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1. Solving the LQ Approximate Problem Under Complete State Information

This fAppendix describes the algorithm used to find decision rules

#
for it’ £

in the paper,.

mation, in the sense that vy = 0.

plete state information solution to apply in the incomplete state case.

k*, and ht that solve the linear quadratic approximation to the model
For most of the discussion, I assume there is full state infor-

At the end I show how to modify the com-

The

solution strategy is to first transform the problem inte the form of the

linear regulator problem in the engineering literature. (See, e.g.,
Kwakernaak and Sivan [1972].) Define
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The return function may be written
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(1.2) R(st,dt) = e+ °1dt + Cn8, + stRst + dtht + EStht.

Here, ¢ 1is a scalar, ¢; ~ 3 x 1, ¢, ~ & x 1, R~ 6 x 6, Q~3x3, F ~6
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Here, rij denotes the cross derivative of r in the paper's equation (3.5) with

respect to its ith and jth arguments, evaluated at kf = kt = k;, ig_] = ig

ig, hg z h;, Wy = Wg. Note that rjj are scalars for all i, j =1, ..., 5.

However, ij and ry, are 2 x 1and 1 x 2, respectively, k = 6, 7, and P 18 2

x2, k=6, 7.

Finally, consider the constant terms, cq and c5. Let zy =
T _ T T.T :
(ru,rz,r5) s Zp = (r1,r3,r7,r6) Here, Py denotes the derivative of r with

= ®H = [# ¥ - Kt =
respect to its jth argument, evaluated at kt-1 = kt = ks’ ht = hs’ We_1 = W

= W, Note that ry and rg are 2 x 1 vectors, while Ly J=1, ..., 5 are scal-

ars. Then,
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where s and d are the steady state values of 3. and dy, respectively. In

particular,
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Analytic formulas for the rj’s and r;.'s are provided in section 2.

J
In these terms, the LQ approximate problem iIs to.choose a contin-

gency plan for d, to maximize -
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(1.5) Sp,q = byt 943+ Bdt * e 4.

The solution to this problem is obtained by iterating on the following funec-
tional equation in wv:

(1.6) vi(s,) = max{R(st,dt)+sEtv(st+1)}
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subject to (1.5) and s, given and observable. Here,
i T T
(1.7) vis,) = v  + VS, * S VS, .
I now describe one step in this iteration. Substituting (1.7) into (1.6), get
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The solution to the maximization in (1.8) is

(1.10) dt = KO + K1St’




where

(1.11a) K

1
0 2
(1.11B) K, = -@ F.

Substituting (1.10) into (1.8} get
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(1.12) vl = &« 81K, + K QK

(1.13) v} = [8TK,+83+2K QK 2K T - kTE, + 8

(1.18) vy = R+ KOk, + 2K, = R = FK, + 2FK; = R + FK,.

The solution to (1.4)-(1.5) is obtained by iterating on (1.6) to convergence.
The calculations just described can be simplified further by first
iterating to convergence on v, and K, using (1.9d)-(1.9f), (1.1Tb), (1.14).

Equations (1.9b), (1.9e¢), (1.11a), (1.13) can then be solved for v, and Kg-

g

The vector v_, is obtained by setting vé = Vg in (1.13) and solving Ffor Vg

8
This yields
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The constant terms, ¢ and v,, are not needed and so can be ignored. The
solution to (1.6) when v' = v solves (1.4)-(1.5).
An interesting feature of this problem is that the matrix Q is of

rank 2. The results in section 3 show that

-Q = lﬁaT + DPTv




where
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A practical consequence of this is that the lterations on Vo cannot be started
at vQ = 0, since in this case (1.11a} has no solution. Instead, I started Vg
at the product of the identity matrix and a small number.

The feedback rule in (1.10) expresses the decision variable as a
function of the current state. It is convenient to express the rule for i¥* as

t
follows:

(1.14) 1} = i(d,,s,),

where d, = (kt,ht)T. The second two decision rules in (1.10) are written

(1.14b) By = h(sy)
(1.74e) k: = k(st}.

To get {(1.14a), carry out the maximization in (1.8) with respect

to ig, taking at and s. as given. Doing so, I get
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Thus, the solution to (1.4)-(1.5) under complete state information
iz given by (1.14)-(1.15).

It is convenient to express i*, and d. in (1.14) in terms of €y

kg_1, i§_1. Doing so, we get
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Here, ag has been partitioned as follows:
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Also,
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(1.18) dt = dO + d1 _ + dwwt_1 + dsst.
i
t-1
To describe the construction of_do, d1, dw, de, I first need some notation.

Let EO denote the vector formed by deleting the first element of Ky and let

K1 denocte K1 minus its first row. Then at = Eb + Eisg; Partition E1 as
follows:

= _ oe(1) (2) . #(3)

k= &7 DR Y
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Then,
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dy = Ky + K;%a, d, = Ki 77, d = (K 77+K77R)

d = E%E).




The solution to the incomplete information problem is obtained by
replacing e, in (1.18) by D(eg+vy), when D is defined after (2.9) in the

paper.

2. Analytiec Formulas For Derivatives

The derivatives in (1.3) and those implied by ¢y and c, can be
computed numerically and analytically. For checking purposes, it is conve-

nient to do both. Acceordingly, the analytic formulas provided below, Denote
¥ = y[(1-0) exp(vx)ﬁ-v+ci-v]-1,

where variables with a tilde are defined in (3.1) below and ¥y appears in

(3.6a). The link to the starred variables is given in (3.2). Then,
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rs =0
re = 0
ry = - exp(u) fo(1-0) exp(vx)E V§+ =8 exp(-2x)k}

c

rg = exp(u) 1ln c.

. EEE&El {-8y+ exp(-x)k[1- liérexp(-x)lw exp(-x) %}.
c



The expressions for r4, ry, and rg exploit the steady state first order neces-

sary conditions.

where,

Also,

Next, turn to the second derivatives,

(v+2)

r,, = —rf exp(-u) - {8{1-0) exp(vx)k~ exp(u)/c}
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~
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Ppg = ~T4Tq exp(-u} + 25%&21_{U5(1_0) exp(vx)?ﬁ'(“+1)~(e+v)e(1-0}2
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g = -r1r9 exp(-u) - EE%LEl {82(1-0) exp(ux)ﬁ'(“+])§+ 1§£ exp{-2x)}
c

Poy = -rg exp(-u), Th3 = “Folg exp(-u)

1]

-r,ry exp(-u), Pog = ~ToY exp(-u)




Fag = ©
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Fog T T2
Pog = ~Tolyg exp{-u) + 25%&21 exp{-x)
¢
P2y = -rg exp(-u) + 8o ngiﬁl {-(v+1)?I-(u+2)+(e+v)c§1_2(“*1)}
c
r = -r.r, exp(-u)
34 34
rag = ~ryy exp(-u) * exp{u) 4,70+ (1 g)§/m
c
l:‘36=0
Py = ~Tal'y exp(-u) - EEELEA 8a (B+v)(1-c)g_{“+1) exp(vx)ﬂ‘v§
e
38 7 '3
Pag = ~Pary exp(-u) + exp(u) 1 623~V exp(-x)/n}
¢

Pyy = -rﬁ exp(-u)
Pyg = =Ty exp(-u)
ye = O

Pyq = “Tylq exp(-u)
Tug 7 Ty

r49 = -ryrg exp(-u)

res = -2 exp(-u) - (1-g) SERW 5,2
c
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rgg = O
—_ -%— {§8(1-0) expl{vx)k "+ léi exp(-2x)k}
c
- 2&%121 (1—B)§8(1—c) exp(vx)&"ufh
[
Fog = ¥
1‘59 = -'Yr'g exp(-u) - %.i(Lul (1-9)9§/h
g
P66 S ce. = Pﬁg = 0
Paq = Taly exp(-u) + EE%LHL {8(1-0) exp(vx)k  §(o+v)(1-0) exp(vr)E™"
¢
+ 1§§ exp{-2x}k}
T78 = T1
po = e exp(-u) « SERAW 10201 0y exp(ui)EVF+ 128 axp(-2x)K}
79 = 179 2 n
"gg = s
r89 = 1"9
reg = —rs exp{~-u) + gzgﬁgl_{52§_ exp(-x)k+ lﬁgexp(—2x)E+ exp(-x)I/n}.
¢

3, Derivation of the Steady State Formulas in Section 3.b of the Paper

In section 3.b I display formulas for the logaritim of the steady
state of k. /z;_j, i,/2y, and h.. These are derived in this appendix. It is
convenient to first derive the formulas for the levels, and to convert to logs

at the last step. Define

(3.1 Vo = v /20 & =op/z, K= kysz o, Io= 40z,
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and let ¥, ¢, &, I, h denote the steady state values of Et’ k I, and hy,

g? g?
respectively. In addition, let w denote the steady state value of Wy, S0
that, trivially, w = (I-A)_qa = (u,x)T. The link between (3.1} and the

starred variables in the text is given by

(3.2) Et exp(c¥), I, = exp(if),

i
1]

# 7 #* = *
& exp(kt), ¥e exp(yt), ht = exp(ht).

In terms of these variables, the planning problem is to maximize

o t... .
(3.3) Eotzos Pk pokprTg g Tpshpamg_goupds

subject to the information structure and the initial conditions. Here,

(3.4) r{k k 'I£_1,Tt,ht,wt_1,wt)

et Ko r(log(R,_,),1og(k ), log(, ),

log( lt) ,log(hb} ’wt—1 ?Wt)

and r is defined before {3.5) in the paper.

The first order necessary conditions satisfied by k, I, h are,

respectively,

!
o

FE(Q,E,I,I,h,W,W) + SFi(ﬁ,E,I,I,h,W,W) =

t
L]

+

FH(E,E,I,I,h,w,w) BFa(E,E,I,I,h,w,w) =

FS(E,E,T,f,h,w,w) 0,

where Fj denotes the derivative of r with respect to its j-th argument. The
first relation states that the utility cost of increasing the current (de-
trended) stock of capital must equal the discounted utility benefit from the

resulting increase in (detrended) consumption in the next period. The second
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and third relations have analogous interpretations for the stock of invento-
ries and hours, respectively. For my particular parametric example, the above

formulas are:

(3.52)  exp(-x) = 8{8(1-0) exp(v)E " VF[(1-0) exp(vr)E V4ol

+ lﬁﬁ exp(-2x)}
(3.50) 1 = 8801 V5[ (1-0) explvx)E V4ol "] '+ exp(-x) 1}

(3.5¢) 2R (1) Loy,
¢
Here,
(3.6a) y = n=8,(1-8) exp(-8x)[ (1-a) exp(vx)ﬁ'“+oi-“]"(e/v).
Also, the ateady state resource constraint yields
{3.6b) ¢ =y - exp(-x)k + 1§£—exp(~2x)ﬁ - I + exp(-x) % I.

Equations (3.5a) - (3.6b) represent five equations in the five unknowns, y, h,
i, k, e. We proceed now to obtain their unique solution.

First, note from (3.5b) that

A i

Substituting this into (3.5a), get

exp(-x) = 88{1-0) exp(vx)ﬁ*(“+1)[1-s exp(—x)/n]/[seci'(“+1)]

1 ; S exp(-2x) = {1§E) exp(vxz)[1-8 exp(-x)/n](%)
i

—{v+1)

+ B

1 -8
n

+ 8 exp(-2x).
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Coneclude,
(=)
i - o[ 1-8(1-8) exp(-x)/n] }u+1
kK (1-0) exp[(v+1)x][1-8 exp(-x)/n]
or
(3.7a) i =k
where,
o ) (——)
(3.7b) \ = { o 1-8(1-58) exp(-x)/n] }1+v )
(1-0) exp[(v+1)x][1-6 exp(-x)/n]
Substitute (3.7a) and (3.6a} inte (3.5a) to get
(3.82) k = yn
where
{3.8b)
(&, (:l_)
v = {ne exp[(6-v-1)x [[1-8(1=8) exp(-x)/n]](1-0) explv)rar’] ° , -8
- g8a(1-a)

Next, I use (3.6a), (3.6b}, (3.7a), (3.8a} to transform (3.5¢c) into one equa-

tion in h. Begin by substituting (3.7a) and (3.8a) into (3.6a) and {3.6b):

(3.9) ¥ = hn~? exp(-ex)we[(1—c) exp(vx)+ch"v}_(e/“) = ha,
(3.10) ¢ =y -h {9 exp(-x)[1-(1-8) exp(-x)/n]+rp{1- exp{-x) %]} = ha,.
Here,

ay = 070 exp(-ax)0®[(1-0) exp(vx)ear "] 78/
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., = o

- - {v exp(-x)[1-(1-8) exp(-x)/n}+re[1- exp(-x)/n]}.

1
Substituting these into (3.5¢), get

(3.11)  h = 935—(“—) (1-8)(a,/a).

Equations (3.7a), (3.8a), and (3.11) are the steady state equations

sought.

4, Data

Following is a discussion of the data used iIn this project,

Quality Adjusted, Working Age Population

Data on the total male and female working age population were obh-
tained from the Chase Econometrics U.S5., Macroeconomic data base. The working
aged population was defined as males and females aged 15 to 64. The Chase
mnemonics for these data are ANPTMT1519, ANPTMT2024, ..., ANPTMT606Y, and
ANPTFT1519, ANPTFT2024, ..., ANPTFT6064, respectively, and they were most
recently revised on April 28, 1986. The data are available on an annual
basis, and represent estimates of the population on July 1.

The model of this paper abstracts from the effects of changes in
human capital on labor productivity. However, the human capital of the aver-
age worker in the post-war period has not been constant. In an attempt to
adjust for this, I obtained a quality adjusted working age population by
weighting each age-sex group by its average wage in the 1970's. The weights,
which were standardized on males aged 35 to 44, were taken from Hansen (1984),

and are as follows:
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Table A1
Ages Males Females
15-19 Ly A
20-24 .61 .51
25-34 .86 .ol
35-u4 1.0 .63
b5-54 1.01 .62
55-64 .95 .6

The gross growth rate In the quality adjusted (GWEIT) and unadjusted (GUNWT)
working aged populations are graphed in Figure i1A. The results there show
that adjusting the data along age-sex lines does not have a substantial effect
on the numbers. Darby (1984) argues that the data ought to be adjusted for
education levels and immigration flows. This further adjustment may be worth
exploring, however, I have not done so.

Quarterly observations on the guality adjusted working age popula-
tion were obtained by log-linearly interpolating the annual data. The cal-
culations were carried out treating the annual observations as third quarter
observations.

Several features of the data stand out. First, as is plain from
Figure 14, they do not satisfy the constant growth assumption in the text.

This is confirmed by the numbers in Table 24.

Table 24:

Percent Annual Growth Rate, Working Age Population

Quality Adjusted Not Adjusted
1952-1961 .85 (.07) .9 (.19)
1970-1984 1.6 (.19) 1.5 (.35)
1949-198Y4 1.3 (.36) 1.3 (.43)
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Mumbers in parenthesis in Table 2A are standard deviations, in percent
terms. The growth rate of the quality adjusted working age pecpulation ap-
proximately doubled in the 1970's and 1980's over what it was in the 1950's.
Interestingly, the results are basically the same for the unadjusted working
aged population.

A second Iimportant feature of the working age population is that
they hehave very differently from data on the population as a whole. Data on
the total population, inecluding armed forces overseas, were obtained from the
Chase Econometrics database (mnemonic NPT). From the period 1952 to 1961,
this data display an average annual growth rate of 1.7 percent, with standard
error .07 percent. For the period 1970 to 198#%, the average growth rate was 1
percent with standard error 0.1 percent. Thus, the pattern of growth in the
working age population is opposite to that of the population as a whole. This
probably reflects the large number of births shortly after the war, which
showed up in the total population Immediately, but only with a lag in the
working age population. Because of this, the time series behavior of economic
variables in per capita terms are sensitive to the choice of population data
uged.

& third feature of this population data is that the growth in total
population exhibits substantial seasonality, with growth being especially high
in the first few months of the year. Obviously my interpclated quality ad-
Justed working age population data do not exhibit such seasonality, although
the actual working age population probably does. The absence of seasonality
in my working age population data is consistent with the fact that all other

data used in this project have been seasonally adjusted.
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Capital Stock and Investment

Investment for the purpose of this project is defined as real con-
sumer purchases of durable goods (ECD) plus real gross private fixed domestic
investment (IFIXED), plus real government (federal, state, and local) invest-
ment, including investment in the military (IGINVEST). ECD and IFIXED are as

reported in Table 1.2 of the Survey of Current Business (SCB). Annual obser-

vations on IGINVEST were provided to me by John Musgrave of the Bureau of
Economic Analysis. The IGINVEST data are a revised and updated wversion of the
government investment data discussed in Musgrave [1980]. Quarterly observa-
tions in IGINVEST were obtained using Gthe interpolation by related series
method of Chow and Lin (1972). The related series used for this purpose were
ECD, IGDB2, a constant and a linear trend. (IGD82 is gross private domestic
investment, as reported in Table 1.2 of SCB.)

The aggregate investment data were converted to per capita terms by
dividing by the quality adjusted working age population.

Annual, end of year capital stock data were obtained from the Janu-
ary, 1986 SCB, Tables 4, 8, 12, 16, 20, found on pages 59-75. These data were
used to obtain a time series on the 1982 dollar value of the net stock of
capital. The data are the sum of fixed nounresidential capital (private,
federal, state and local), plus the stock of durable goods held by consumers,
plus the stoeck of government and privately held residential capital. For
further details asbout this data, the reader is referred to the data source.

Some details about the composition of the capital stock are of
interest. First, the average value of the capital to guarterly GNP ratio in
the period 1955 QIII to 1984 QI is 12.8, with a standard deviation of .5.
(Here, GNP is defined as GNP according to National Income account standards,

plus the services of consumer durables, minus net exports.} At the end of
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1984, the aggregate net stock of dapital was $9,799 billion, in 1982 dol-
lars. 0f this, 35 percent was private eguipment and structures, consumer
durables were 13 percent, public and private residential capital was 32 per-
cent and government equipment and structures was 20 percent.

Since the capital data in the SCB are annual, they had to be con-
verted to quarterly observations. Quarterly observations on consumer durables
and private equipment and structures were obtained from the MPS model data
base. (This is documented in Brayton and Manskopf [1985].) Data on the
private stock of residential capital were alsc obtained from the MPS data
base. These data, together with a constant and linear trend were used to
interpolate the annual public and private stock of residential capital data in
the SCB. {(The method of interpolation by related series due to Fernandez
[1981] was used for this.) A quarterly series on government equipment and
structures was obtained by log-linearly interpolating the annual data taken
from the SCB.

Finally, a quarterly per capita data series on the aggregate stock
of capital was obtained by adding the individual components and dividing the
result by the quality adjusted, working age population.

The depreciation rate on capital, &, plays an important role in this
paper for two reasons. First, it is a parameter of the model so that the
value 1t is assigned has implications for the average capital teo output ratio
and other endogenous guantities. Second, in order to deduce my model's impli-
cations for capital investment, I have to gquasi first difference the ecapital
stock series that it generates, using some value for .

Based on my examination of the capital stock data, I decided to set
§ = .018, which is 7.4 percent annually. This is lower than the numbers used

by other researchers. {For example, Kydland and Prescott [1982] assume 10
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percent annual depreciation.) The reason I did this was that key time series
properties of the actual investment data coincide with investment data derived
from my capital stock series using & = 0.018. This is not the case when a 10
percent annual depreciation rate is assumed.

The regression of per caplta capital (kt) minus per capita gross
fizxed investment (dkt) on k;_; produced a coefficient of 0.9787. The sample
period was 1955 QIV to 1984 QI. In terms of the model in the text, this
regression coefficient is to be interpreted as a measure of (1-6)/n, where n
is the quarterly gross growth rate of the werking age population and § is the
guarterly depreclation rate. With n =-(1.013)'25, this implies & = 0.018, an
annual depreciation rate of about 7.4 percent.

Unfortunately, k. - .978?ktq1 and dkg differ by a substantial
amount. The average value of 100k, - .9787k,_; - dki[/[dk.| is five percent
for the period 1955,4 - 1684,1. (Here, |*| denotes the absolute value opera-
tor.) Moreover, the discrepancy, k. - .9?8?kb_1 - dk, is highly serially
correlated throughout the sample, being strietly positive before 1970,
strictly negative thereafter, and close to zerc on average.

These results are not consistent with my model formulation, although
there may be reason to believe that the consequences of this misspecification
are not serious. This 1Is because k. - .978Tk._, shares several key time
series properties of dk,. First, both are on average 27 percent of gross
output.  Also, the mean of 100|(k.-.9787k,_4)-(k__;-.9787Tk, 5)[/y(t} and
100|dk,-dk,_,|/y(t) are roughly the same. The former is 0.46 with standard
deviation 0.40, while the latter is 0.47 with standard deviation 0.39. If & =
0.025 is used, then the derived investment series is shifted up by a large 496
dollars per perscon on average. This is just the product of (0.025-0.018)/n

and the average value of the stock of capital, which is large relative to
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investment. As a result of this, the average share of gross ocutput of this
investment series 1s 34 percent, substantially higher than the actual, 27
percent figure. Because of this, I set § = 0.018 in this study and did not

use the more conventional & = 0.0259.

Inventories
Inventory investment was defined as the change in farm and nonfarm
inventories in 1982 dollars as reported In Table 5.9 of SCB. The stock of

farm and nonfarm inventorles is as reported in Table 5.11 of SCB,

Quality Adjusted Hours Worked

Time series for hours worked for the period 1955 Q3 to 1984 Q1 were
provided to me by Gary Hansen. The underlying data were obtained from the
Current Population Survey, which is a survey of households. The data were
then aggregated by age-sex groups using the weights reported in Table 1A. For
further details about this data and the manner in which they were constructed,
see Hansen (1984).

As I noted earlier, Darby [1984] argues that data ought to be fur-
ther adjusted to reflect changes in education levels and immigration flows.
Darhy provides an annual hours series adjusted in this way for the period
1900-1979 (his mnemonic is QATHWP). The gross rate of change in this data (I
call it GDARBY) and in Hansen's quality adjusted hours series (GHANSEN) appear
in Figure 2A. The difference between these two series is not great, sug-
gesting that my analysis is probably not sensitive to adjustments for immigra-
tion and education.

I obtained a per capita hours series by dividing quality adjusted
hours worked by the quality adjusted working age population. These data are

graphed in Figure 3A. My model implies a per capital hours series that fluc-
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tuates about a constant mean. The data, in fact, show very slight evidence of
an inerease In hours worked per capita in the post war period. Average growth
in the per capita hours series is 0.16 percent annually. On the other hand,

the standard deviation is an enormous 6 percent.

Consumption

The measure of consumption I used is consumption of nondurables plus
consumption of services plus the imputed rental value of the stock of consumer
durables, plus government consumption. All these components except the last
two were taken from SCB. A measure of the imputed rental value of consumer
durahles was obtained from the data base documented in Brayton and Mauskopf
[1985]. Government consumption is government purchases of goods and services
minus IGINVEST.

Fer capita consumption was obtained by dividing by the quality

adjusted, working aged population.
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