget constraint.

Let Btht and Btpt be the nonnegative multipliers associated with the

constraints (2.1b) and (2.1c), respectively. The first order necessary

conditions (FONCs) for the problem (2.1) are as follows.

(2.2a) Uy - (ht+ut] = Q,
(2.2D)  u, -, =0,
(2.2¢)  -my + BE (A "1 4 )PPy~
BEL (py/my q) (1mzy /My )07 (2 /) = O
(2.2d) -(At+pt)/(1+Rt) + (pt/mt)¢’(zt/mt]/[1+Rt) +
) =0,

BE (Ay gty )PPy — BEL Py 387 (24 /My 4y

In equilibrium we must have the following.



(2.3a) Z, =M

(2.3b) St ¥ Cop T Yy
Note that (2.3a) follows from the government budget constraint and
{(2.3b) is the resocurce constraint.

Using (2.1b) and (2.3a) we can write

(2.4) Py/Pryp = (Py/my g d(my gy 5 m o/Pyyg) = 0 pe®ter “C1t

where X1 is the gross money growth rate in period t+1.

We can use (2.3a) and (2.4) to combine (2.Za), (2.2b) and (2.2¢) into

the following equation.

-1 (

— ’
1, t+1°1, t+1%e+1 Xe o9 (xg ) 1/0

(2.5) = BE {u

Yat 1t°
Policy maker’s problem
Now we can state the problem of the policy maker. Note that for the

pelicy maker ¢(zt/mt) = ¢(m /mt) = ¢(xt). Therefore, the policy

t+1

maker's problem is to
s : t
maximize EO ztao B {U(clt,CZt,Bt) ¢(xt)}

subject to (2.3b) and (2.5) by choosing stochastic processes for

{egpr o Xt
Note the following aspects of the solution to this model.
First, while the usual Fisher relation between the real, nominal and

the inflation rates does hold across steady states, it does not hold along



the dynamic path. That is, 1+R_ = ult/[BEt{u }1. This can be seen

t 1, t+1P1 Prat

from the FONCs (2.2 a,d).

Second, the solution to this problem will clearly be time inconsistent.
To see this note that the constraint (2.5) which arises from hoﬁsehold
behavior is forward looking and involves expectations of future values.
However, when the future arrives those variables are predetermined and the
policy maker can ignore whatever expectations households may have had about
those variables in the past. Hence, if the policy maker is allowed to
reoptimize at some future date t he will choose a different solution for

date t than the one he chose at date zero.1

3. A Cost of Changing Nominal Prices Model
There is a continuum of goods as well és households both indexed by i
€ [0,1]. Each household consists of a consumer, a worker, and a seller.

Seller i is a monopolist in the market for good 1. Let c¢ n

it and Py be

t
the amount of good i consumed by the household in period t, amount of labor
supplied by the household in peried t, and the nominal price of goed 1 in

period t, respectively. A household’s preferences are given by the

following.

t
(3.1a) Eg Liap B (Uley, 1mny) = élpy/p; o )}

1To see a concrete illustration of time inconsistency note that the initial
money growth rate X, appears only in the objective function of the policy
maker and nowhere else. Since ¢’ (1) = 0, it is clearly optimal to set Xy =
1. However, the solution for future money growth rates will, in general,
differ from unity since they appear in the congtraint (2.5). Therefore, if
the planner is allowed to reoptimize at some future date t then he would

want to set Xt to unity which will be different from the optimal choice of

Xy from the point of view of date zero.



where

(3.1b) c, = [J- ¢, Pail

The function ¢ represents a cost (in terms of disutility) which seller
i faces in his price setting. We assume that ¢(1) = ¢‘(1) = 0 and that ¢ is

convex.

The production technology 1is simple; one unit of labor produces et

units of any good where et is random.

We now describe the problems faced by the consumer-worker and the

monepolist seller separately.

The consumer-worker’'s problem

The consumer-worker maximizes
(3.2a) E. T BtU(c 1-n_)
- 0 ~t=0 t’ t

(where cy is given by 3.1b) subject to the following constraints

1 :
(3.2b) (mt+bt+Tt)/pt - bt+1/[(1+Rt]pt] z IO pitcitdl/pt’
' 1 <
(3.2c) (mt+bt+Tt)/pt - bt+1/[(1+Rt)pt] - IO pitcitdl/pt + wn./p ¥

nt/pt - mt+1/pt z 0.

Constraint (3.2b) is the CIA constraint and constraint (3.2¢) is the

budget constraint. In constraints (3.2), my and bt are the money and nominal

bonds held by a typical household at the beginning of period t, Tt are the

nominal transfers received by the household in period t, Rt, w, and p, are

t

the nominal interest rate, nominal wage and the price level (to be defined



shortly) in period t, and n, are the nominal monopoly profits made by the
geller and passed back to the household. Note that the left side of (3.2b)
is the amount of real money balances held by the household after
transactions in the financial market.

Let Btht and Btut be the nonnegative multipliers associated with
congtraints (3.2b) and (3.2c), respectively. The FONCs for the above problem

are as follows.

(3.3a) u1t(Ct/Cit)1_p = (At dpg /Py = 0,

(3.3b) “Uy, * R W./P =0,

(3.3c)  -p, + BE (A %, )PP =0,

(3.3d) (A +u )/(1+R ) + BE (A L *iy IP/P = 0.

We assume that the government consumes the amount git of good 1 in

period t. The government budget constraint is as follows.
1 i - — ——
(3.4) Jo Pyy8ydl + Ty =my ) —m + bt+1/(1+Rt) b, .

Combining the government budget constraint (3.4) with the CIA

constraint (3.2b) at equality we have
(3.5} m = fl p..g..di + Il p.,c,, di.
t+1 0 Yit®it 0 Tit7it
Further, the FONC (3.3a) implies
1_

(3.6) (Cit/c‘ )

P =
5t (P /Py )

10



It is convenient to define the price level p, as follows.

1 -p/(1-p)
p.. P P

= -(1-p)/p
Py = [Jg Py¢ '

(3.7) di]
We now assume that government consumption of various goods is given
as follows.
(3.8) g.. =g (p../p ) V=P
' it t ittt '
where 8¢ is random.

Denoting aggregate demand for good i in period t from households and

government by z,

it and using (3.5)-(3.8) we can derive the following demand

function for =z, . .
it

- _ -1/(1-p)
(3.9) Zip SCyy t &y T (mt+1/pt)(pit/pt) .

We are now in a position to state the problem of a typical monopolist

seller selling good i.

The monopolist seller’s problem

The monopolist seller of good i maximizes

t
(3.10a)  Ey Li,q BB g * i ) (P23 Wiy 1Py — 8Py /Py g0}

subject to:

= = -1/(1-p)
(3.10b) Ziy = etnit = (mt+1/pt)(pit/pt) .

11



Note that (pitzit_wtnit) are the seller’s period t nominal profits.
Since these dollars can only be spent on goods at (t+1) they are worth
(At+1+ut+1]/pt+1 in terms of utils at (t+1) and, hence, need to be
discounted by B to convert them into utils in peried t. In view of (3.3c) we

could also replace B{ht+1+“t+1)/pt+1 by pt/pt which is the multiplier on

nominal profits in constraint (3.2c).

¢ and n,, from (3.10b) into (3.10a) we can

write the Euler equation with respect to Pit for the resulting problem as

After substituting out for zi

follows.

~1/(1-p)

(3.11) BEt[(ht+1+pt+1)/pt+1](mt+1/pt](pit/pt) {wt/(etpit) -

f] ’ 2 =
P17(1=p) - @' (py /Py 4 4)/Py g * BES Dy (/P IP; 4/ () = O

We now assume that all the sellers start with identical initial

conditions, that is, p, =p

i,-1 -1 for all i. This will imply that Piy = Py

and Cit = Cp» Byp T Byr Zyp T Zp T Gy +g = mt+1/pt for all i. It follows

that we can write

-1

(3.12) Py/Pryq = (pt/mt+1)(mt+1/mt+2)(mt+2/pt+l) = Zy 1%t /Zt’

where Xt 41 is the gross money growth rate in period t+1.

Further, condition (3.3a) simplifies to
(3.3a)’ u,, - (At+ut) = 0.

1t

Using (3.3b), (3.3c), (3.1a)’ and (3.12) we can write

12



-1

91, te1Zte ¥t 1

(3.13) wt/pt = /BE

Yot
Multiplying (3.11) by Py and then substituting from (3.12), {3.3a)’ and
(3.13) into (3.11) we can rewrite (3.11) as follows.

-1
(3.14) [(u2tzt/9t) - pBEt{u Y/ (1-p) -

1, t+1%¢+1%¢+1

(zt_lxt/zt)¢ (zt—lxt/zt) + BEt(ztxt+1/zt+1)¢ (tht+1/zt+1) = 0.

The market clearing condition in the goods market is as follows.
(3.15) z, =c  +g =6n.

The policy maker’s problem

Now we are in a position to describe the policy maker’s problem. The
pelicy maker’s objective is to maximize the welfare of the representative
household. This leads to the following objective function for the policy

maker.

t =
(3.186) E0 Etao B [u(ct,l—nt) - ¢(pt/pt_1)] =

t
Ey Lisg B [u(ct,l-nt) - ¢lz,_;x./z )]

The policy maker maximizes the objective function on the right side of
the equality in (3.16) by choosing stochastic processes for {xt,ct,nt}
subject to (3.14) and (3.15) and taking €4

Note the following aspects of the solution to this problem.

as a given initial condition.

First, it can be shown that the deterministic steady state value of x,

13



the gross money growth rate, is between 8 and unity. Thus, the solution is
characterized by price deflation but the nominal interest rate will be
positive. The reason is as follows. In the absence of monopolistic price
setting and price adjustment costs the optimal policy is to deflate the
money supply at the rate B thereby setting the nominal interest rate to zero
and eliminating the inflation tax distortion in labor supply. If labor
supply were inelastic so that there would have been no inflation tax
distortion but there is monopolistic price setting with price adjustment
costs then the optimal policy would be to maintain a constant money supply
thereby eliminating the costs of price adjustment. With both features
present the optimal policy is somewhere in between.

Second, the solution to this problem will clearly be time inconsistent.
The reason is that the constraint (3.14) .which érises from household
behavior is forward looking and involves expectations of future values.
However, when the future arrives those variables are predetermined and the
policy maker can ignore whatever expectations households may have had about
those variables in the past. Hence, if the policy maker is allowed to
reoptimize at some future date t he will choose a different sclution for

date t than the one he chose at date zero.

4, An Optimal Seignorage Model

The representative household maximizes

t
(4.1a) E, Etzo B U(Clt’CZt’et)

subject to the following CIA and budget constraints.

14



(4.1b) (mt+bt)/pt - bt+1/[(1+Rt)pt] g ot ¢(tt) - T, 2 ¢

(4.1¢) (mt+bt)/pt - bt+1/[(1+Rt)pt} -T, - cC z 0,

ot T M4 Py

where it and C,, are the amounts of cash goods and credit goods consumed,

Gt is a random preference shock to the relative desirability of cash goods

versus credit goods (a proxy for a money demand shock), T, are real lump sum

t
taxes paid by the household, (gt + ¢(rt)] is total government consumption of
which the first term is exogenous and the second term represents costs of
collecting taxes, and Y is the total endowment of goods. Note that we are
modeling total government consumption as arising purely from credit good
purchases. This is reflected in (4.1b} in which the term (bt+1/[(1+Rt)pt]
g ~ ¢(Tt]) represents the market value of new debt issued by the government
in the financial market. The government later issues additional debt with
market wvalue (gt+¢(rt)) in the credit goods market to finance its purchases
so that the total debt issued adds up to bt+1/[(1+Rt)pt] in terms of market
value.2

Letting Btht and Btut be the nonnegative multipliers assoclated with

the constraints (4.1b) and (4.1c¢c), respectively, we can derive the following

usual FONCs for the above problem.

{4.2a) Upy - (At+pt) = 0,
(4.2b) U, M =0,
(4.2¢) -y * BEQN vy PPy < 0

2Even though the constraints (4.1b,c) are written as though only nominal
riskless bonds are issued, later we only impose the present value budget
constraint on the government. This amounts to assuming complete contingent
markets for nominally denominated securities together with spot markets in
goods. ' '

15



(4.2d) -y +p )/ (1+R) + BE (AL +py )P /Py = O

The government's budget constraint is as follows.

(4.3) g, +#(z) =7 + (m ,-m)p + bt+1/[[1+Rt)pt] - b/p,.

We assume that ¢(0) = ¢’ (0} = 0 and that ¢ is convex. Note that [Tt—¢(tt)]

are net tax revenues received by the government. Thus, the function ¢

represents the leakage in the tax collection system.

In equilibrium we have

(4. 4a) mt+1/pt = Ciye

(4. 4b) Ye = € * Cop tg ot ¢(Tt].

Using (4.4a) we can write

(450 Py/Pryg = O tet¥ee1 C1v
where X441 is the gross money growth rate in period t+1.
We can combine {4.2a}-(4.2c) along with (4.5) to obtain the following.

~ -1
(4.6) Upp = BE{U 4410, te1¥ee1 TCa

We can also use (4.2a) and (4.2d} to write the government budget

constraint in the following present value form.

t o=
(4.7) Eg Lizp 8 WpplTy — lmyd + Gy yom)ipy - g 1 =y obo/pg.

i6



Note that we can write

1 -1

(4.8) (m t

( /pt)(l—xt- ) = cltil—x }

g1 )Py = (g

and

1

(4.9) b /Py = (bo/mo)(mo/ml)(ml/po) = (bo/mo)x0 1.0

Plugging (4.8) and (4.9) into (4.7) we have the following present value

form of the government budget constraint.

t -1

(4.10) EO Etzo B ult[tt - ¢(Tt) + clt(l—xt ) gt] =
. . -1

4y olby/mg)xg e o

We can simplify the above government budget constraint further by using

{(4.6) as follows. Note that

t
(4.11) Eg Liag B U14C1¢%
_ -1

= 110, 0%
-1

= Y40°%1, 0%
=u,.c, X -1 +E Y Btu c /B

10%2, 0%o 0 Ltz1 P Y2, ¢-1%1, t-1
-1

= %0%1,0%0

-1

+

t
Eg Liag B U 0%
-1

+

.
Eg Li»g B B {uppCyeXy }

+

t
Ep Liag B upiCpy

Substituting (4.11) in (4.10) and simplifying we have the following

form of the government budget constraint.

t
(4.12) Ey Etao B [ult{"ct - ¢(Tt) *eyy T gt} - u2tclt] =

1

u, [(b0+m0)/m0]x0 01,0.

,0

17



The policy maker’s problem
Now we can state the policy maker’s probklem. The policy maker's

objective is to

- t
maximize Ej T, o B ulc )

1t 2t %

subject to (4.4b) and (4.12) by choosing x. and stochastic processes for

0
{

clt’CZt'Tt} and taking bo/m0 as an initial condition.

Note the following obvious aspects of the solution to this problem.

First, from (4.12), if (b0+m0) > 0 then it is optimal to set Xy = © If

(b0+m0) < 0 so that the government is a creditor then it is optimal to set

X5 to a sufficiently low value so that the shadow value on the constraint

(4.12) is zero. The interest earnings on the govermnment’s initial credit are
used to deflate the money supply in order to support the Friedman optimum of

a zero nominal interest rate without any taxes. If (b0+m0] = 0 then x, is

indeterminate.3
Second, from equations (4.2) it is easy to see that 1+Rt = (At+pt)/ut =

/

u2t' Hence, the scolutions for c and c determine the sclution for the

Uit 1t 2t

nominal interest rate.

Third, the solution for the money growth rate process {xt} is

indeterminate. Any stochastic process for {xt} which satisfies (4.6) given

the solutions for {c } for the policy maker’s problem will support the

1t’ 2t

optimum. In general one can write the solution for the money growth rate

process as follows

3In the quantitative analysis of this model, described in section 5, this

case is assumed to prevail.

18



(4.13) X Zlu,, e, +

te1 = BY 1411, 4179401 F B T ED

where {€ } is any stochastic process which satisfies Ete = 0.

t+1 t+1

Fourth, note that the solutions for {c Czt,Tt) and, hence, Rt’ depend

1t
only on the date t realizations (et'yt'gt)' This can be seen by writing down
the FONCs for the policy maker’s problem,

Fifth, the scoluticn is clearly time inconéistent..This is manifested in
two ways. First, even if (b0+m0) is zero, it will not, in general, be the
case that (bt+mt) will be zero for t > 0. Therefore, the solution for xt
calculated at zero will not be optimal when date t arrives and the policy
maker is allowed to reoptimize. Second, the wvalue of the multiplier on the
government budget constraint (4.12) will depend on the date =zero
realizations (Go,yo,go). The value of the multiplier will be different at
some future date t if the planner is allowed to reoptimize. Therefore, the
solution for it and St calculated at date zero will not be optimal when

date t arrives if the planner is allowed to reoptimize.

5. Cyclical Features of Optimal Policies
5.1 The liquidity effect model

We first describe the model specification.

The model period is taken to be one quarter.

The utility discount factor 8 is chosen to generate a quarterly real
interest rate of 0.5 percent. That is, B = 1/(1+40.005). The utility function

is chosen to be of the following constant elasticity of substitution (CES)

type.
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(5.1) ule,,¢,,8) = [8c, P + {1—e)czp]1/p, p = 0.85.

1’72’

The random variables 8, and y, are each assumed to follow independent

t
first order autoregressions with a common serial correlation coefficient of
of 0.85 and mean values of 0.46 and 1.0, respectively. The value of p and
the mean value of 8 are chosen to generate a quarterly velocity of money
equal to 5 and an interest rate semielasticity of money demand equal to 5,
where we use the monetary base as our empirical measure of money.

The standard deviation of the innovations in y is specified as 0.009.
This value is chosen to be consistent with a value of 0.017 for the standard
deviation of output relative to trend, as reported by Kydland and Prescott
[1990] for quarterly U.S. data during 1954-89. The standard deviation of the
4

innovation in 0 is chosen to be 0.0007.

The cost function ¢(z/m) is specified as follows.
(5.2)  ¢lz/m) = y(z/m-1)%/2, 7 = 5.

The above parameter values lead to a steady state optimal money growth
rate (and inflation rate) of about -0.25 percent (annual) and a steady state
optimal nominal interest rate of about 1.77 percent (annual). Using these
numbers we can calculate the steady state value of the cost ¢ In units of
consumption goods by dividing the wvalue of ¢ from (5.2) by the marginal
utility of credit goods. This yields a cost of about 1.8x10_6. It’'s clear

that extremely small costs are sufficient to generate a significantly

4This value is chosen, rather arbitrarily, in order to produce a 50 basis
point response in the nominal interest rate due to a one standard deviation
innovation in ©6 when the money growth rate follows an exXogenous
autoregressive process - an AR(1) with positive serial correlation.
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positive steady state optimal nominal interest rate.
The optimal monetary policy for this model is given by the following

decision rule for the money growth rate.

(5.3) %, = constant - 1.41(c

. ) = 0.00ly, - 0.0198

- 0.15y,_, +

1, t-1"Yt-1 £

4'126t—1'
Before we describe the features of the optimal cyclical monetary policy

we describe how the model behaves under a simple exogenous money growth rate

rule. We assume that the money growth rate follows a first order

autoregressive process with positive serial correlation. The mean, serial

correlation coefficient and the innovation standard deviation of the money

growth rate process are chosen teo be -0.1 percent/quarter, 0.85 and 0.0007,

respectively.s Figure 1 depicts the responses to a one standard deviation

" innovation in the money growth rate of inverse velocity (cl/y), the nominal
interest rate (R), the expected inflation rate (z°), and the ex post

inflation rate (1{).6 The ;iquidity effect on R is quite apparent; moreover,

unlike other liquidity effect models, the effect here is persistent. The

presence of the Baumol-Tobin style transaction costs in financial markets

leads to a persistent liquidity effect when the money growth rate process is

persistent.

Figures 2 and 3 describe the responses to one standard deviation

5The empirical wvalue for the innovation standard deviation of the money
growth rate process is about 0.0046. We chose the lower value 0.0007 in
order tc keep the interest rate response nonnegative.

6All of the impulse responses described here and subsequently are in levels

and not in terms of deviations {from steady state values. The ex post
inflation rate at date t (nt) is defined as: m, = (p,/p, ,)-1, and the

expected inflation rate at date t (ni) is defined as: ni = Et"t+1'
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innovations in © (money demand shock) and y (productivity/ocutput shock]).

Now we describe the features of the optimal cyclical monetary policy.

Figure 4 depicts the responses to a one standard deviation innovation
in productivity/output and Figure S5 depicts the responses to a one standard
deviation innovation in the money demand shock (@}, i.e., the shock to the
demand for cash goods relative to credit goods. As can be seen, in both
cases, optimal policy calls for an initial éXpansioﬁ in the money growth
rate. Presumably, the reason ls that in both cases the household desires to
purchase more cash goods and the expansion in the money growth rate
accommodates this increased demand for cash goods. A comparison of Figures 2
and 3 with Figures 4 and S shows that the optimal monetary policy calls for
a relatively persistent dynamiec response of the money growth rate to either
shock. The money growth rate first rises above its steady state level and
then falls below it before gradually returning to its steady state level. A
higher wvalue of ¥, implying higher adjustment costs, has the expected
effects. It raises the steady state value of n towards zerc and diminishes

the response of inflation to either shock.

5.2 The cost of price change model

We first describe the model specification.

The model period is taken to be one quarter.

The utility discount factor 8 is chosen to generate a quarterly real
interest rate of 0.5 percent. That is, B8 = 1/(1+.005). The utility function

ig chosen to be of the following log-linear type.

(5.4) u(c,1-n) = alog(c) + (1-a)log(l-n), a« = 0.41.
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The parameter p ({see 3.1b) which determines the elasticity of
substitution between any two goods among the continuum of goods consumed is
chosen to be 0.83. In the absence of costs of changing prices this parameter
determines the markup of price over marginal cost; specifically the markup
equals (1—p)/p7. Our parametrization implies a markup of 20 percent.

The random variable 8¢ {government consumption) is assumed to follow a
first order autoregression with a serial correlation coefficient of 0.85 and
a mean of 0.1. The standard deviation of the innovation in g is specified as
0.0002. This value is chosen to be consistent with the standard deviation of
government consumption (relative to trend) of. 0.02, as reported by Kydland
and Prescott [1990] for quarterly U.S. data during 1954-89. The random
variable Bt (labor productivity) is also assumed to follow a first order
autoregression with a serial correlation coefficient of 0.85 and mean of
1.0. The standard deviation of the innovation in @ is specified as 0.0046.
This value is chosen to be consistent with the standard deviation of labor
productivity (relative to trend) of 0.0088 as reported by Kydland and
Prescaott [1990] for quarterly U.S. data during 1954-89.

The cost function ¢(z) 1s specified as follows.
2 =
(5.5) ¢lz) = y(z-1)"72, v = 17.
The above specifications yield an optimal steady state nominal interest

rate of 0.96 percent (annual) and an optimal steady state money growth rate

(and inflation rate) of ~1.03 percent (annual).

7This can be seen from the FONC (3.11) for the monopolist’s optimization

problem (3.10). In the absence of price adjustment costs (3.11) simplifies

to: pit/(wt/et) = 1/p, where wt/et is the marginal cost.
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The steady state share of working time in total time {(n) equals 1/3.
Our parameterization also implies a steady state value of 0.016 percent of
output for the cost of changing prices in units of consumption goods which
works out to about #$1 billion for the U.S. It is clear that extremely small
costs of changing prices can lead to somewhat positive nominal interest
rates as belng optimal.

The optimal monetary policy for this model is given by the following

decision rule for the money growth rate.

(5.6) Xy = constant —3.04zt_1 +‘2.582

1.55gt + 0.30gt_1,

+0.776, + 0.418,_, +

t-2%t-1"%t-1 1

vhere z, = ¢y + g,

Before we describe the features of the opfimal cyﬁlical monetary policy
we describe how the model behaves under a simple exogenous money growth rate
rule. We assume that the money growth rate follows a first order
autoregressive process with positive serial correlation. The mean, serial
correlation coefficient and the innovation standard deviation of the money
growth rate process are chosen to be -0.25 percent/quarter, 0.85 and 0.0046,
respectively. Figure 6 depicts the responses to a one standard deviation
innovation in the money growth rate of consumption (c¢), labor input (n), the
nominal interest rate (R), the expected inflation rate (ne], and the ex post
inflation rate {m). It can be seen that due to the cost of nominal price
adjusiment a monetary imnovation 1s expansionary; consumption and labor
input initially increase, and the responsé of pfices is attenuated.
Interestingly, the response of consumption, labor input, and, hence, output,

is hump shaped. This feature of the response does depend on the serial
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correlation in money growth with a high enough serial correlation giving
rise to such a hump shaped response and a zero or low serial correlation
giving rise to a response that peaks in the impact period and then decays
monotonically to the steady state. This feature has been previously noted by
Rotemberg [1994, pp.10-1i1] in his sticky price model.

Figures 7 and 8 depict the responses to one standard deviation
innovations in productivity and government consumption, respectively, under
the same exogenous money growth rate rule. In Figure 7 note that the
response of labor to the innovation in productivity is negative. This is due
to the presence of government consumption in the model. If government
consumption were zero then due to the assumed log linear utility function
the opposing wealth and substitution effects on labor would have implied a
zero response of labor to the productivity innovation. The presence of
government consumption enhances the wealth effect and leads to a negative
response of labor. However, the output response is still positive as can be
seen from the response of consumption. In Figure 8, it can be seen that the
responses to a government consumption innovation are as expected. Due to the
negative wealth effect on leisure and consumption, labor input and, hence,
output increase, whereas consumption is crowded out.

Now we describe the features of the optimal cyclical monetary policy.

Figure 9 depicts the responses to a one standard deviation innovaticn
in preductivity. As can be seen the optimal pelicy calls for an expansion in
the money growth rate. Presumably, the reason is that without such an
expansion nominal prices would have to fall (since output rises - see the
response of consumption) thus imposing costs of lowering prices. The
expansion In money growth leads to an attenuated response of prices and

saves on price adjustment costs. Interestingly, this response of the money
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growth rate exacerbates consumption variability. It is conceivable that the
optimal response of the money growth rate to an innovation in productivity
may become countercyclical if consumers are sufficiently risk averse, i.e.,
dislike consumption variability sufficiently.

Figure 10 depicts the responses to a one standard deviation innovation
in government consumption. Again, as can be seen, the optimal policy calls
for an expansion in the money growth rate. Presumably, the reasen is that
the innovation in government consumption is expansionary; it leads to an
increase in labor input and output and, hence, to a potential decrease in
prices. The monetary expansion helps to save on the adjustment costs of
lowering prices. Since the innovation in government consumption crowds out
consumption the monetary expansion also serves to smooth the Impact on
consumption.

The nature of the response of the money growth rate in Figures 9 and 10
bears some comment. In both cases the response exacerbates output
variability. In one case (productivity innovation} it also exacerbates
consumption variability whereas in the other case (government consumption
innovation) it serves to smooth consumption. These findings suggest that
optimal monetary policy need not necessarily be countercyclical. As noted
earlier it is conceivable that the optimal response of the money growth rate
to an innovation in productivity may become countercyclical if consumers are
sufficiently risk averse; however, it is likely that the optimal response of
the money growth rate to an innovation in government consumption will
continue to be procyclical. This suggests that the nature of the optimal
cyclical response of the money growth rate may also depend on the nature of
the shock that affects output. These observations appear counter to the

conventional wisdom regarding countercyclical optimal monetary policy.
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5.3 The optimal seignorage model

We first describe the model specification.

The model period is taken to be one quarter.

The utility discount factor B is chosen to generate a quarterly real
interest rate of 0.5 percent. That is, B = 1/(1+.005). The utility function

is chosen to be of the following CES type.

Py (1—e)czp]1/p, p = 0.85.

(5.7) u(cl,cz,e) = [Bc1

The random variables Bt, Yo gt are each assumed to follow independent
first order autoregressions with a common serial correlation coefficient of
of 0.85 and mean values of 0.46, 1.0 and 0.2, respectively. The
specifications of p and the mean value of 68 are chosen to generate a
quarterly velocity of money equal to 5 and an interest rate semielasticity
of money demand equal to 5, where we use the monetary base as our empirical
measure of money.

The standard deviations of the innovations in y and g are specified as
0.009 and 0.002, respectively. These values are chosen to be consistent with
the standard deviations of output and government consumption (relative to
their respective trend values) of 0.017 and 0.02, respectively, as reported
by Kydland and Prescott [1990] for quarterly U.S. data during 1954-89. The
standard deviation of the innovation in 8 is specified as 0.0019.

The cost function ¢(t) is specified as follows,

(5.8) ¢(1) = y7°/2, ¥ = 0.37.
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The above specifications yield an optimal steady state nominal interest
rate of 6 percent (annual). This implies an optimal steady state inflation
rate and money growth rate of 4 percent {annual) and a seignorage of 0.2
percent of output. Further, the optimal steady state tax T equals 0.205 and
the steady state cost ¢ equals 0.8 percent of output. or about %50 billion
dollars in terms of current dollars. In order to judge the empirical
plausibility of this cost number note that the annual budget of the Internal
Revenue Service has averaged about $8 billion/year during 1994-97. To this
number must be added the value of resources (including time) spent by
households and businesses in making and keeping records and preparing and
filing tax returns. According to a study by Slemrod and Sorum [1984] for the
U.S. these costs may be around 5 percent of total tax revenue or about 1
percent of total output, thus amounting to about $60 billion. Hence, the
total cost associated with the tax system may be about $68 billion. In light
of this fact the model generated number of &S50 billion seems very
reasonable. Indeed, the optimal steady state inflation rate may be somewhat
higher than 4 percent {annual). It 1is interesting that empirically
reasonable costs of tax collection can imply that observed levels of the
inflation rate and the seignorage/GNP ratio in the U.S. may be nearly
optimal.

We now describe the responses of the nominal interest rate, the money
growth rate and taxes to innovations in @, y and g. The following table

summarizes our findings.

28



Table 1

effect on Rt effect on xt+1 effect
(annual rate) {annual rate) on T,
one standard deviation 0.0 -0.016 0.0004
innovation in Gt
one standard deviation -0. 005 -0.0124 ~0. 00027
innovation in Yi
one standard deviation 0. 0009 0.0024 0. 00004

innovation in g,

Note that, as explained in section 2, while the effect on the
contemporaneous nominal interest rate is determined the effect on the
contemporaneous money growth rate [xt) is indeterminate. However, the effect
on the next period money growth rate (Xt+1) is determinate. Further, the
effects of innovations in period t dle out over time in absolute value at
the geometric rate pt where p is the common serial correlation coefficient
of 8, vy and g. This is because, as explained in section 2, the solution has
the feature that the solution variables depend only on the current values of
the shocks.

The innovations in the money demand shogk as wgll as output increase
current real balances (equivalently, consumption of cash goods) and, hence,
the base for current and future seignorage tax revenues. Table 1 suggests
that this is compensated by a decrease in the tax rate on real balances as
evidenced by the fall in the future money growth rate. Table 1 also suggests
that an innovation in government consumption is financed partly by a rise in
seignorage tax revenues, as evidenced by the rise in the future money growth
rate, and partly by a rise in lump sum taxes.

As can be seen in Table 1, a one standard deviation innovation to money
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demand (8) in period t raises the nominal interest rate by 1 percentage
point (annual) and lowers the money growth rate next period by 1.6
percentage points (annual). A one standard deviation innovation to ocutput in
period t lowers the nominal interest rate by 50 basis points (annual} and
lowers the money growth rate by 1.24 percentage points (annual)
contemporaneously. A one standard deviation innovation in government
consumption raises the nominal interest rate by about 9 basis points and

raises the money growth rate by 0.24 percentage points contemporaneously.

6. Summary and Future Work

In this paper we considered three simple models of optimal cyclical
monetary policy. The first was a pure liquidity effect model, the second was
a cost of changing nominal prices model, and the third was an optimal
seignorage model. In each case we s=olved for the optimal cyclical monetary
policy and described how money growth and the nominal interest rate respond
to various shocks under the optimal policy. The shocks we considered were
money demand shocks, productivity shocks, and government consumption shocks,

A1l of the models have the feature that the Friedman rule of setting
the nominal interest rate to =zero is not optimal. Optimal policies are
always time Iinconsistent even though lump sum taxation is allowed. The
qualitative as well as the quantitative properties of optimal policies seem
intuitively reasonable. At least in some instances we found that optimal
policy dictates responses of money growth and interest rates which run
counter to conventional wisdom. For example, we found that the optimal
cyclical response of the money growth rate need not be countercyclical and
may depend on the nature of the shock that affects output.

In future work we plan tec pursue several different avenues. One avenue
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is to combine the different models into one and include capital in order to
study the properties of optimal cyclical policies when several empirically
relevant features are simultaneously taken into account. We also plan to
study multi-country versions of such models and incorporate exchange rate
policies as well. Hopefully, this line of research will lead tc reasonable
prescriptions for the conduct of cyclical monetary policy. It may also lead
to useful insights into business fluctuations. As the quotation from Sims
[1996, p.118] noted in the introduction suggests, most of the observed
variation in interest rates and monetary aggregates is endogenous. In view
of this it may be interesting to study the business cycle properties of the
models as well.

Another avenue to explore is the nature of time consistent policies in
these models in contrast with optimal policies with commitment which, as we
noted earlier, are time inconsistent.

Yet another avenue to explore is the problem gf signal extraction.
Policy makers (and possibly households as well) may not observe the
exogenous shocks directly and may either not observe encugh endogenous
variables or observe endogenous variables only with some error so that they
cannot recover the shocks perfectly. In this case, policy makers have to set
policy on the basis of (a possibly limited number of) observed endogenous
variables taking the signal extraction problem into account. Another way in
which the problem of signal extraction become relevant is when there are
both temporary and persistent components to exogenous shocks which are not
cbserved separately. Solving the signal extraction problem requires
knowledge of the relative contributions of different shocks to the
variations in endogencus variables. In this way, the study of optimal

policies makes contact with the real business cycle literature which
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attempts to determine (among other things) the contribution of different

shocks to business cycles.
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