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ABSTRACT

This paper examines the quantitative importance of temporal aggregation bias
in distorting parameter estimates and hypothesis tests. QOur strategy is to
consider two empirical examples in which temporal aggregation blas has the
potential to account for results which are widely viewed as being anomalous
from the perspective of particular economic models. Our first example inves-
tigates the posszibility that temporal aggregation bias can lead to spuriocus
Granger causality relationships. The guantitative importance of this possi-
bility is examined in the context of Granger causal relations between the
growth rates of money and various measures of aggregate output. Our second
example Iinvestigates the possibility that temporal aggregation bias can
account for the slow speeds of adjustment typically obtained with stock ad-
Jjustment models. The quantitative importance of Ethis possibility is examined
in the context of a particular class of contlinuous and discrete time equilib-
rium models of inventories and sales. The different models are compared on
the basis of the behavioral implications of the estimated values of the strue-
tural parameters which we obtain and their overall statistical performance.
The empirical results from both examples provide support for the view that
temporal aggregation bias can be quantitatively Important in the sense of
significantly distorting inference,
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1. Introduction i

In order to analyze the effects of changes in the economic environ-
ment it 1Is necessary to identify and estimate the parameters of structural
relationships. One approach to this problem is to interpret economic time
geries as the outcome of a well specified dynamic equilibrium in which ra-
tional economic agents solve stochastic optimization problems.

Despite thelr emphasis on the need to uncover structure, proponents
of this approach fo empirical research typically model economic agents as
making deecisions at fixed, exogenously specified intervals of time. Presum-
ably, this modeling strategy does not reflect a bhelief that the timing of
economic decisions 1is invariant to macroeconomic policy Interventions.
Instead it reflects the difficulty of endogenizing timing decisions in dynamiec
equilibrium models. "' 1In general we would expect decision intervals to be
time varying and different across heterogeneous agents. Suppose however that,
for technical reasons, we accept the need to proceed under the assumption that
agents make decisions at common, fixed, prespecified intervals of time. Does
it necessarily follow that this interval of time should be thought of as
coineiding with the data sampling interval? Unfortunately, the answer to this
question is no. There is simply no reason to believe that the frequency at
which economic time series are collected coincides with the frequency at which
economic agents make decisions.

In this paper we proceed under the assumption, which corresponds %o
standard practice in applied econometric research, that agents make declsions
at fixed intervals of time. However we abandon the assumptlon that this
interval of time coincides with the data sampling interval. The purpose of
our paper is to examine the consequences of the specification error that

results when agents' true decision interval is finer than the data sampling



interval. We call the resulting distortion to parameter estimates and hypoth-

esis tests temporal aggregation bias.

It is not surprising that temporal aggregation bias could lead the
analyst astray. In principle any specification error or measurement error
could distort inference. The question addressed in this paper is whether
temporal aggregation bias is important in practice. Clearly we cannot hope to
provide a definitive answer to this question which will be applicable under
all circumstances. Accordingly, our strategy is to consider two empirieal
examples In which temporal aggregation bias has the potential to account for
results which are widely viewed as being anomalous from the perspective of
particular economic models. In both cases, we find evidence of substantial
temporal aggregation bias.

Qur first example 1llustrates Sims' [1971] observation that temporal
aggregation bias can generate spurious Granger causality relationships. In
particular, the use of temporally aggregated data can make a bivariate system
in which there is one way Granger causality appear to display bidirectional
Granger causality. Our example focuses upon the Granger causality relation-
ships between growth rates of money and output. Using post-war U.S. monthly
data Eichenbaum and Singleton [1986] provide evidence that growth rates of
nominal aggregates do not Granger cause output growth. These results are used
in conjunction with a monetary model of the business cyele to argue that
exogenous shocks to the monetary growth rate were not an lmportant source of
variation in output growth in the U.S. postwar period. More generally their
results imply that any monetary model in which monetary growth rates Granger
cause oufput growth is inconsistent with post-war U.3. data. Since GNP fig-
ures are not available on a monthly basis, Eichenbaum and Singleton use an

index of industrial production as their measure of real economic activity. A&



natural question that emerges is whether thelr Granger causality findings are
sensitive to the use of quarterly real GNP data. We show that, at least for
some time periods, there is somewhat more evidence that monetary growth rates
Granger cause quarterly growth rates in real GNP. One interpretation of this
result is that quarterly real GNP figures represent more temporally aggregated
measures of real activity than monthly industrial output. Consequently,
Granger causality orderings between real GNP growth and monetary growth could
he spurious in the =ense that they reflect the effects of temporal aggrega-
tion. In order to explore this possibility we constructed quarterly Indus-
trial output figures by taking the appropriate averages of the monthly data.
Using this quarterly data, we find that monetary growth appears to Granger
cause indusfrial production. We conclude that Granger causality tests can in
practice, as well as In principle, be strongly affected by temporal aggrega-
tion bias.

Qur second example investigates conjectures of Mundlak [1961] and
Zellner [1968] that temporal aggregation bias can account for the slow speeds
of adjustment reported in the empirical literature on the stock adjustment
model. Our strategy for investigating this conjecture is as follows. First,
we construct a continuous time equilibrium rational expectations model of
inventories and sales. The model rationalizes a continuouz time inventory
stock adjustment equation. Using techniques developed by Hansen and Sargent
[1980a,1981] we estimate the model using monthly data on inventories and sales
in the nondurable manufacturing sector. The parameter estimates from the
continuous time model imply that firms close 95 percent of the gap between
actual and "desired" inventories in 17 days. We then estimate an analogous
diserete time model using monthly, quarterly and annual data. The parameter

estimates obtained using monthly data imply that it takes firms 46 days to



close 95 percent of the gap between actual and "desired" inventories. The
analogous figure obtained using quarterly data is 211 days. The point esti-
mates obtained with annual data imply that it takes firms 1,980 days to close
95 percent of the gap between actual and "desired" inventories. In our view
these results provide support for Mundlak and Zellner's conjectures. More
generally they indicate just how sensitive structural inference can be to
temporal aggregation bias. Unfortunately, we cannot claim that temporal
aggregation effects account for the statistical shortcomings of existing stock
adjustment models. Both the discrete and continuous time wversions of our
equilibrium stock adjustment model impose strong over identifying restrictions
on the data. Using a variety of tests and diagnostic devices, we find sub-
stantial evidence against these restrictions., In addition, we find no evi-
dence that the overall fit for the continuous time model is superior to that
of the discrete time model,

Our empirical examples illustrate two distinct approaches taken in
the literature to the study of temporal aggregation bilas: the "reduced form"
and "structural"™ approaches, respectively.1h2 The reduced form appreoach is
concerned with properties of the mapping from the continuous time statistical
representation of a stochastic process to the representation of the sampled
and possibly averaged data. For example, Hansen and Sargent [1984] and Marcet
[1985] focus on the relationship between continuous and discrete time moving
average representations of covariance stationary stochastic processes. Sims
[19T1b] studies the mapping from the continuous time regression of one vari-
able onto another and its sampled counterpart. The results in this literature
have an important role to play in the model selection and evaluation stages of

empirical research. An 1llustration of this is provided by our first empiri-

cal example, where it 1is argued that the observed bidirectional Granger



causality pattern between money growth and GNP growth may reflect spurious
temporal aggregation effects rather than supporting evidence for monetary
models of the business cycle.

The structural approach to the study of temporal aggregation bilas
focuses on distortions to parameter estimates and hypothesis tests. This
approach to the temporal aggregation problem is typified by the work of Hansen
and Sargent [1983] and Christianc [1984,1985]. Our second example is very
mich in the splrit of this approach. In particular we use the apparatus
developed by Hansen and Sargent [1980a,1981] to illustrate empirically the
ways in whieh temporal aggregation bias can lead the analyst astray in making
structural inferences based on temporally aggregated data.

For the most part, this paper proceeds under fthe assumption that the
economic system evolves in continuous time. This does not necessarily reflect
a belief on our part that economic agents are best modeled as making decisions
continuously. Instead we adopt that framework because it is an interesting
limiting case which provides us with a useful benchmark. In addition it is
the standard framework in the temporal aggregation literature.

Some of the material discussed in this paper is unavoidabhly techni-
cal. In order to alleviate this problem we make extensive use of footnotes
and references. In addition we refer the reader to Christiano and Eichenbaum
[1985] which is essentially a technical appendix to this paper. Unfortun-
ately, this strategy does not allow us to completely circumvent the inevitable
tradeoff between theoretical rigor and ease of exposition. When faced with
this tradeoff, we chose to sacrifice rigor so as to provide the reader with
intuitive interpretations of the main results.

The remainder of the paper is organized as follows. Section 2

discusses some reduced form effects of temporal aggregation, and reports our



money and output grbwth example. In addition, some basic characteristics of
the class of continuous time statistical models we use are describhed there.
Section 3 describes a continuous time rational expectations model of inven-
torles and sales. In addition we report the empirical results obbained using
that model. Readers anxzious for the empirical results can proceed directly to

subsections 2.D and 3.C. In section 4 we provide some concluding remarks.

2. The Effects of Temporal Aggregation on a Reduced Form Time Series Repre-

sentation.

In this section we discuss the temporal aggregation problem from the
"reduced form" point of view. In doing so, we accomplish three tasks. First,
we briefly review certain theoretical results on the impact of time aggrega-
tion blas on reduced form representations of time series data. Second, we
present two empirical examples which are designed to shed light on the practi-
cal importance of these theoretical results. Third, we set up the necessary
background for our analysis of the structural model of section three.

In our opinion, the "reduced form" approach toc the study of temporal
aggregation blas has important contributions to make at hoth the model selea-
tion and model evaluation stages of structural empirical work. At the model
selection stage, the analyst chooses from the class of models under considera-
tion a variant which maps into a set of reduced form characteristies qualita-
tively similar to those found In the data being studied. 1In the context of
business cycle models, the analyst might be occupied at this stage in choosing
among different propagation mechanisms, such as costs of adjusting output,
serial correlaticon in the exogenous shocks, or sticky prices and wages. A
standard unexamined assumption made at this stage is that the model timing
interval and the data sampling interval coincide, If the analyst is not

committed to this assumption, then understanding the reduced form effects of



time aggregation is important. This follows from the fact that temporal
aggregation affects the qualitative properties of the mapping from a particu-
lar structural model to implications for the dynamie properties of the data at
hand.,

After the model selection stage the analyst uses some procedure,
perhaps the method of maximum likelihood, to assign values to the parameters
of the model selected. Once this is accomplished, the model evaluation stage
beging, during which the analyst considers the time series implications of his
model and verifies whether these are consistent with those of the data. When
they are inconsistent, the structural model is rejected, at which point the
analyst considers different classes of structural models. Viewed in this way
the model selection and evaluation stages are really part of one ongoing
process.

In this section we emphasize two kinds of temporal aggregation
effects. The first was pointed out by Working [1960] and Telser [1967], who
showed that time averaging and sampling can increase the MA order of a time
series representation. A conseguence of this is that the temporal aggregation
effects induced by shrinking the model timing interval can play a qualita-
tively similar role, in improving model fit, as increasing the serial correla-
tion in shock terms. A different reduced form effect of temporal aggregation
was emphasized by Sims [1971b] who noted that time aggregation can convert a
one way causal system into bidirectional causality. One example of the poten-
tial practical importance of this observation 1is reported in Christiano
[forthcomingl. That paper studies the model in Taylor [1980], which implies
that output falls to Granger cause prices, and implication which is not con-
sistent with the data. One response to this inconsistency, pursued by Taylor

[1980], is to introduce serial correlation into the exogenous shocks, while



preserving the assumption that the model timing interval and data sampling
interval coineide., Christiano [forthecoming] shows that ancther way to accom-
modate the bidirectional causality between prices and output in Taylor's model
is to preserve the serial independence of the exogenous shocks, but shrink the
model timing interval. This change induces the temporal aggregation effects
described by Sims [1971b]. A second example, which is examined in detail
below, concerns the empirical relation between post war U.3. ocutput and money
growth.

The remainder of this section 1s organized as follows. In sub-
section 2.8 we discuss some basic ideas about continuous time models which are
used in the rest of the paper. In subsections 2.B and 2.C we discuss the
impact of time sampling and averaging on MA orders of time series models.
This discussion is illustrated with the use of data on the Japanese-U.S.
exchange rate. Section 2.D examines the impact of temporal aggregation on

Granger causality patterns.

2.8 Some Notation and Concepts.

In this subsection we describe some basic features of the class of
continuous time statistical models that we work with in this paper. A4 more
careful (though still .very informal) version of what follows appears in Appen-
dix a.%"

Let 2(t) denote an n dimensional, linearly Iindeterministie, continu-
ous time, covariance stationary, stochastic process.2'2 According to the
continuous time version of Wold's decomposition theorem, z(t) can be repre-
sented as,

(2.1} z(t) = [ £(1) e (t-t)dr,
0



where e(t) is a continuous time n dimensional vector white noise process
with E € {t) e (t-k)' = §{k)V, and & is the Dirac delta function which can be
thought of as satisfying &(k) = 0 for all k not equal to zero. The vector

€(t) is the innovation in z(t) and satisfies,
k

(2.2) 2(t+k) - E[z(t+k)|z(t-8),820] = [ k(1) e (t+k-1)dr,
0

for any k > 0. Here, E is the linear least squares projection operator.
For many purposes, 1t is convenient to write (2.1) in operator

notation as follows:

(2.3) z{t) = F(D) € (t),
where,
(2.14) F(D) = | e™r(r)dr.

0

Here, D denotes the time derivative operator, i.e., Dx(t) = dx(t)/dt, and e™D
is the continuous time lag operator, i.e., eTDx(t) = x{t+t). It can shown
that there is a one-to-one relation between f and F. Consequently, there is
no substantive difference between parameterizing the Wold representation at
the level of £ or F. We find it convenlent to parameterize F.

While Wold's theorem does not require P to bhe a rational funetion of
D, we impose this assumption for computational reasons. Accordingly we assume

that F(D) is of the form,
(2.5) F{D} = c{D)sa(D)}.

Here, C is an n x n matrix valued, q-th ordered polynomial in D, and & is a
scalar, p-th ordered polynomial in D, with p, g < =. Using this notation, we

can write (2.1) in operator notation as,
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(2.6) e(D)z(t) = C(D) e (t)}

Exploiting the obvious analogy with discrete time models of time series, we
say that (2.6) is a continuous time ARMA (p,q) model for z(t).?"’

Wold's theorem restricts the polynomials C(D) and 6(D) in several
respects. First, the assumption that {z(t),te(-=,»)} is a covariance station-
ary stochastic process requires the zeroes of 8 to be negative in real part.
Thiz is reminiscent of the analogous condition for discrete time models, where
covariance stationarity requires the zeroes of the AR component to be greater
than one in modulus. In addition, the condition that e(t) is the innovation
in z{(t) restricts the zerces of det C(D) to be nonpositive in real part.
Again, there 1s an analogy with the diserete time case, where Wold's theorem
requires the zeroes of the determinant of the MA component to be equal to or
greater than one in modulus. A restriction which we impose on 8 and C which
has no counterpart in the discrete time case is q £ p-1. If this condition is
violated, then 8 and C do not correspond to an "ordinary" p{t) function via
{(2.3) - (2.5). This condition is discussed further in Appendix 4. Finally,
as in the discrete time case, econometric identification requires some normal-
ization of the coefficients on 6 and C. We adopt the normalization that the
coefficient on DP in @ be unity and that the coefficient matrix on D9 in C be

the identity matrix. Acecordingly we write 8(D) and C{D) as,

2 p-1 p
90 + 81D + 82D + ... + Bp_1D + D

1]

(2.7a) 8(D)

I+ CD+C 02+ ...+c o3t quq.

(2.70)  C(D) ) o

With the exception of example 2 below, all of the models which we consider in
this paper have continuous time reduced form time seriles representations of

the form given by (2.6) and (2.7).
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"2.B Sampling Point-in-Time From a Continuous Time Process.

Given a continuous time process {z(t),te(-=,«)}, we can define the
discrete time process {Zt,tE(O,i1,i2,...)} by setting zp = z{t) for Integer
values of ¢t. In this case, zy is said to be z(t) sampled point-in-time.
Since z(t) is covariance stationary and linearly indeterministie, so is Zy -
Therefore, by the discrete time version of Wold's theorem, it 1s possible,

without loss of generality, to represent z, as follows:

(2.8) Z, =.Z fi€_ 1
i=0
where
fo = I, € is white noise with Eeteé positive semidefinite
k=1
Zevw - BpZrek = L FiSpai i
i=0
for k € (1,2,3,...). Here, E, denotes the linear least squares projection

operator on the space formed by zi ., S € (0,1,2,...). Using the operator

notation, Lx, = X 4, (2.7) can be written as follows: ™"
F
z, =] § £.L]e.
& I=0 1 t

When the parent process is given by the continuocus time model (2.6),

then the polynomial in L above is rational and can be written as,

(2.92)  § £t = cnyse®(ny,
i=0
where
(2.90)  6°(L) = 1+ oL + eng .. e eng
(2.9¢) ¢C(L) =T + %L + %1% + ... + ¢ LPY,



-12 -

Hansen and Sargent [1984] and Marcet [1985] analyze in great detail
the relationship between the innovations to the z(t) and Zy processes as well
as the moving average representations of these two processes. For our pur-
poses It is more convenient to focus upon the relationships summarized by the

following theorem.

Theorem 1
Ir
{i) {z(t),te(-m,m)} is generated by (2.6) and (2.7),
(1i) the roots of 8 are distinct and negative in real part, and p < q,
(iii) Zy = 2{t) for t € (0,x1,22,...)
Then,
(iv) 2z, bhas the representation given by (2.8)-(2.9),

(v) (1) = 0 if and only if ec(e'l) = 0.
Proof: see Appendiz 4.

The result in Theorem 1 which we wish to focus upon is (iv}, accord-
ing to which a point-in-time sampled representation of a continuous time ARMA

(p,q) model is ARMA (p,p-1} with C;- in general not equal to zero. This

1
result does not depend on the assumption that sampling is being done from a
continuous time "parent" model. The result holds whenever a fine interval
model with g < p is sampled. To motivate this assertion, consider the follow-

ing example.

Example 1: Point-In-Time Sampling From a Discrete Time ARMA (2,0) Model.

Suppose the data generating mechanism 1is given by

(2.10)  (1-4,LY3) (1L Bz, = e,
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where L'x, = x and {e: t:0,11/2,t2/2,i3/2,...} is the white noise forecast

E 7 Tb-Tt
error in linearly predicting z, using 2z, ., s = 0, 1/2, 2/2, 3/2, ... . Also
lxil < ifori=1, 2, Evidently, (2.10) defines an ARMA (2,0) representation
for {z,: t=0,:£1/2,...}. Now, multiply both sides of (2.10) by the operator

1/2) 1/2) 1/2) 1/2]

(142,L72)(142,L"/2), and exploit the fact (1-a%L) = (1-2,L1/%) (1L for

i =1, 2, to obtain the representation,

2 2 -
(2.11) [1-A1L](1-A2L]zt =€+ [A1+h2]et_1/2 + A AE .

Since the expression on the right hand side of (2.11) is autocorrelated at lag
one it is not surprising that the unit sampled representation of z; can be
shown to be ARMA (2,1).2°°

Theorem 1 implies that the order of the MA component of the ARMA
representation of z, is independent of the order of the MA component of the
ARMA representation of z(t). Even if g is equal to zero, temporal aggregation
induces a non-trivial MA component to 2z, provided that p 2 2. Consequently,

temporal aggregation can be an important source of serial persistence in

discrete time series data. At the model building stage, this implies the
existence of an interesting tradeoff between the temporal aggregatlon effects
induced by shrinking the model timing interval and adding factors such as
costs of adjustment and serially correlated shocks to the model. Each of
these has a qualitatively similar effect on the reduced form dynamiecs of the
model for the sampled data, For example, in a model such as the cone in sec-
tion 3 of the paper, the reduced form for Inventories and sales is vector AR
(2). If the econometrician implements empirically the discrete time version
of the model, he may find evidence of first order autocorrelation In the
fitted residuals. One way te respond to this situation would he to preserve

the discrete time specification and introduce an extra MA term in the exoge-
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nous taste and/or technology shock processes. Introducing costs of adjusting
cutput, by adding higher order AR lags, may also accommodate serial correla-
tion "missed" by the model. Theorem 1 suggests that a possible alternative
strategy is to preserve the basic structure of the model, but formulate it at

a finer timing interval.

2.C Sampling Averages From a Continucus Time Process.

We now consider the impact of the use of time averaged data on the

ARMA representation of a time series. Define the average of z{(t) over the
unit interval as follows:

1
(2.12) z(t) = [ z(t-t)dx.

a
Again, it is possible to define the sampled process, Et = z2(t) for t = 0, =1,
2 ... . The following theorem shows that when z(t) is generated by (2.6),
then the discrete time representation of z, is ARMA (p,p). Thus, the effect

of averagling is to increase the order of the moving average of the sampled

representation by one.

Theorem 2
If conditions (i) through (iii) of Theorem 1 are smatisfiled, then the

Wold representation of z_ has the following ARMA (p,p)} form:

t

[1+9?L+B;L2+...+93Lp)zt = [I+E?L+ECL2

oerp
2 +...+CpL ]e

t

where the 8%'s match those referred to in Theorem 1.
Proof see Appendix A.

In order to provide the reader some intuition for this result we now
present an example, taken from Working [1960], of the way in which averaging

induces an extra moving average term in a time series representation.
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Exzample 2:

Suppose z(t) has the representation:

1

(2.13) z{t) = g e{t-1)dt = F(D) € (&),
80 that z{t) is the Integral of white noise disturbances over the unit inter-
val., It is easy to verify that F(D) = (1-e~D)/D. Since this F(D) function is
not rational, It deoes not satisfy the condition of Theorem 2. Nevertheless,
the example neatly illustrates the fact that averaging introduces an extra
moving average term in the sampled representation.

Note first that Zy is a white noise process and therefore has a

discrete time ARMA (0,0) representation. Now consider the stochastic process

z(t) defined by,

1 1 1 2
(2.14) z(t) = [ [[ e(t-v-td)dr]dv = [ © e {t-t)dr + [ (2-1) € (t-1)dt.
g 0 0 1

It is easy to verify that,

—

(2.15) r, = cov (E(t),i(t-k}]/var (z(t}) =0 k>
174 |k

n
—

(The result in {2.15) can be found in Working [1960].) Thus, the effect of
averaging is to convert the white noise, z., into the first order serially
correlated process, Et.

To illustrate the potential practical importance of this observa-
tion, we analyzed the monthly log difference of the Japanese-U.S. exchange
rate for the period February 1974 to February 1986. That is, we set z(t) =
log [s(t)] - log [s(t-1)], where s(t) is the exchange rate at date t. As the
first row of Table 2.1 indicates, when the observations are point-in-time, the

sample correlogram of the z.'s conforms to that of a white noise. This result

is consistent with an important class of economlic models which predicts that
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real asset returns ought to be serially uncorrelated. We alsc computed the
following two measures of average z{(t) which correspond bto measures of ex-

change rates and asset returns that might be used In empirical work when only

time averaged data are available,z'6

1 1

z{t) f log [s(t—r)]dr - f log [s(t-1-r)]dr,
0 0

and

z(t)

i

1 1
log [[ s(t-1-1)d7] - log [[ s(t-1-t)de]
0 0

The first of these measures is the one for which the analytie result, (2.15),
was derived. The second i1s a measure that is commonly employed in actual
empirical work. Let z  and Et denote the monthly sampled z{(t)'s and z(t)'s,

respectively. The second row of Table 2.1 reports the first 11 sample corre-

lations of Et’ while the third reports results for z The results are virtu-

£
ally indistinguishable. Note that the null hypothesis that the averaged data
are a white noise can be rejected. Moreover, they are consistent with the
implications of (2.15), since the implied 90 percent confidence interval for
the lag one autocorrelation is (.21,.47), which includes 1/4 in its interior.
An analyst who was not aware of the effects of time averaging on the
reduced form time series representation of z(t) would be led to incorrectly
reject the class of economic models which predict that ezchange rates and
asset returns ought to be serially uncorrelated if he used Et or ;t rather

than z,. In this empirical example, the fact that the exchange rate movements

are gerially correlated is purely an artifact of time averaging.z'7

2.D The Impact of Temporal Aggregation on Tests of Granger Causality.

Since the work of Sims [1971b] and Geweke [1978], it has been well

known that temporal aggregation can convert a one way Granger-causal relation
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into bidirectional Granger causality. The intuition underlying this result is
a simple omitted variables argument. Suppose that, in continuous time, x(t)
fails to Granger cause y(t). That is, past x(t)'s are not useful in predict-
ing future y(t)'s, given a continuous record on all past y(t)}'s. Now suppose
that x(t}'s and y(t)'s are only observed at integer values of t. In this
case, a forecasting equation for future y(t)'s that only uses sampled past
y(t)'s omits a massive amount of useful information. Missing are the obser-
vations on past y's between the integers. As long as there is some dynamic
correlation between x(t) and y(t), past x's at the integers will be correlated
with the missing past y's. For this reason, the past x's may serve as a
useful proxy for the missing y's in forecasting future y's. In this case the
apparent Granger causality going from x to y would be spurilous in the sense
that it is simply an artifact of temporal aggregation.

In order to gain some Insight into the quantitative Iimportance of
these considerations, we investigated the Granger causality patterns between
different measures of U.3. real oubtput and money growth. Our results are
based on estimated bivariate VARs which include twelve lags of each variable
and a constant. These were estimated using data on six sample periods cover-
ing the period February 1952 through December 1985. Initially we measured
ocutput by the monthly Industrial Production (IP) Index constructed by the
Federal Reserve Board. Money was measured by monthly data on M1 as published
in the Federal Reserve Bulletin. Column 2 of Table 2.2 displays the signifi-
cance level of the F-statisties testing the null hypothesis that output growth
{the difference in the logarithm of IP) is not Granger caused by the growth
rate of M1 (the difference in the logarithm of M1). Consistent with results
in Eichenbaum and Singleton [1986], we found that in none of the six sample

periods does the growth rate In M1 Granger cause the growth rate of IP at the
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5 percent significance level. In five of the six sample periods we cannot
raject, at even the 10 percent significance level, the null hypothesis that IP
growth Is not Granger caused hy money growth.

Next, we examined the Granger causality patterns between the growth
rate in guarterly real GNP and the guarterly growth rate of M1. Column 4 of
Table 2.2 displays the significance level of the F statistics testing the null
hypothesis that real gquarterly GNP growth is not Granger caused by the quar-
terly growth rate of M1. Notice that the reported F statistics are all lower
Ehan the corresponding entries in Column 2. In fact, these numbers warrant
rejecting the null hypothesis at the T percent level, although not at the 5
percent significance level. Overall, there is considerably more evidence that
output is Granger caused by money when we use quarterly real GNP data than
when we use monthly IP data as our measure of output.

How can we interpret the different results that we obtain using
quarterly real GNP data and industrial production? One interpretation is that
real GNP iz simply a better indlecator of real output than monthly industrial
output. A different interpretation is that quarterly real GNP is a more
temporally aggregated measure of real output than monthly industrial output.
In light of Sims' results, the Granger causality pattern obtained with quar-
terly data could be interpreted as being spurious in the sense of reflecting
the effects of temporal aggregation. In order to investigate the empiriecal
plausibility of this second Interpretation we constructed quarterly Mi and IP
data by arithmetically averaging the monthly levels data. We then estimated a
quarterly VAR (12) model using the guarterly growth rates for M1 and IP, and
tested the null hypothesis that M1 growth fails to Granger cause IP growth.
The significance levels of the test statisties for the sizx sample perlods

appear in column 3 of Table 2.2. Notice that the significance levels are



- 19 -

lower than those in column 2 by a factor of 2 to 12, depending on the
period. Moreover, in all periods, ezcept the most recent, the significance
levels have dropped enocugh so that the null hypothesis can be rejected at the
5 percent level. In the pre-1983 data, M1 growth appears to be useful in
forecasting IP growth in the quarterly data only because it is proxying for
missing data on lagged IP growth.

In our view these results provide support to the view that temporal
aggregation contributes in a significant way to the role that money plays in
forecasting quarterly real GNP. Of course in the absence of reliable monthly
data on real GNP data we cannot draw definitive conclusions. Nevertheless our
results do indicate the potential importance of temporal aggregation in gener-

ating spurious Granger causality patt:erns.z'8

3. Temporal Aggregation and Structural Parameters: The Stock Adjustment

Model

Application of the stock adjustment model to the study of inventory
behavior frequently produces implausibly low estimates of the speed of adjust-
ment of actual to target inventories., For example, the parameter estimates
reported by Feldstein and Auerbach [1976] imply that firms take almost 19
years to close 95 percent of the gap between actual and desired inventories.
Application of the stock adjustment model to other problems such as the demand
for money also yields implausibly low speeds of adjustment.

A& variety of Interesting explanations for these anomalous results
exist, Blinder [1986], Eichenbaum [1984], and McCallum [1984] explore differ-
ent explanations for the slow estimated speed of adjustment of inventories.
Goodfriend [1985] discusses this problem with respect to the demand for
money. In this section we explore the possibility that estimated slow speeds

of adjustment reflect temporal aggregation bias. Mundlak [1961] and Zellner
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{1968] showed theoretically that, if agents make decisions at intervals of
time that are finer than the data sampling interval, then the econometrician
could be led to underestimate speeds of adjustment. This is consistent with
findings reported in Bryan [1967] who applied the stock adjustment model to
bank demand for excess reserves. Bryan found that when the model was applied
to weekly data, the estimated time to close 95 percent of the gap between
desired and actual excess reserves was 5.2 weeks. When the model was applied
to monthly aggregated data, the 95 percent closure time was estimated to be
28.7 months.

The empirical work discussed in this section is designed to shed
light on whether temporal aggregation bias can account, in practice, for the
slow speeds of adjustment typically found when the stock adjustment model is
applied to inventories of finished goods. In subsection 3.4 we formulate a
continuous time equilibrium model of employment, inventories of finished goods
and output. In subsection 3.B wWe discuss an estimation strategy which ex-
plicitly takes the temporal aggregation problem inte account. Finally, in

subsection 3.C we report our empirical results.

3.4 A Continuous Time Model of Inventories, Output and Sales.

In this subsectlion we discuss a modified continuous time version of
the model in Eichenbaum [1984]. Our model is designed to nest, as a special
case, the model considered by Blinder [1981,1986] and Blinder and Holtz-Eakin
[1984]. We take that model to be representative of an interesting class of
inventory models. An important virtue of our model is that it provides an
explicit equilibrium rationale for a continuous time version of the stock
adjustment equation for inventories. An additional advantage of proceeding in
terms of an equilibrium model is that we are able to make clear both the
theoretical underpinnings and the weaknesses of an important class of inven-

tory models which has appeared in the literature.
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Consider a competitive representative household that ranks alterna-

tive streams of consumption and leisure using the utility funetion: "’
3.1 E_ [ e {u(trrds(ter)-.58(s(t+1) )°-N(bar) Hdr.
o
In (3.1),
t = the time unit, measured in months,
Et = the linear least sqQuares projection operator, conditicnal on the

time t information set,

3(t) = time t consumption of the single nondurable consumption gocd,

N(t) = total work effort at time t,

u(t) = a stochastic disturbance to the marginal utility of consumption at
time t, and,

A,r = positive constants.

We now specify the technology for the production of new consumption
goods and storing inventories of finished goods. Let Q(t) denote the total
output of new consumption goods at time £. The production function for Q(t)

is given hy:
(3.2)  Qe) = [(/ame)]"?,

whnere a is a positive scalar. In order to accommodate two different types of
costs associated with inventories that have been considered in the literature

we suppose that total inventory costs, measured in units of labor, are given

by:
(3.3) c(b) = (b/2)[s*(t)-eI(t)]? + v(t)I(t) + (e/2)I(t)2,

where b, ¢ and e are positive scalars, v(t) is a stochastic shock to marginal

inventory holding costs and s*(t) denotes time t sales of the good. The last
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two terms in (3.3) correspond to the inventory holding cost function adopted
by Blinder [1981,1986]1 and Blinder and Holtz-Eakin [198%], among others. This
component of costs reflects the physical costs of storing inventories of
finished goods. The Ffirst term in (3.3) reflects the idea that there are
costs, denominated in units of labor, assoclated with allowing inventories to
deviate from some fixed proportion of sales, Blanchard [1983, p. 378] pro-
vides an extensive motivation of this component of inventory costs. Similar
cost functions appear in Eichenbaum [1984], MeCallum [1984] and Eckstein and
Eichenbaum [1985].

The link between current preoduction, inventories of finished goods

and sales is given by,
(3.4) Q(t) = s*(t) + DI(t),

where D is the derivative operator, Dx{t) = dx(t}/dt.

It is well known that, in the absence of externalities or similar
types of distortions, rational ezpectations competitive equilibria are Pareto
optimal, Since our representative consumer economy has a unique Pareto opti-
mal allocation, we could solve directly for the competitive equilibrium by
considering the relevant social planning problem (see Lucas and Prescott
[1971], Hansen and Sargent [1980b] and Eichenbaum, Hansen and Richard
[1985]). On the other hand there are a variety of market structures which
will support the Pareto optimal allocation. In the interest of preserving
comparability with other papers in the inventory literature, we find it con-
venient to work with a particularly simple market structure that supports this
allocation. As in Sargent [1979] we require only competitive spot markets for

labor and the consumption good to support the Pareto optimal alloeation.3 :
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Suppose that the representative consumer chooses contingency plans
for s(t+r) and N(t+t), 1 2 0, to maximize (3.1) subject to the sequence of

budget constraints,

{3.5) Pl{t+t)s{b+t) = N{t+r) + wn{ter).
In (3:5) 3
P(t) = the price of the consumption good, denominated in labor units, and

w(t)

lump sum dividend earnings of the household, denominated in labor
units.
Solving the representative consumer's problem we obtain the follow-

ing inverse demand function,

(3.6) P(t) = -As(t) + u(t).

Given the very simple structure of relation (3.6) it is important to contrast
our specification of the demand function with different specifications that
have been adopted in the literature. In constructing empirical stock adjust-
ment models, most analysts abstract from modeling demand. Instead, the analy-
sis is conducted assuming a particular time series represeniation for an
exogenous sales process (see for example Feldstein and Auerbach [1976] or
Blanchard [1983]). Our model is consistent with this practice when A is very

large. To see this, rewrite (3.6) as,

(3.6)" s(t) = -(1/8)P{t) + n(t),

where n(t) = -(1/8)u(t). The assumptions we place on u(t) below guarantee
that n(t) has a time series representation of the form v(D)n{t) = v(t), where
v(t) is continuous time white noise, uncorrelated with past values of s{t) and

I{t). Also, y(D) is a finite ordered polynomial satisfying the root condition
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required for covariance stationarity. If A is very large ("infinite") then
sales have the reduced form time series representation y{D)s(t) = w(t). This
is the continuous time analogue of the assumption, made in many stock adjust-
ment model=, that sales are an exogenous stochastic process in the sense of
not being Granger caused by the actions of the group of agents who make inven-
tory decisions. (Our empirical results indicate that the assumption of one
way Granger causality from sales to inventory stocks is reasonably consistent
with the data.)

Other authors like Blinder [1986] and Eichenbaum [1984] begin their
analysis by postulating the industry demand curve (3.6). Our analysis pro-
vides an equilibrium interpretation of this demand specification. In so doing
we are forced to confront the strong assumptions implicit in (3.6). For
example, we Implement our model on neondurahle manufacturing shipment and
inventory data. This choice of data was dictated by the desire for our re-
sults to be comparable with those appearing in the relevant literature,
Notice however that manufacturers' shipments do not enter directly as argu-
ments into consumers' utility funections. Rather they represent sales from
manufacturers to wholesalers and retailers who iIn turn sell them to house-
holds. Consequently, objective function {(3.1) consolidates the wholesale,
retail and househcld sectors. We know of no empirical justification for this
agsumption. By focusing on nondurable manufacturers, we place more faith than
we care to on the stability of their relation teo wholesalers and retailers.
For example, shifts through time In the pattern of inventory holdings between
manufacturer's and retallers and wholesalers would have effects on our empiri-
cal results that are hard to predict. At the same time they do not represent
phenomena that we wish to model in this paper. In future research we plan to
avoid this type of problem by consolidating data from the wholesale, retail

and manufacturing sectors.
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We assume that the representative firm seeks to maximize its ex-
pected real present value. The firm distributes all profits in the form of

lump sum dividends to consumers. The firm's time t profits are equal to
(3.7) n(t) = P(E)s*(t) - N(t) - C (t).
Substituting (3.2), (3.3) and (3.4) into (3.7) we obtain,
(3.8)  u(t) = P(t)s*(t) - (a/2)[s*(t)+DI(t)]% - (br2)[s*(t)-cI(t)}]?
- w(£)I(t) - (e/2)I(t)°.

The firm chooses contingency plans for s¥(t+r) and DI{t+t), T 2 0, to maxi-

mize,
(3.9) E, [ e T n(ter)dn
0

given I(t), the laws of motion of v(t) and u(t), (3.1) and beliefs about the
law of motion for industry wide sales, s*(t).3'3 In a rational ezpectations
equilibrium these beliefs are self-fulfilling. Sargent [1979, p. 375] de-
sceribes a simple procedure for finding rational ezpectatlons equilibria in
linear quadratic, discrete time models. The discussion in Hansen and Sargent

[1980a] shows how to modify Sargent's solution procedure to accommodate our

continuous time setup. Briefly, the procedure is as follows. Write,
(3.10)  F[I(t),DI(t),s*(t),v(t),P(t),t] = e " lu(t),
so that (3.9) can be written as,

{(3.11) Et f F[I(t+t),DI(t+r),s*(t+r),V(t+r),P(t+t),r]dt,
0
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by choice of DI(t+t)}, s¥{t+t), T 2 0, subject to I{t) and the laws of motion
of v(t) and P(t). Notice that the principle of certainty equivalence applies
to this problem. Accordingly, we first solve a version of (3.11) in which
future random variables are equated to their time t conditional expectation.
Then we use a continuous time version of the Weiner-Kolmogorov forecasting
formula to express the time t conditlional expectation of time t + 1 variables
in terms of elements of agents' time t information set.

The variational methods discussed by Luenberger [1969] imply that

firm's Euler equations for s(t) and I(t) are:

{3.12a) 3F/es*{t) = ©

and,

(3.12b)  aF/ail(t) = D{sF/aDI(t)}.

These imply respectively:

(3.13a) P(t) - (a+b)s*(t) - aDI(t) + beI(t) = O,

and,

(3.136)  aD®I(t) - raDI(t) - (cZb+e)I(t) + aDs¥(t) + (cb-ra)s*(t) = v(t).

In a rational expectations competitive equilibrium, P(t) must satisfy (3.6),
with s(t) = s*(t). Substituting (3.6) into (3.13a) and replacing s*(t) by

s(t) we obtain,
(3.14)  s(t) = -[a/(a+b+a) [DI(t) + [be/(a+b+8) |1(t) + [1/(a+b+a) Ju(t).

It iz convenient to collapse (3.13b) and (3.14) into one differential equation

in I{t). Substituting s{(t) and Ds(t) from (3.12) into (3.13b) we obtain,
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(3.152)  (D-1)[D=(r-2)]1(t) = é%%%ﬁ%l v(t) - rpogy [ (be-ra)/asdlu(t)
where,

(3.15b) A = .5r + (k+.250) /2

and,

(3.15¢) k = [(a+b+a)/a(b+a)]{(be[c(a+h)+ra]/(a+b+a) )+e}.

Since k > 0, it follows from (3.15b) that A > O is real, Moreover, it 1s easy

2}1/2 3.k

to verify that r - A = .5r-[k+.25r Solving the stable root (r-i)

backward and the unstable root A forward in (3.15a) we c:d:>t:es.in,3‘5

(3.16)  DI(&) = (r-a)I(t) - 3%%§%7 g e M Ty (ter)dr
+ E%K § e*"[(cb-ra)/asDult+t)dr,
o

(r-A)I(E) - E%EE%T'I e‘ATv(t+r)dT
v

1 1 rbe T AT
- 5oa U(E) + o= [a - (r-)] g e *u(t+r)dr,

where the second equality is obtained using integration by parts. Substi-

tuting (3.16) iInto (3.14), we obtain,

_ be-a(r-a) 1. T oAt 1
(3.17) s(t) = PYTYY) I(t) + v g e “ry(b+1)dr + vy u(t)

- (b+A)(;+b+A) [(be/a)-(r-2)] g e Mu(ter)dr.

Equations (3.16) and (3.17) are the equilibrium laws of motion for inventory
investment and consumption in the perfect foresight version of our model.
Before allowing for uncertainty we discuss some qualitative features of this

equilibrium.
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First, suppose that the parameter b is equal to zero and there are
no technology shocks. This is the model considered by Blinder [1981,1986] and
Blinder and Holtz-Eakin [1984]. The role of inventories in this veraion of
the model is to smooth production in the sense that inventory investment is
negatively related to current demand shocks and positively related to exzpected
future demand shocks (see (3.16) and recall that r - % < 0). 4s Blinder
(1986] points out, production smocthing, as defined here, does not necessarily
imply that the variance of sales will ezceed that of production. For example,
if the serial correlation structure of u(t) were such that a jump in u{t)
typically Implies a large increase in u(t) in the future, then the current
jump in u(t) could lead to an increase in inventory invesiment, as well as
sales. We rule out these types of u(t) processes below. Consequently, pro-
duction smoothing in our model implies that the variance of production is
lower than the variance of sales when b = v(t) = 0.

Second, suppose that there are no preference shocks. Then, the role
of inventories is to smooth sales. To see this, notice that inventory invest-
ment depends negatively on current and future shocks to the inventory holding
cost function. The firm holds less inventories when the marginal costs of
holding inventorlies increases. Suppose that inventory holding costs are
viewed as general shocks to production costs. Firms will use inventories to
smooth production costs, as opposed to production levels, over time in the
face of stable demand for their product. For the kinds of production cost
shocks that we consider in this paper, this implies that the variance of sales
will be smaller than the variance of production.

4 slightly diffeerent way of seeing these points is to remember that
the competitive equilibrium solves the problem of a fictitious social

planner/representative consumer. The representative consumer has a utility



-29 -

function which is locally concave in consumption so that, other things equal,
he prefers a smooth consumption path. If preference shocks predominate we
would expect sales/consumption to be volatile relative to production. On the
other hand if technology shocks predominate, we would expect sales/consumption
to be smooth relative to production. Blinder [1981,1986] and West [1986]
document the fact that, at least for post World War II data, the variance of
production ezxceeds the variance of sales/consumption. This suggests that the
primary role of inventories is to smooth sales rather than production levels.
We now consider the equilibrium of the system in the uncertainty
case, In order to derive explicit expressions for the equilibrium laws of
motion of the system we parameterize the stochastic laws of motion of the
shocks to preferences and technology. To this end we assume that u(t) and

v(t) have the joint AR (1) structure,

(3.182)  u(t) = €,(£)/(8+D) = [ e'Bfei(t-T)dT,
0

and

(3.18b)  v(t) = ey(t)/(asD) = [ e‘“Tez(t-r)df,
0

where o and B are positive scalars. The vector €(t) = [61(t)e2(t)]' iz the
continuous time linear least squares innovation in [u(t)v(t)]',
Ee{t) € {t=-1)" = G(t)ﬁ, where G is a positive definite 2 x 2 symmetric
matrix and &8(t) is the Dirac delta generalized function.

Given the above specification for the shocks it is obvious that, for
Ttz 0,
(3.192)  E u(t+r) = T e”sse1(t+r—s)ds = ePT Z e'sse1ds = e PTu(t).

T

Similarly,
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(3.196)  E_v(ter) = e™Tu(t).
Simple substitution from (3.19) yields,

E e-lTu(t+T)dT

£

u{t)/(B+xr)

Qv 8

and

E e-lrv(t+t)dr

t

v{t)/{a+r).

Ot— 8

Substituting these expressions into (3.16) and (3.17) we obtain the equilib-

rium laws of motion for s(t) and DI(t),

(3.20a) DI(t) = (r-a)I(t) - 5?5%?%%%117 v(t) + agglzﬁ(;if) u(t)
_ be-a(r-1) v(t) a f(be-ra)-gal
(3.200)  s(6) = =00 M) + i tern)  ToeA)(asbeh) . a(gen)
* [a+;+A]u(t)

It is convenient to write the equilibrium laws of motion for I(t)
and s(t) in the form of a continuous time moving average of <,(t) and e,(t).

Substituting (3.18) into (3.20) and rearranging we obtain, in operator nota-

tion,
I(t) -
(3.21)" = 8(D)” 'C(D) e (t).
s(t)
where
(3.22) 8(D) = (a+D)(g+D)[D-(r-1)],
(3.23)  C(D) - Cy + C,D + c,D%,
g, q,8
. a[q1bc-(r—1)} q,bes
C -

g - a+b+4 a+b+A
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and
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9 9

-aq1[a - %E)+a—(r-}) —aqe(s-bc/a)
a+b+4 a+b+A

0 0

1-aq, -aq,

a+b+h a+b+A

_ lcb-raj-ag
= a(x+8) (b+a)

-{a+b+4

2 7 a{b+8){r+a)

We find it useful to write (3.21)' as,

{3.21)

where e(t)
With this definition of C(D) and e(t), equations (3.21)-(3.24) summarize all
of the restrictions that our model imposes on the continuous time Wold MAR of

I(t) and s(t).

= o(D)"'c(D)e(t)

Co € (8), C(D) = E(D)éai, and Ee(t)e(t)' = &(x)V = §(x)C,UC,"

We conclude this section by showing that our model is consistent

with a stock adjustment equation for inventories.

gate level of inventories such that if I(t) = I(t)H,
investment, DI{t), is equal to zero.

sired" or "target" inventories.

(3.25)

Let I{t)* denote the aggre-
then actual inventory
I{t)* is taken to be the level of “de-

Relation (3.20a) implies that,

_ a+h+4 {be-ra)-ag
L(e)¥ = v(t) - a(r-a)(b+8)(8+1)

* Tr-2Ja(b+a) (a+r)
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Substituting (3.25) into (3.20a) we obtain a stock adjustment equation for

inventory investment,
(3.26)  DI(t) = (A-r)[I(e)*-I(t)].

We require a measure of the "speed of adjustment" which can be
compared with similar measures reported in the literature. In order to make
this concept precise we imagine, counterfactually, that movements in I(t}® can
be ignored over an interval t € (t,t+1), so that I{t)*¥ = I(t)* for t €

{t,t+1). Then the solution to (3.26) is
(3.27)  I(t+t) - T(6)* = &I 1(e)_1(e)*].

Relation (3.27) gives rise to an interesting summary statistic
regarding the speed of adjustment of actual to target inventories. In partic-
ular, the number of days required to close 95 percent of the gap between

actual and target Iinventories is,
(3.28) 1% = -30[10g (1-.95)]/(r-r),

where 30 is approximately the number of days in a month.

Given estimates of the structural parameters it is straightforward
to calculate this statistie. In the next section we discuss a strategy for
estimating the parameters of our model from disc¢rete data. In addition we
formulate a discrete time version of the model which is useful for estimating
speeds of adjustment under the assumption that agents' decision intervals

coincide with the data sampling interval,

3.B Estimation Issues.

In this subsection we discuss a strategy for estimating the continu-

ous time model of subsection 3.8 from discrete observations on inventories and
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sales. Since our estimator corresponds to the one discussed in Hansen and
Sargent [1980a] we refer the reader to that paper for technical details.
Christiano and Eichenbaum [1985] provide additional details for the model
considered here. In this subsection we also display a discrete time version
of our basic model and describe a method for estimating its parameters. By
estimating both models we are able to derive an empirical measure of the
effects of temporal aggregation on speed of adjustment estimates.

We now describe the procedure used to estimate the parameters of the
continuous time model described in subsection 3.4. This procedure takes into
account the fact that the inventory data are point-in-time, and measured at
the beginning of the sampling interval, while sales are averages over the
month.

Qur estimation strategy involves maximizing an approximation of the
Gaussian likelihood function of the data with respect to the unknown param-
eters, g, which we list explicitly in subsection 3.C. The approximation we
use Is the frequency domain approximation studied extensively in Hannan
[1970]1. Hansen and Sargent [1980a] show how to use this approximation to
estimate continuous time linear rational ezpectations models from discrete
data records.

One way to describe our estimation strategy exploits the observation
that estimation of a continuous time model actually is a special case of
estimating a constrained discrete time model. Recall from the discussion of
section 3.A that ¢ implies a continuous time ARMA model, characterized by the
polynomials 8(D) and C(D) and a symmetric matrixz, V (see (3.21)-(3.24)). This
continuous time series representation implies a particular discrete time
series representation for the sampled, averaged data. In Theorem 2, section

2.C, we characterized this discrete time representation by the polynomials
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8%(L) and C°(L), and an innovation variance matriz, V%, Given these objects
it is possible to compute the spectral density of the data, Sy(z;c), which is
cne of the two ingredients of the spectral approximation to the likelihood

funetion, It can be shown that sy(z;c) is given by,

Sy(z;c) = Ec(z)VcEc(z'1)’/80(2)80(2_1), for z = e-iw, Wwe (-mw,m),

The other Iingredient of the spectral approximation to the likelihood function
is the periodogram of the data. We dencte the available data by
[¥(t),e=1,2,...7}. Here, Y(t) = {I(t),s(t))', where S(t) denotes average
sales:

1
(3.29) 5(t) = [ s(t+r)dr.
Q

The periodogram of the data at frequency w I(wj), is

j’

Iw)) = (1/DYW )Y(wj)H,

J

where H denotes the Hermetian transpose and,

T
T(wy) = ] (tye 1P,
t=1

Here, w, = 2nj/T, j =1, 2, ..., T. Given these expressions for Sy(z;i) and

J
I(wj) we can compute the spectral approximation to the likelihood function,

T
(3.30)  Ly(z) = - T log 27 - .5 J log det [S(e™™j;0)]
51
T i 1
- .5 ] trace [s(e” M50 T(w )]s
571 ’

Since the likelihood function (3.30) is a known function of the data and the
parameters of the model it can be maximized with respect to those param-
eters. We obtaln an estimate of the variance-covarilance matrix of the esti-
mated coefficients hy computing the negative of the inverse of the second

derivative of Ly with respect to r, evaluated at the estimated values of g.
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We now consider the problem of estimating a discrete time version of
the model. Accordingly, we suppose that the representative consumer maxi-
mizes,

(3.31) B § o3 {u(te))s(br3)~.588(t+3)2N(E4 )],

J=0
subject to (3.5) by choice of linear contingency plans for s(t) and N{(t). The
parameter ¢ is a subjective discount rate that is between zero and one. s
before the solution to the consumer's problem is given by the inverse demand
funetion {3.6).

The representative competitive firm chooses linear contingency plans

for s*¥(t) and I{t) to maximize,
(3.32) E, ¥ oI {P(t+3)a%(t+3)-(a/2) [s*(b+3)+1(t+3)-I(t+3-1)]°
J=0
~(b/2)|s*(t+)) eI (t+3) |2mv(te ) I(L+1)-(e/2) T(£+1)°],

subject to I(t) given and the laws of motion of w{t) and P{(t). We suppose
that the shocks to technology and preferences have a discrete time AR (1)

representation:

(3.33a) u(t)

wa(t-1) + €,(t),

and

(3.33b)  v(t) = ov(t-1) + e,(t),

where |p| < 1 and |[p| < 1. Also e(t) = [61(t)€2(t)]' is a vector white noise

that satisfies,

(3.34) E e(t) e(t-1)’ T equal to 0,

=0  not equal to 0.
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The model summarized by (3.31)-(3.34) is the discrete time version
of our continuous time model in that, essentially, it has been obtained by
replacing the D operator by its "approximation,” 1 - L. An alternative would
have been to specify the discrete time model so that the implied reduced form
time series representation for inventories and sales would he an ARMA of the
game order as that predicted by the continuous time model. In order to do
this we would have to abandon the assumption that u(t) and v(t) have first
order autoregressive representations or change other basic features of the
discrete time model. This is an important point which we will return to in
subsection 3.C.

Eichenbaum and Christiano [1985] show that the equilibrium laws of

motion for inventories and sales are given by,

{3.35a) 1(%) = ¥I(t-1) + hu(t) + gvit)

(3.35b) s(t)

—(a-be)/(a+b+A)I(t) + a/(a+b+A)I(t-1) + [1/(a+b+a) Jult).

where

- v be
h=- [pCerD+&[[T-vou] - a oul

(3.35¢) h =.ETBT§%TTIKT-{w(a-bc)+[(a-bc)w—a]¢¢u/(1-¢¢u)},

_ —{a+b+A))
& T alble+)+a[{1-yop)’

~{a+b+4) [¢ag+(a-bc)2—(a+b02+e+¢a)]
paib(c+1)+4] a+b+A *

1/9¢ =

he
+

and [¢] < 1.
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The relevant measure of the speed of adjustment of inventories which
can be compared to the measure which emerges from the continuous time model

iz,
(3.28)' 19 = x[log (.05)]/log v,

where ¥ is the number of days in the data sampling interval.

It is convenient to write the equilibrium law of motion for s(t) and
I(t) in the form of a moving average representation of the discrete time
innovations to agents' information sets. Substituting (3.33) into (3.35) and

rearranging we obtain,

I(t)
(3.36) = o)~ 'e% L) e (b)

s(t)

where,

(3.37)  o%(L)

(1-p) (1-uL} (1-pL),

(3.38) cdu) = Eg + E?L . EgLE,
h g
Ed _ 1-{a-bec)h zg{bec-a)
0o~ a+b+4 a+b+4
-hp -gu
¢d . (ab-v)-p[i1-(a-be)h] gla-p(be-a)]
1 a+b+A a+b+A
0 0,
74 _  -cp(ah-$) -gpa
2 a+b+4 a+b+f

Given these relations the free parameters of the discrete time model can be
estimated by maximizing Hannan's spectral approximation te the likelihood

function.
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We are now in a position fo demonstrate some of the possible sources
of temporal aggregabtion bias in estimates of the speed of adjustment. Rela-
tions (3.21)-(3.284) and (3.36)-(3.38) summarize the restrictions on the con-
tinuous and discrete time Wold representation imposed by the continuous and
discrete versions of the model, respectively. It can be shown that the con-
tinuous and discrete time models imply that I{t) and s(t) have continuous and
diserete time VAR (2) representations, respectively. For example, to see this

for the continuous time model, notice that (3.21)-(3.24) imply
(3.39)  det C(D) = (a+D)(B+D)[D-(r-r)]/(r-r)a(b+a).
Premultiplying (3.22) by C(D)~1 = C(D)®/det C(D) we obtain,
(3.40)  (x-a)a(b+A)C(D)2¥(t) = e(t).

Here C(D)® denotes the adjoint matrix of C(D). Thus {Y(t)} is a
pure VAR (2) in continuous time. However, Theorem 1 of section 2 implies that
sampled and averaged {[Y(t)} is a discrete time 4RMA (2,2) process. One moving
average term is due to sampling and the other is due to averaging. We choose
not to foecus upon this representation of the discrete data because its AR part
requires stronger than wusual restrictions to ensure identification (see
Christiano and Eichenbaum [1985], pp. 29-31). Instead we focus on an alterna-
tive reduced form representation for the data which emerges from the continu-

ous time model,
(3.41)  e%(L)Y(%) = [I+C?+C§L2+C§L3]ec(t),

where e®(t) is the innovation in Y(t) which has covariance matrix V®. Here
det C®(L) = e%(L)x(L), where k(L) is a second order polynomial in the lag

operator L. The presence of «(L) is a symptom of the effects of sampling and
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of averaging s(t). Since det C®(L) is not proportional to 8%(L), the sampled
representation is not VAR (2). As we indicated it 1s vector ARMA (2,2).
Christiano and Eichenbaum [1985] discuss the mapping between the representa-
tions (3.40) and (3.41).

Of course the discrete time model remains a VAR (2). It is useful
to write the reduced form of the discrete model in a manuner that is analogous
to (3.43). Derine ed(t) =Ty e (t) and cdr) = TULI(EI)™". Then (3.36)

implies that the reduced form representation for Y(t) emerging from the dis-

crete time model is

3.42)  edwywe) = [1ecdiacdi®le%e),

2

where the first row of Cg iz composed of zeros. We denote the covariance
matrix of ed(t) by vd,

Comparing (3.41) and (3.42) we see that the moving average component
of the reduced form for the discrete model iz of smaller order than that of
the continuous time model. Again, this reflects the fact that the continuous
time and diserete time models have different implications for measured data.
Not surprisingly, estimation of the two models will yield different estimates
of the underlying structural parameters and speeds of adjustment of actual to

target inventories.

3.C Empirical Results

In this subsection we repori empirical results obtained from esti-
mating four different models. The continuous time model was estimated using
monthly data. Three discrete models were estimated, one each using monthly,
qQuarterly, and annual data. Our main results can be summarized as follows.
First, the parameter estimates {rom the different models that we estimated are

consistent with the Mundlak-Zellner hypothesis that temporal aggregation can
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account for slow speeds of adjustment in stock adjustment models. Secondly,
we find that while the effects of temporal aggregation are substantial as we
move from annual to quarterly to monthly specifications of the model, they are
rather small when we move from the monthly to the continuous time specifica-
tion. This second result is counsistent with findings in Christiano [forth-
coming] where the length of the timing interval in the rational expectations
model is treated as a free parameter. Christiano [forthecoming] plots the
mazximized value of the likelihood function of an annual data record against
various values of the model timing interval. A4s the interval is reduced from
an annual to a quarterly specification the value of the likelihood funection
rises substantially. However, further decreases in the model timing interval
result in smaller increases In the value of the likelihood funection. This
result is also consistent with findings in Christiano [1986] in whiech a con-
tinuous time model of hyperinflation is estimated using monthly data. When an
analogous discrete time model is fit to the same data, the results are virtu-
ally indistinguishable from the continuous time results.

The 11 free parameters of our continucus time model are:

c
AT = (r,a,b,c,e,A,a,B,V11,V22,V12).

Our discrete time model aliso has 11 free parameters:

d d d
2 = (8,2,b,0,8,8,0,1,1(,,V5,,V0.).

Equation (3.40) implies that no more than nine parameters of the continuous
time can be identified. The same is true for the discrete time model. Con-
sequently, we searched for a lower dimensional parameter set that was identi-
fied. We restricted our attention to sets that included (i-r} and ¢ for the

continuous and discrete time models respectively. For present purposes, it
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does not concern us that we cannot identify all the elements of A° and Ad,
ginee our principle motivation is to identify the adjustment speeds implied by
the two models. These are econtrolled by (A-r) and ¢ in the continuous and
discrete time cases, respectively. The parameter sets that we estimated are

the following:

T = (r,a,B,k-r,bc/a,(a+b+ﬂ)/a,v11,V22,V12],

and

d .d .d
11:V22:V12)-

<
t

= [¢,D:u,¢,b0/a,(a+b+A)/a,V

Christianc and Eichenbaum [1985] establish that ¢ and £ are identified.®*® 1In
practice we fixed the discount rates r and ¢, a priori, at values which imply
a monthly discount rate of .997.3’7

Both models were estimated using seasonally adjusted monthly data on
nondurable manufacturing shipments and finished goods inventories. The data
correspond to those used by Blinder [1984]. This data 1s published by the
Bureau of Economic Analysis (BE A) except. that Blinder has converted BEA's
end-of-month inventory stocks to beginning-of-month figures. We constructed
guarterly and annual data by taking arithmetic averages of the monthly data.
The data cover the period February 1959 to April 1982 and are measured in
millions of 1972 deollars. Shipments data are averages over the month., All
data were demeaned and detrended using a second order polynomial function of
time and seasonal dummies.’®®

Table 3.1 reports the results of estimating the continuous time
model using monthly data.’"® We are particularly interested in the implica-
tions of these estimates for the speed of adjustment statistics. The point

estimate for A - r 1is 5.29 with 90 percent confidence interval given hy

(1.83,8.75). This implies that,
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¢ = 17(10,49).

The 90 percent confidence interval is reported in parentheses. Thus the
continuous time model implies that it takes 17 days to eliminate 95 percent of
the gap between actual and desired inventories. This speed of adjustment
seems plausible, especially in light of Feldstein and Auerbach's [1976] obser-
vation that even the largest swings in inventory stocks involve only a few
days' worth of produecticn.

We now turn to the results obtained with the discrete time models.
Table 3.2, 3.3 and 3.4 report results obtained with monthly, quarterly and
annual data, respectively. The point estimates of ¢ obtalned with monthly,
quarterly and annual data are .14 (.036,.244), .28 (.070,.490) and .58
(.150,1.01), respectively. Ninety percent confidence intervals are reported
in parentheses. The standard errors of the estimates of | increase with the
degree to which the data are temporally aggregated. Presumably this reflects
the smaller number of data peints that are available for the more temporally
aggregated data.

The implied speed of adjustment statisties are given by,

Continuous Monthly Quarterly Annual
Days to Close 95% 17 46 212 1980
of the Gap
Confidence Interval (10,49) (27,63) (101,378) (577,)°°'°

The continuous time figures are repeated here for ease of comparison. The
numbers in the last three columns of the first row correspond teo ™ in

(3.28)'. The number in the first column of row one corresponds to T¢ in
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(3.28). Numbers in parentheses in the second row are 90 percent confidence
intervals.

Notice that the number of days required to close 95 percent of the
gap between actual and desired inventories (Td) is more than twice as large
with monthly data, more than 12 times as large with quarterly data, and more
than 115 times as large with annual data, than the estimate obtained using the
continuous time model. Evidently, the estimated speeds of adjustment are a
monotonically decreasing function of the degree to which the data are tempo-
rally aggregated. We take this result to be supportive of the Mundlak-Zellner
conjecture that temporal aggregation can account for slow speeds of adjustment
in stock adjustment models. The estimated adjustment speeds are plausible for
the continuous time and monthly models, but implausibly slow--In our view--in
the quarterly and annual models.

An interesting feature of our results is that the estimated speed of
adjustment Increases in diminishing Increments as the model timing interval is
reduced. The increase is very large going from annual to quarterly data, but
appears toc have approximately converged at the monthly level, To see this,
notice that the adjustment speed confidence intervals for the monthly and
continuous time models overlap considerably. To investigate the conjecture
that convergence has occurred with the monthly specification, we compared the
discrete time reduced forms of the monthly and continuous time models.

The reduced forms of the continuous and discrete time models are
reported in the second columns of Tables 3.1 and 3.2 respectively. The=ze are
similar along a number of interesting dimensicns. First, Cg is close to zero,

while the third order term in CI(L) is exactly zero. Also, the 2,1 elements

¢
2

cd(L). This feature of the reduced forms has the implication that sales fail

of C? and C. are small, and so compare well with the corresponding elements in
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to be Granger-caused by inventories.>"!!

One dimension along which the
reduced forms differ concerns the first row of Cg, which does not appear to be
close to zero. In contrast, the first row of Cg is 1identically equal to
zero. Also, the variance of the second innovation error is three times larger
in the continuous time model than in the discrete time model. Unfortunately,
the importance of these differences and similarities is hard to judge, since
we do not have the relevant distribution theory. Morecver, it is not clear
that the direct comparison of the reduced form parameters 1s the most reveal-
ing one.

In our view, it i1s more iInteresting to compare the implications of
the two reduced forms for both sets of structural parameters. We are particu-
larly interested in the implications of the reduced form representation of the
data emerging from the continuous (discrete) time model for the structural
parameters of the discrete (continuous) time model. Consider first the impli-
cations of the reported reduced forms for the structural parameters of the
continuous time model. Since the. continucus time model is i1dentified the
reduced form parameters in column 2 of Table 3.1 map uniquely intoc the param-
eter values reported in the first column of Table 3.1. It 1s less obvious how
to deduce the implications of the reduced form emerging from the discrete time
model for the structural parameters of the continucus time model. Since the
reduced form of the discrete time model does not satisfy the cross equaktion
restrictions implied by the continuous time model, there is In fact no set of
continuous time structural parameters consistent with the discrete time model
reduced form. In view of this, we decided that the most sensible thing to do
was to compute the set of continuous time parameters that comes "closest" to

reproducing the disecrete time reduced form in Table 3.2.
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A natural candidate for this set of parameters is the probability
limit of the maximum likelihood estimator of the continuocus time structural
parameters calculated under the assumption that the data are generated by the
estimated reduced form corresponding to the discrete time n1c>ctel.3'12 If the
discrete time model is true then the estimates of the continucus time model
obtained using monthly data ought to be close to this probability limit.
These probability limits are reported in the second of the two columns labeled
"Plim" iIn Table 3.5. Numbers in parentheses are the estimated parameter
values taken from column one of Table 3.2. We find some discrepancies. For
example, the plim of a is .035, while its estimated value is .081. Other
discrepancies which stand out are the results for be/a, V.5, and Vio. Unfor-
tunately, we cannot draw any definifive conclusions regarding the magnitude of
these differences in the absence of the relevant distribution theory. Never-
theless 1t is interesting to note the similarity between the estimated value
of a-r and its reported probability limit. As noted earlier, the estimated
value of A-r implies that firms close 95 percent of the gap between actual and
desired inventories in 17 days. The estimated probability limit of this
number under the assumption that the data are generated by the discrete time
nmonthly model is 19.5 days.

We now consider the implications of the two reduced form representa-
tions for the structural parameters of the discrete time model. In column 1
of table 3.5 we report the probability limits of the structural parameters of
the discrete time monthly model. These were calculated under the assumption
that the data are generated by the continuous time model. If the continuous
time model is true then the estimates of the structural parameters of the
discrete time model obtained using the monthly data ought to be close to the

corresponding probability limits reported in Table 3.5. In fact these appear
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to be quite close to each other. The principal discrepancy is that be/a is
larger than the value reported iIn Table 3.2. In addition ng and V?Z are
somewhat different from the values rerted in Table 3.2. As before we cannot
draw any definitive conclusions from this exercise without the relevant dis-
tribution theory. Nevertheless, it is interesting to note how similar the
estimate of ¢ reported in Table 3.2 is to its plim in Table 3.5. 1In particu-
lar, inferences about the speed of adjustment of actual to target inventories
are basically the same for the tfwo values of v.

We conclude from the results in Table 3.5 that, when viewed from the
point of view of thelr implications for the discrete time parameters, the
reduced forms in Tables 3.1 and 3.2 are fairly similar. Some differences are
apparent when examined from the point of view of certain structural parameters
of the continuous time model.

A third way to compare the two reduced form representations is to
compare their log likelihood values. The difference between the log likelli-
hood value of the discrete time monthly and continuous time models is equal to
25.36. In this sense the discrete time monthly model "fits" the data better
than the continuous time medel. On the other hand, the likelihood ratio
statistic obtained when either of the two models Is compared with an unre-
stricted reduced form ARMA (3,3) model indicates rejection of both structural
models at essentially the same level. The log likelihood value of the unre-~
stricted ARMA (3,3) model is 3307.5 which is significantly greater than the
log likelihood walues assoclated with both the continuous and discrete time
monthly models {see Tables 3.1 and 3.2).

Overall, we conclude that the monthly discrete time and continuous
time models appear to be fairly similar when examined from the perspective of

the reduced form time series representations that they imply for the monthly
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data. MNext, we report some diagnostic tests on the underlying statistiecal
adequacy of the two structural models.

The validity of the formulas used to compute the confidence inter-
vals around our speed of adjustment estimates requires that the underlying
models be correctly specified. Unfortunately, we found evidence against this
hypothesis. As we indicated, a likelihood ratic test rejects both models
against an unrestricted ARMA (3,3) alternative., We also computed the multi-
variate Box-Pierce statistics proposed by Li and MecCleod [1981] to test for
serial correlation in the fitted residuals from the continuous time and
monthly discrete time models. These statistics were computed at lags 12 and
24 and are denoted by BP(12) and BP(24), respectively. Under the null hy-
pothesis that the underlying disturbances are white noise, BP{k) is drawn from
a chi-square distribution with 4 x k - n degrees of freedom, where n is the

3.13
number of free parameters.

In our case, n = 9. The Box Plerce statistics
for the continuous time model are BP(12) = 162 and BP{2L4) = 278. For the
discrete time model, they are BP(12) = 386 and BP(24) = 602. These statistics
indicate a substantial departure from white noise in the fitted residuals.
Because the likelihood ratio statistic and Box-Plerce statistics supply evi-
dence against our models the speed of adjustment confidence intervals that we
reported above must be interpreted with caution.

To what extent are our results sensitive to the way in which we
specified our discrete time model? As we Iindicated in subsection 3.B there
are at least two ways to choose a discrete time analogue to the continuous
time model of subsection 3.A. Our procedure was to specify the shocks in the
discrete time model toc have the same representation as the point-in-time

sampled representation of the continucus time shocks. Since our continuous

time shocks are AR (1), this implies an AR (1) representation for the shocks
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in the discrete time model. Wé adopted this specification of the discrete
time model because it matches well with what is commonly done in the litera-
ture.®* ™ an alternative would have been to specify the shocks in the dis-
crete time model S0 as to produce a reduced form for that model with AR and MA
orders Identical to those implied by the continuous time model. This can be
accomplished by adding a first order moving average term to the shocks In the
discrete time model. We conjecture that the effect of these moving average
terms would be to raise the estimated speed of adjustment implied by the
discrete time model. This conjecture is hased on the belief that the addi-
tional MA terms would take over some of the burden borne by the AR param-
eters--one of which controls the speed of adjustment--for accommodating the
gerial correlation in the data. This would be consistent with results in
Telser [1967]. As yet, we have not formally investigated this conjecture.
However, it is important to note that these comments illustrate the observa-
tions made in subsection 2.B, where we argued that the temporal aggregation
effects of shrinking the model timing interval can have the same effect on the
reduced form implications of a model as allowing for more serial correlation
in the unobserved shock terms.

We conclude this subsection by reiterating the main objectives of
our empirical exercise. These were (i) to show that slow speeds of adjustment
obtained with the stock adjustment model could be accounted for by temporal
aggregation bilas, and (ii}) to show that structural inferences can, in prac-
tice, be substantively affected by different assumptions about the frequency
with which agents make economic decisions. 1In our view these objectives have

been accomplished.
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. Concluding Remarks

This paper has inveatigated the impact of temporal aggregation bias
on structural inference in macroeconomics. We have argued, by way of two
empirical examples, that this source of bilas should not be dismissed as a
quantitatively unimportant Cheoretical curlosum. Our emplrical examples
indicate that temporal aggregation bias can be quantitatively important in the
sense of significantly distorting inference.

Nowhere did we argue in favor of a particular decision interval as
being the most natural or correct one for the purposes of modeling macro-
economic phenomena. In our view this is an entirely open gquestion which In
all likelihood cannot be resolved on the basis of the aggregate time series
data alone. However we do not see any compelling reason for the standard
practice of assuming that the interval of time between agents' decisions is
equal to the data sampling interval. This practice might be defended on the
grounds that 1t is empirically innocuocus. In fact our results indicate that
there is little reason to expect that empirical results are robust to differ-
ent assumptions regarding the frequency with which agents make decisions.

Macroeconomists often have access toc different data sets, corre-
sponding to different sampling intervals. It iz not our view that tests of
economic models ought always to be conducted with the data set corresponding
£o the finest sampling inferval. This is because there may be systemaiic
differences in the degree of measurement error associated with data collected
at different intervals of time. However, the specificatbion of agents' deci-
sion intervals and which data should he used in implementing a given model,
are, in principle, separate issues. It is not logically inconsistent to
believe, for example, that agents make decisions on a monthly basis and still

insist on using quarterly data. The quarterly data may simply be more reli-
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ably collected. However it is logically inconsistent, under these circum-
stances, to use quarterly data without taking into account the misallignment
of agents' decision intervals and the data sampling Interval. Thisg inconsis-
teney is even more pronounced when the quarterly data are not sampled on a
point in time basis.

Economists have long understood the need for robustness checks of
empirical results with respect to different data sets. One conclusion from
this study is that more attention should be devoted to robustness checks using
data sampled at different intervals of time. More generally, we hope that
macroeconomists will begin to deal explicitly with the problem of temporally
aggregated data. Fortunately, the technical apparatus for dealing with tempo-

ral aggregation problems exists, at least for linear models.
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Footnotes

1'ISee Garber [1977] for an example of a model in which the deciszion
interval 1s endogenous. In our view, whether timing decisions should be
endogenized is, to some extent, an empirieal question. Christiano [forth-
coming] develops a technique for estimating fixed timing intervals in economic
models whose reduced form are linear in the variables. That technique could
be applied to several data sets, say drawn from different countries or differ-
ent regimes. If the estimated timing interval varied in some systematic way
across the data sets, then it might be desirable to modify the model by making
the length of the timing interval a function of the other parameters. OfF
course, at the most general level, an endogenous timing interval would not be
of fizxed length. Instead it would be state dependent. f limitation of
Christiano's analysis is that it cannot accommedate state dependent timing
intervals,

**2The reduced form approach 1s represented by the work of Working
[1960], Telser [19671, Sims [1971b], Geweke [1978], Hansen and Sargent [1984]
and Marcet [1985]. Examples of the structural approach are Mundlak [1961],
Zellner [1968], Sims [1971a], Zellnér and Montmarquette [1971] Engle and Liu
[1972], Hansen and Sargent [1980a] and Christiano [1984,19851.

2'lAlthough this section omits citations to rigorous presentations
of the material, these are included in Appendix 4.

22 linearly indeterministic process is one for which the mean and
any other perfectly linearly predictable component, e.g., a trend term, have
been removed. See Sargent [1979, Chapter XI, sect. 11] for further discus-
sion.

?*3Note that we depart slightly from the usual convention, according

to which a vector ARMA model denotes a representation in which both the auto-
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regressive and moving average parts are vectors. We refer to this kind of
representation as a VARMA model. In section 3 we refer to VAR models, by
which we mean a VARMA model with zero order moving average component.

Z+%Given the definition of the continuous time lag operator, the
definition of L implies that L = =D,
2'SThe argument is formalized as follows. Define
V= [1—&?][1—hg]zt and let Sy(e_im) denote the spectral density of y at
o+ OphSy 1+ Aoeypr Sy(e7)
= ¢(0) + c(1)(e_im+e+iw), where o(k) = Ey,.y._,, for integer values of k, and

frequency w ¢ {(-w,7). Since Yy = €

e(k) = 0 for k > 1. The discussion in Sargent [1979, Chapter XI, section 13]

applies so that unique scalars |d} = 1 and a2

-fw,2 2
g

= 0 can be found with the prop-

-im) i,

erty that Sy(e | 1+de . Also, Sargent [1979, p. 241] shows that

Sy(e"i“) = |(1-Afeim](1-lge'im]|2 Sz(e'im), where S, is the spectral density
of {z(t),t=0,£1,£2,...}. Then, since by hypothesis |k1|2 < 1,1 =1, 2, we
have that S (™) = [(1-2,e™)(1-2,e719)|7?]140e™!|%°. But the object on
the right hand side of the equality is the time series representation for a
process with AR component (1—1?L][1-A§L], MA component 1 + dL, and innovation
variance o°. This establishes that {z,,£=0,21,22,...} has an ARMA (2,1)
repregentation.

2'BThe integrals were approximated by taking daily averages over the
month.

>*"por other examples of cases where the random walk hypothesis may
have been Inappropriately rejected as a conseguence of spurious correlation
induced by data averaging, see Working [1960, ftn. 1] and Cowles [1960].

2-8There is one dimension along which the preceding results are not

at all robust. We redid the calculations reported in Table 2.2 using the

levels of the logs of the data. VAR (12)'s with and without a quadratic trend
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were computed. The results are strikingly different from those reported in
Table 2.2. First, money significantly improves forecasts of output whether a
trend is inecluded or not. For example, using the 1952 to 1983 period, the
significance level of the test statistic for the null hypothesis that money
does not help predict output is .0007 when a trend is excluded, while it is
.00006 when a trend is included in the VAR (12). Second, the significance
level of the test statistic is smaller when quarterly averages of money and
output are used. In this sense, money seems to be less important in predict-
ing oukput when time aggregated data are used. These results are puzzling to
us. We are currently working to develop an explanation for these results
using Monte Carlo methods.

*+lThe fact that we specify utility to be linear in leisure warrants
some discussion because it appears to be inconsistent with findings in two
recent studies. Our specification impiies that leisure in different periods
are perfect substitutes from the point of view of the representative con-
sumer. MaCurdy [1981] and Altonji [1986] argue, on the basis of panel data,
that leisure in different perlods are imperfect substitutes from the point of
view of private agents. Rogerson [1984] and Hansen [1985] describe conditions
under which the assumption that the representative consumer's utility function
Is linear in leisure is consistent with any degree of intertemporal substitut-
ability at the level of private agents.

3'2It iz of interest to contrast our model with the equilibrium
model in Sargent [1979, chapter IV], In that model, the representative
agent's utllity function is linear in consumption and quadratic in leisure.
As a result, the interest rate on risk free securities, denominated in units
of the consumption good, is constant. In our model, the representative

agent's utility function is guadratic in consumption. With the result that
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the interest rate on risk free securities, denominated in units of the con-
sumption good, is time varying and stochastic, This feature of our model is
attractive in view of the apparent non-constancy of real interest rates in the
U.5. In order to remain within the linear-guadratic framework, we specify
utility to be linear in leisure. This implies that the interest rate on risk
free securities, denomirated in units of leisure, is constant.

3370 avoid proliferating notation we do not formally distinguish
between variables chosen by individual households and firms and their economy
wide counterparts. Nevertheless the distinction between them plays an impor-
tant role in the model. By assumption agents are perfectly competitive and
view economy wide variables, such as P(t) and economy wide sales and inven-
tories, parameterically.

2]1/2 and note

*+*To see that A > O consider f(k) = .5r - [k+2.5r
that £{0) = 0 and £'(k) < O for k = 0.

%-%See Hansen and Sargent [1980a] who show that this procedure
yields the unique optimal solution to the social planning problem which the
competitive equilibrium solves.

3'GSpecifically, Christiano and Eichenbaum [1985] show that 7 and £
are locally identified. 1In addition, we show that, given any admissible z,
then there are at least five other values of 7 which are observationally
equivalent, i.e., yleld an identiecal value for the likeliheocod function. We
constructed an algorithm to find these r's in order to determine whether any
of them is admissible in the sense of satisfying the non-negativity conditions
imposed by the model. Generally, we find that one other ¢ is admissible in
this sense. This value of ¢ is obtained by exchanging the values of o and

{(r-r) and suitably adjusting r. As we point out later, our continuous time

parameter estimates imply a = .082 and (A-r) = 5.29 with r = .003. This
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parameterization implies a relatively rapid speed of adjustment of actual to
desired inventories. An alternative parameterization which yields the same
value of the likelihood function is one in which a = 5.29 and (i-r) = .082.
This implies that the speed of adjustment is very slow and relatively little
serial correlation in the inventory holding cost shock. This parameterization
can be ruled out as being implausible since 1t requires the discount rate to
be r x 100 = 62,112 percent. We experimented with numerous parameterizations,
and always found that if we placed a reasonable upper bound on r, then global
identification obtained. We found the same result regarding £.

**70ur results were insensitive to the different values of r and B
that we considered.

*-%fhis time trend can be rationalized as follows. Suppose that
u(t) and v{t) are the sum of a covariance stationary component, as given by
equation (3.18) and a linear function of time and seasonal dummies. Then the
equilibrium laws of motion will have two components. The First component will
be the law of motion given In the text. The second component will be a deter-
ministic function of time and seasonal dummies. There are no restrictions
acrogs the two components. These claims are established in Christiano and
Eichenbaum [1985]. There are alternative ways to generate trend growth in
inventories and sales. For example, the egquilibrium laws of motion for s(t)
and I(t) will inherit any unit roots in the VAR for u(t) and v{t). The fact
that we choose to work with deterministic time trends does not necessarily
reflect the view that this is the only reasonable model of trend growth for
our variables. Instead it reflects the fact that almost the entire empirical
literature that we wish to address assumes the existence of deterministic time

trends.
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% models where the timing interval is finer than the data sampl-
ing interval, estimates of the AR and MA parameters can be sensitive to the
scale in which the data are measured. This contrasts with the case in which
the timing interval coincides with the data sampling interval. In the latter
case, multiplying the data by a constant scalar affects only the innovation
variances but not the AR and MA parameters. To check that our continuous tLime
speed of adjustment estimate is robust to a change of scale, we divided the
data by 100 and re-estimated the model parameters. The results were virtually
unchanged.
3'loThe upper bound of the 90 percent confidence interval for ¢ in
the annual model is 1.01. This implies that firms never reach their target
inventory level. This is why the reported upper bound of the 90 percent
confidence interval for Td in the annual model is .
3'11We noted in section 3.A that this assumption is frequently made
in the inventory literature.

- 2Mhese were computed by maximizing the frequency domain approxi-
mation to Gaussian likelihood function in which the periodogram was replaced
by the spectral density function implied by the reduced form parameters in
Table 3.2. The Justification for ecalling the resulting numbers probability
limits is glven in Christiano [1984] where this technique is applied in
another context.
3+3311 and McCleod [1981]1 derive the distribution for their test
statistic under the assumpiion that the model being estimated is an uncon-
strained vector ARMA with independent, identically distributed disturbances.
They show that BP(k} has an asymptotic chi-sguare distribution with mok—g

degrees of freedom, where m is the numher of equations in the vector ARMA

model and % is the number of AR and MA parameters. We assume that the appro-
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priate modification regarding the number of degrees of freedom, in our prob-
lem, is obtained by replacing & by n.
3-1%see for example, Blinder [1984], Eichenbaum [1984], Maccini and

Rogsana [1984] and the references in McCallum [1984].
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Appendiz A: A Primer on Continuous Time Models

In this appendix we present a very informal discussion of ecertain
properties of the class of continuous time models utilized in this paper. The
presentation assumes familiarity with discrete time models of time series
data. Our presentation makes heavy use of analogles between discrete time and
continuous time models. The proofs for Theorems 1 and 2 of the baper are

contained in subsection A.3 of this appendix.

4.1 The Continuous Time Wold Representation

In discrete time, it is common to write a time series representation
for a covariance stationary, linearly indeterministie process, z(t), as an
infinite ordered moving average (MA(=)) of disturbances. The disturbances in
this representation are the errors in forecasting z(t) one step ahead using a
linear function of past z{t)'s. Because they are serially uncorrelated, the
disturbances are often referred to as "white noise." The fact that the as-
sumption of an MA(=) model invelves no loss of generality is guaranteed by
Wold's thecrem in discrete time (see Sargent [1979, p. 2571). There is =
continuous time version of this theorem (Rozanov [1967, p. 118-119]1). Accord-
ing to it, a covariance stationary, linearly indeterministic continuous time
process can be written as an integral of current and past disturbances as

follows:

(A.1a) z{t) = J F=07<0 (1) e (t-1)dr

-0

where,

(4A.1b) E e (t) ¢ (t=k}' = &(k)V,
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Here, V 1s positive definite symmetric matriz which we refer to as the "vari-
ance" of e(t). Also, & is the Dirac delta function (see Hannan [1970, pp.
514-5161) which is defined by the property that

oo

I h{t)&{t)dr = h(0)

for any function h that is continuous at zerc. Loosely speaking, 6 can be
thought of as a function that is nonzero only when k = 0. Consequently,
according to (A.1b), e(t) is a serially uncorrelated process, and so we call
it a "continuous time white noise.” One sense in which the analogy between a
discrete time MA(=) model and (A.1a) is strained is that a continuous time
white noise 1s considerably more difficult teo analyze rigorously than its
discrete time counterpart. This is because the continuous time white nolse
does not "exist" in the sense that a discrete time white noise does. The dif-
ference lies in the fact that a discrete time white noise can be simulated,
#ay by repeatedly tossing a coin, or rolling a die. By contrast, it is not
possible to simulate realizations from a continuous time white noise pro-
cess. For this reason, a white noise process is said not to be "realiz-
able." On the other hand, a weighted integral of a white noise, e.g., (4.1a),
is realizable. Although a rigorous understanding of continuous time white
nolse is mathematically demanding, it is sufficient, for the purposes of this
paper, to rely on analogies with the discrefe time case. A rigorous treatment
of continuous time white noise processes can be found in Hannan [1970, section
1.6] and Gel'fand and Vilenkin [1964]. {See Sargent [1982], and Astrom [1970]
for introductory treatments.}

Applying (A.1b) and the definition of the Dirac delta function, it
is easy to confirm that cz(k) = Ez(t)z(t-k)' is

(a.1c) e (k) = E J £(t) € (t-t)dt | e (t-k-v)'f(v)'dv

- -
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= T f f(T)G(k+u—r)Vf(u}Tdu = T F{r)Vf{t-k)'dt < =,

for any real value of k. The presence of the inequality in (A.1c) reflects
our agssumption of covariance stationary which coincides with the requirement
that f be a square integrable function of r.

A final property satisfied by e(t) in (A.la) is that the error in
forecasting z(t+k} using a linear combination of z(t-s), 8 =z 0 i=

k

(4.1d)  =z(t+k) - E[z(t+k|z(t-3): s20] = g £(t) e (t+k-t)dt
for any k > 0. Because ¢f the obvious analogy with the disturbance ferm in

the discrete time MA(=), property (A.1d) leads us to call e(t) the "innova-

tion" in z(t).

A.2 Continuous Time Models in Operator Notation.

In the discrete time context it is often convenient to write the
MA(=) representation of a stochastic process in operator notation. This is
also the case in continuous time, where the =shift operator Iis
eTDx(t) = x{t+1), for any real value of t. Here, Dx{t) = dx(t)/dt, so that D
is the time derivative operator. {In discrete time, the common notation for
the lag operator is Lx(t) = x(t-1), so that L = e D)) Intuitively, we can
think of the rationale for thils notation as follows. Suppose x{(t)} were in-

finitely differentiable. Then

e™x(t) = x(t) + Dx(t) + %T 2D%x(t) + %T Sp3x(t) + ...

D as a series expansion. Notiece, however, that

Here, we have simply written e'
the expression to the right of the equality is x{t+1) expressed as a Taylor
series expansion about x(t).

Substituting the shift operator into (A.1la), we obtain
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I p(t)ePdr ¢ (8) = F(D) e (&),
0

(4.2a) z(t)

where,

(A.2b) F(D)

f f(T)e‘TDdT.
0

It makes no substantive difference uwhether we parameterize the
continuous time model at the level of f, or at the level of F, since given one
it always possible to recover the other. (More precisely, the F polynomial
corresponding to f via (A.2b) is unique. Also, there is only one f function
satisfying (A.1) that corresponds to a given F polynomial.) In general, it is
more convenlent to parameterize the model at the level of F(D). We parameter-
ize F by specifying it to be a rational polynomial in D. In doing so, we lose
some generality, since Wold's theorem says only that F corresponds fto some f

satisfying (A.1) and (A.2b). Specifically we assume,
(4.3) F(D) = C{(D)/e8(D),

where C(D) is a g~th ordered, n x n matrix polynomial in D, and 6(D) is a p-th
ordered scalar polynomial in D.

The requirement that the f funetlon corresponding to F satisfy
(A.1e), (A.1d), and that z be realizable implies the following three sets of

restrietions on 8 and C:

(1} 8{s) = 0 implies Re(s) < 0 covariance stationarity of {z(t)}.
(i1) det C{s) = 0 implies Re{s) < 0 condition (A.1d).
(11ii) q < p-1 realizability of {z(t)}.

Here, Re(s) denotes the real part of the complex variable s. The first re-
striction is required by covariance stationarity of z, and the second by the

requirement that ¢ be the innovation in z. Restrictions (i) and (ii) are
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among the reasons why there is such a close analogy between continuous time
and discrete time ARMA models. Recall that iIn discrete time, covariance
stationarity and the requirement that the time series disturbance be an inno-
vation imply that the roots of the autoregressive part and of the determinant
of the moving average part lie outside the unit c¢ircle., Suppose, for the
moment, that we think of the lag operator, L, as a complex variable. Then the
restrictions just described are the following. 1If L is a zero of either the
antoregressive part or the determinant of_ the moving average part of the
discrete time representation, then |L| > 1. To see the analogy with the
corresponding restrictions on the continuous time model, recall the link that
L = e D, and notice that |L| > 1 and re(D) ¢ @ are equivalent conditions.
(Here, |-| denotes the absolute value operator.)

Restriction (iil) does not have a counterpart in discrete time
models. The need for it arises because of the fact that a continuous time
white noise, unlike its discrete time counterpart, is not realizable. Notice
that (iii) rules out p = g = Q, in which case z is not realizable since it
identically equals €.

We now present three examples which are designed to further motivate

the three restrictions which we impose on % and C.

Example 1

Suppose n = 1 and

(4.4a) 8{D} = {8+D), C(D) = 1,

then,

(4.4b) F(D) = 1/(8+D)

(a.4e) Hr) =e B 20

u
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It i3 easy to verify that (A.4b) and (A.Y4c) satisfy (A.2b). Also, note from
(A.lec) that unless 8 > 0, f£{1) will not converge to zero as t + = and (A4.1c)
will fail. This translates into the proposition that covariance stationarity
restricts the zeros of 8(D)} to be negative. This is consistent with restriec-
tion (i). (Here again, we lapse into referring to the operator D as a vari-
able. This does not lead one astray.)

The following example illustrates the role of restriction (iii).

Example 2

Suppose n = 1 and
g(D) = 8 + D, C{D) = vD + 1,
so that (iii) holds if, and only if, ¥y = 0. Then,

yD+1 1-y8

F(D) D+g = ¥V Des

and,

1]

z(t) = F(D) € (t) = y € (t) + %ggﬁ e(t)

y e (£) + (1-y8) | e BT ¢ (t-t)dr.
Q

Evidently, in this case z(t) is the sum of y € (t)--which is realizable if,
and only if, y = O--and a second term which is realizable. Consequently, z(%)
is realizable if, and only if, v = 0. This result coineides with restrietion
(iii).

Finding the f function corresponding to an arbltrary rational F was
trivial in example 1 because 8 had only one root. It is of interest to note
that if the roots of B are distinet, then finding the f function corresponding

to a given F can be converted into a problem as simple as the one in example 1
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by application of the partial fractions expansion formula. Example 3 illus-

trates this for the case p = 2, q = 1.

Example

Suppose n = 1 and

Ay - A

a(D) = (D-A1)(D-k2) 1 5 D.€. 0, Re(xj) <0 j=1, 2,

CD) =D -b b < 0,

In this case, restrictions (i), (ii) and (iii) are satisfied, implying that
z{t) is realizable and covariance stationary, and that the disturbance € in
8{D}z{t) = C(D) e (t) is the innovation in z(t). Application of the partial

fractions expansion {see Sargent [1979, pp. 188-89]) yields

_CD) 1
=

1 1
(A,~b)=—— + (b-A,)=——]
5 [ 177'D-2, 2'D-x,

Then, applying the result in example 1 twice, we obtain

A

1 17
[(AT—b)e +(b-a,)e

£lz) = MM
O T < 0.

lzT]

Evidently, (A.1e) is satisfied because Re(xi) <0, 1=1, 2, as restriction
(i) implies. If b > O, then z(t) is still covariance stationary, but € is not

its innovation. For a heuristic explanation of this, see Sargent [1982].

A.3 Proof of Thecrems 1 and 2 In Section 2
The proofs essentially follow the strategy taken In Example 1 of
section 2. We begin by developing some notation and presenting a useful

lemma. Define the scalar polynomial in D:

(A.5) g(D) = (D-k1)(D-12) .- (D—Ap),
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where Re(ki) <0 for all i and the );'s are distinct. Also, define the n x n

matrix polynomial in D,

- q
(4.6) C(D) = Cy + CD + ... = Ce

with g < p - 1, and det C(s) = 0 if, and only if, Re(s) < 0. Finally, let

(4.7) BC(C) 1+ B?c + Bgtz + e Bgcp

(1-u,8) (T-uy8) oo (T-MPC),

P}

where Hy = e i, i=1, ..., p, and ¢ is a complex variable. In this case,
Py
(8.8)  Fp) = D .y 1
8(D) A D=
J=1" 7
where
W, = C(a,) i ( ) k
.= C(A )/ 0 (A,-a ). .ne.j
j 3 ey 3K J

Here, the standard partial fractions expansion formula has been applied,
element by element, to F(D). From (A4.8) it follows that z(t) has the law of

metion given by
P A

(4.10)  z(t) = } W
=1 J

T

e d e (t-1)dr.

Ot—q

The following Lemma is used in the proof of Theorems 1 and 2:
Lemma 1

ir

(i) {z(t)} is generated by the structure (4.5)-(4.10)

then
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(ii) a®(L)z(t) = n(t)
P
(i1i) alt) = [ £(r} e (t-1)dr
0
p 5 -kx
(iv) £(e) = Jw( ] o% )e*sT t e (s,5+1), s =
3- -
Proof

0,

T, wen,

p~-1.

The proof consists of applying 8%(L) to the right side of (4.10) and

showing that the result is n(t) in (iii)-(iv).

P o 2
0%(L) Jw, [ ed e (t-t)dr
0

8(L)z(t)
j=1 9

P p
= 6 ¥ W
I

[ e J e (t-7-2)dr
0

Notice that

L p=% X.T

O f

0
p-2 A.T = A,t A {p-2)

0 0

Substituting,
p%(L)z(t) = ¥

since by construction 8%(e j) =0, %1i=1, ..., p.

1]

P
¢t z 8% E Wj I e J € {b-g-1)dr

A.T

1
b~
=
[ &Y
—
@
o
L |
Ot—a—
(0]
o

2
e{t~t)dt+ f e
1

AT

o«

ed « (t-t-2)dr = [ e I ¢ (t-t-2)dt + [ e J

p-4

Now,

J e(t-t)dt

ALt

f eJd ¢ {(t-7-2)dr + f e J e J € (t-t-p)dx

3 P A.T
+ ] e I e(tmr)dre. ..+ [ed e{t-1)d<]
2 p-1

ALT A

o ~h 2 ’ 3 T o)
+ 91e J[I e e{b-t)dr+ f e J e(b-1)dt+...+ f
1 > p-1

€ (b=7-2)dx

=X i.p
0% Jye J € (t-t-p)dr = w(t)

A,T
e J e(t-t)dr]
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=27, 3 AT P A.T
s0fe  J[[ e e(t-r)drs...x [ e I e(t-n)dr]
2 p-1
o —lj(p-1) p Ajr

+.o..+0 € [ e e(t-t)dx}
p'1 p~1

g+l AT

Collecting terms in [ e J e (t-t)dz, s =0, 1, ..., p-1, yields §; = n(t) in
<]

(iii) and {(iv).

Q.E.D.

Proof of Theorem 1

Let Sz(im) denote the spectral density at frequency o ¢ (-=,»} of the continu-
ous time process, z(t). Absolute integrability of the moving average function
in (A.10) guarantees that Sz(iw) = F(iw)VF(-iw)', where F is defined in (4.8)
{see e.g., Papoulis [1962, page 27]). Evidently, Sz(im) > 0, meaning that S,
is positive semidefinite for all w € (-»,») and its determinant iIs positive at
all but possibly a finite number of points. Let Sg(e'im) denote the spectral
density of z_ at frequency w € (-m,m}. According to Hannan [1970, p. 451,
s5(e™) = 7 s (ilwsnk]). The fact that S_ > O therefore implies S > O.

Define Ve :kga?L)zt for integer t. According to Hannan {1970, Theorem 9, p.
581, the spectral density  of {yt}, denoted Sy’ is given by
Sy(e'iw) = |Bc{e—im)lgsg(e'i“), for w ¢ (-n,7Because of the restrictions on

-1(0) I2

the 1's, ]ec(e n.e. 0 for all w € (w,w). Hence, S, > 0. Since the

y

conditions of Lemma 1 apply, y. = n{t) and c(k) = Ey,y; ' = 0, k 2 p - 1.
Hannan's [1979, p. 66] Theorem 10' then guarantees the existence of a unigue
set, A4, ..., Ap_1, W, for which the zerces of det A(g) lie on, or outside the
unit cirele and W is positive definite, with the property
5,(e71) = ae™)uace!®)t. Here, A(eTH) = 1w apeT®w v a eTi0(BTD)
Therefore, we conclude that

Sg(e“iw) - Iec(e-im)l2 A(eim)Wﬁ(eiw)'.
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But the exzpression on the right of the equality is an ARMA (p,p-1) represen-
tation for a process with scalar autoregressive part ec(L), matrix moving
average part A(L), and innovation variance W.

Q.E.D.

Proof of Theorem 2

The proof is a trivial modification on the proof to Theorem 1, so the details

1
are omitted. The important thing to note is that [ 8(L)z(t-t)dr = 6%(L)Z(t)
1 0
= [ n(t-t)dr = §t’ say. Hence, o{k) = Eﬁtit . 1S not necessarily zero for k =
5 -
p, although c¢(k) = 0 for k > p.

Q.E.D.
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Table 2.1

Autocorrelations, Log Difference of U.S.-Japanese Exchange Rate
February 19T4-Feburary 1986

Lag 1 2 3 b 5 6 7 8 9 0 N
End-of-Month* .10 .03 .14 .07 .0T -.05 -.01 .06 ~.10 -.06 .04
Average of Logs%® .34 .02 .09 .19 .07 -.06 -,03 .02 -.06 -.06 .Ot
Log of Average .34 .02 .09 .19 .07 -.06 -.03 .03 -.06 -.06 .00
¥3tandard error (s.e.) under null hypothesis of white noise: .08.

##Under (2.15), s.e. of ry, for k > 1 is {[1+2(1/5)°]/15}1/2 = .09 and s.e.

of ;1= {[1-3(1/u)2+u(1/u)”]/145}"2 = .08 (see Box and Jenkins [1976, pp. 34-

35].) Here, r, denotes the sample estimate of r.

k



Table 2.2

Signif‘icance1 Levels of Granger Causality Testsz of Null Hypothesis
That Money Growth Fails to Granger Cause Output.2

Industrial Product:ionL+

3 I T "7 Real anP®
Period Monthly Quarterly Quarterly
52-79 .220 ) .018 067
61-79 .093 .023 .060
52-83 .327 .045 .0o4
61-83 .123 .039 024
52-85 406 114 012
61-85 215 . 107 .out

1Def‘ined as the probability, under the null hypothesis, that the
test statistic takes on a value greater than the computed value. When this
quantity is small then the null hypothesis is unlikely,

A1l results are based on a bivariate 12 lag VAR estimated by ordi-
nary least squares.

3Signifies the pericd over which the estimation was carried out.
Monthly (quarterly) results were obtained using data from the first month
(quarter) in the first year to the last month (quarter) in the second year.

“Results for VAR on growth in industrial production and M1 growth.

*Results for VAR on real GNP growth and M1 growth.



Table 3.1

Continucus Time Model
Monthly Data

Structural Parameters# Reduced Form Parameters
a .081 e? = -1.85
(.021)
B .082 eg = .851
{(.021)
A-r 5.29 eg = -.004
(2.10)
o -. 772 -.035
be/a 610.9 C1 =
(9120.5) .032 ~-.6498
o -. 104 .009
a/(a+h+A) 0.00 02 =
{.001) .088 -.243
13244 .,5 -507.3 . -.002 .003
V = {120U46.2} (4854 .7 03 =
(25150.5)

24852.1  12859.9
-3352.33%¢ V- o=

™
1]

187924.0

¥Standard errors are displayed in parentheses.

##yzlue of the log likelihood function.



Table 3.2

Discrete Time Model
Monthly Data

Structural Parameters# Reduced Form Parameters
u .910 B? = =2.01
(.027)
0 .960 Bg = 1.18
(.021)
o . 140 0g = -.12
(.063)
4 -.910  -.008
be/a 1.00 Cq =
(1.17) 0.00 —1.10
a/(a+b+4) 0.00
{.001)
; 24808.7 7594.0 d 0.00 0.00
v = (2110.4) (3781.3) Co =
547028 0.00 . 133
(13156.5)

% = -3326.97%#
#Standard errors are displayed in parentheses.

¥#Yalue of the log likelihood function.



Table 3.3

Discrete Time Model

Quarterly Data

Structural Parameters¥* Reduced Form Parameters
u 824 6% = -1.96
(.07T)
d
] .854 85 = 1.18
(.063)
d
b .283 83 = -.20
(.132)
q ~.824 -.007
be/a .078 C1 =
{.602) 0 -1.14
a/{a+b+4) 0.00 .
{.001)
4 65530.8 8337.6 4 0.00 0.00
V' = (9731.9) (14396.0) C, =
41021.8
LR¥E - —1161.52

*¥Standard errors are displayed in parentheses.

®¥Value of the log likelihood fumction.



Table 3.4

Discrete Time Model
Annual Data

Structural Parametersh Reduced Form Parameters
B .139 e? 2 -1.31
(.224)
o .58l eg - .500
(.256)
0 .584 eg = -.050
(.257)
d -.139 -.038
be/a .998 C1 =
(.525) .206 -1.17
a/(a+b+4) .021
(.396}
) 133765 .1 -42203.5 o 4 0.00 0.00
V- o= (42042.6) (60428.8) 02 =
468030.5 "-029 -333
{146721.4)
g,il'*

#*Standard errors are in parentheses.

##Value of the log likelihood function.



Table 3.5

Probability Limits

DiscreteI 3 Continuous2
Parameter Plim Parameter Plim3
0 .90 o .Q35
(.960) {.081)
1] .938 g . 164
(.910) (.082)
v 116 A=T L .60
{.140) (5.30)
be/a 51.45 be/a .879
{(1.00) {(611.1)
a/{a+b+l) 0.00 a/(a+b+4) 0.00
(0.00) (0.00)
v, 24951.7 Vi 19013.6
(24808.7) (13244.5)
d
Vv 200570.0 v 8276.7
22 (54792.8) 22 (28310.7)
v, 11701.0 Vio 2661.6
(7594.0) (-507.3)

1Pr'obability limit of parameters of monthly discrete time model,
assuming data are generated by reduced form in column 2, Table 3.1.

2Probability limit of parameters of continuous time model, azssuming
data are generated by reduced form in column 2, Table 3.2.

3Numbers in parentheses are parameter estimates obtained from the
data.



