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This paper presents a frequency-domain technique for estimating dis-
tributed lag coefficients (the impulse-response function) when observations are
randomly missed. The technique treats stationary processes with randomly missed
observations as amplitude-modulated processes and estimates the transfer func-
tion accordingly. Estimates of the lag coefficients are obtained by taking the
inverse transform of the estimated transfer function. Results with artificially
created data show that the technique performs well even when the probability of
an observation being missed is one-half and in some cases when the probability is
as low as one-fifth. The approximate asymptotic variance of the estimator is
also calculated in the paper.
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Introduction:

Least-squares estimation of the lag coefficients of a distributed lag
model is not a straight-forward reg;ession problem when the sample has missing
observations. Even though the normal equations can be computed using sums of
the available cross products, the estimators in the solution of these
equations are not necessarily unbiased. 1In any event, a special computer
program is required to compute the normal equations of a distributed lag
linear model for this case.

In this paper, we present a frequency domain approach to the estimation
of lag coefficients when observations are randomly missed. The estimators are
easy to compute if a discrete Fourier transform program is available, as is
the case for most time series software libraries. Estimates of the lags
computed by our approach have common large sample variance, This is a useful
property for identifying model structure.

Our paper proceeds as follows. In the first section we review the
frequency-domain approach to the estimation of distributed lag models. 1In the
second, we discuss the estimation of spectra and distributed lags with
missing observations., 1In the final section we present some results of using

our suggested technique on artifically created data.



1. A Frequency Domain Approach:

Our discussion of the frequency domain approach to the estimation of
distributed lags follows the commonly used non-parametric approach (Jenkins
and Watts, 1968, Chapter 10). Let {x(t)} and {e(t)} be two independent, mean

zero, stationary time series, and let

E{x(t+t)x(t) | = ax() for all t
and
2
Oe t=0
Ele(t+r)e(t) | = s
0 T #0

so that {e(t)} is white noise., For simplicity, set the time unit equal to the
gsampling interval, so that t takes on integer values. The time series {y(t)}
1s related to the other two series according to:

y(t) = ) h(k)x(t-k) + e(t), (n

et

where {h(k)} is an absolutely summable sequence whose transfer function is
zero outside the band -1 € w < 7. We will also assume that h(0) = 0, so that
changes in z(t) cannot have an immediate impact on y(t).

From (1) we obtain
Sxy(w) = H(w)Sx(w), -T S w < m, (2)

where Sy(w) and Sxy(w) denote the own spectrum of {x(t)} and the cross-



spectrum between {x(t)} and {y(t)}, respectively, and

H(w) = )  h(k) exp(-Lluk) (3)

lk=—m

is the transfer function of {h(t)}.l! Upon rearranging (2),

H(w) = Sxy(w)/Sx(w). ()

Now, suppose that we observe the series {y(t)} and {x(t)} at the same
times t=0,1,...,n~1, From this set of observations we can obtain estimates
of the spectrum of {x(t)} and the cross-spectrum between {x(t)} and {y(t)}
as follows. Let X(wy) denote the discrete Fourier transform of {x(t)} for
the observations at the angular frequency wy = 27k/n; i.e.,

-1
() = ) x(t)exp(~Lugt). (s)
£20

lret Ya(k) be the absolutely summable covariance function of the mean

zero, stationary time series {a(t)}. We use the convention that
-
Salw) = ) ya(k)e~iuwk, -r<wsT
R=~o
defines the spectrum of {a(t)}. Under this convention
1 = '
Ya(k) = > | Salw)elwkdu.
T

v

Thus,

1 =
Ya(o) = f Sa(m)dmo
A S



Thus, we can estimate Sy(wy) as

Seluy) = S ) lX(wk+j)|2 s (6)
jm-

where s=24+l. Similarly, if we let Y(wk) denote the discrete Fourier

transform of {y(t)} at the angular frequency i, we can estimate Sxy(wk) as

Sxy(u) = = js_z_dx(mkﬁ)y*(mkﬁ), ¢))
where an asterisk denotes complex conjugate.

Thus, we can form an estimate of H(w) by substituting (6) and (7) into

(4) to obtain

-~

H(w) = Syy(w)/Sx(w). (8)
From (10.3.14) in Jenkins and Watts we know that when n and s are large
. 1 -2
E{HCwe) = Hlwp)|? = " [H ) |2 | Yy () =1 ], (9

2
where ny(wk) is the squared coherency between {y(t)} at {x(t)} at frequency

Wi L.e.,

2
Yy (ur) = |Sxy(wie) |2/Sx(wy) SyCar) »

An estimate of {h(k)} can be obtained by taking the discrete inverse

-~

transform of H(w); i.e., we can estimate {h(k)} as

PS 1 n-1 a
h(k) = =} Hwy)exp(lugi). (10)
n jgo
Given the smoothing in the numerator and denominator of (8)
h(k) = - ) H(sz)exp(imjsk), (1o")

m =0



i
where m = n/s. If m + ® as n + » , then the expected value and variance of

the right hand side of (10') converge to the expected value and variance of

Py

(10). Since {H(mjs): j=0,eee,m~1} are asymptotically independent as m » =,

it follows from (9) that

~ 1 m-1 ~
Var|[h(k) | = — ) Elﬂ(mjs) - H(sz)lz (1)
m2 j=0
1 m1 -2
= ;E; jEOIH(ij)IZLny (wyg) = 1]
1 2 -2
s [T W) 2] () - 1)da
2mm O

The estimators of {h(k)} have the same variance at all lags since this

variance is independent of k. Equation (1l) suggests that the variance

-~

of {h(k)} can be estimated as

~ -

1 o=l - ~=2
Var|h(k) | = - zo|a(mj)|2lvxy(mj) -1]. (12)
js



2., Missing Observations:

Our method of estimating {h(k)} in the case of missing observations
proceeds along lines similar as those above. However, it first involves
finding a method of estimating Sy (w) and Sxy(w) for the case of randomiy
missing observations. Our approach is to follow Bloomfield (1970) who applies
Parzen's (1963) approach to amplitude-modulated stationary processes to the
estimation of single series spectra in the case of randomly missing
observations.

Consider the case of the {x(t)} series. The amplitude-modulated series
{x'(t)} is constructed by replacing the missing observations in the original
series by zero, the mean of {x(t)}. In other words, we define the amplitude
modulating series {z(t)} = {x'(t)/x(t)} as

1 1f =x(t) is observed
z(t) = (13)
0 otherwise.
Thus,

x'(t) = z(e)x(t). (14)

Following Bloomfield and Scheinok (1965), we assume that the process
which causes observations to be missing is a stochastic process which is
independent of {x(t)}. 1In addition, we assume that {z(t)} has the properties

that for all t,

Plz(t) = 1| = py
Plz(t) = 0] = 1 - py
and

Cov|z(t),z(t + 7)] = g,(1).



Thus {z(t)} is weakly stationary, and
Elz(t)z(t + 1) = 0,(1) + p? for all .
X

By the independence of {x(t)} and {z(t)}, it follows that E{x'(t)} =

E{x(t)}E{z(t)} = 0. Consequently,

E{x'(t)x'(t + 1)} = E{x(t)x(t + 1)} E{z(t)z(t+ 1)} (15)

= ox(1) [pi + a,(1) ]
It then follows that the spectrum of {x'(t)} is
Sgt(w) = p2Sg(w) + (27)~1 ? Sz(w=w') Sxlw')dwr. (16)
X -

Similarly, we assume that there is an amplitude-modulating series z(t)
such that

1 if y(t) is observed
z(t) = (17)
0 otherwise

which gives rise to the amplitude~modulated series

y'(e) = g(e)y(e)., (18)

We assume that {z(t)} is independent of both {x(t)} and {y(t)} and that the

series has the properties that for all t,
Plg(e) = 1] = py
Plg(t) = 0] =1 - Py

Covlz(t),z(t + )] = 0,-(1).



Thus, —

Elz(e)z(t + 1) = 0,-(7) + pypy.

Since {x(t)} and {y(t)} are independent of both {z(t)} and {z(t)}, it follows

that

E{x'()y'(t + 1)} = E{x(t)y(t + 1)} E{z(t)z(t + 1)} (19)

= 0yy (1) Pxpy + 0zz(7) |

It then follows that the cross spectrum of {x'(t)} and {y'(t)} is
T
Sxty1(w) = pxpySxy(w) + (2m)~1 lw Szz(w-w")Sxy(w')da’, (20)

Thus, using estimators similar to (6) and (7) we could estimate Sgr(w),
Sx'y'(w), 8z(w), and Szz(w) from the available data and use (16) and (20) to
solve for Sy(w) and Sxy(w). These estimates could then be substituted into
(8) and {h(k)} estimated by taking the inverse transform of the result, as in
the case when no observations were missing. Note that our analysis does not
require either that {x(t)} and {y(t)} be observed at the same times or that
the same random process generates the missing observations of the two series.
In addition, there is no requirement that the random processes governing
the observability of the underlying series be independent, so that the
analysis does not preclude the case in which {x(t)} and {y(t)} must be
observed at the same times.

In general, (16) and (20) can be solved for Sy(w) and Sxy(m) using the
method given by Bloomfield. However, in the present paper we will only
discuss the special case in which the series {z(t)} and {z(t)} are white
noise. In this case, (16) and (20) can be considerably simplified and the

solutions for Sy(w) and Syxy(w) become much easier,



When the binomial distributions generating the missing observations are

white noise,

px(l-px) T=0

g (t) = 2D
z 0 otherwise
and
ozg(T) = (22)
0 otherwise

Under these assumptions (16) and (20) become

Sxr(uw) = Pisx(w) + Px(l‘Px)Gi (23)
and

Sxtyt(w) = pxpySyy(w) + ozz0xy, (24)

respectively., Thus, we find that in the case in which {z(t)} and {g(t)} are
white noise, the spectra of the amplitude-modulated series are linear
transformations of the original series. Substituting (23) and (24) into (4)

yields
2
H(w) = (Px/Py) {’_Sx'y‘(w) 'ngdxyj/lsx’(m) - Px(l'Px)UxJ}- (25)

Thus, if we estimate Syr(wy) as

a 1 d
Syt () = : | zdlx'cmkﬂnz (6")
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and Syryr(uy) as
~ 1 d
Sxtyt(uwg) = py ldX'(wkﬁj)Y'*(wk&j), "
ja— .
we can estimate H(uwy) as

-~ ~ -~ ~ ~ ~ ~ -~ ~

Hwe) = (px/py) {[Sx'y'(wr) = ozg0xy |/ [Sxt (wr)=px(l-px)ox|}. (26)
Further, if Ozz = 0 or Oxy = 0, it is shown in the Appendix that

- 1 -2 1=px_ 0x?
B[HCog) = B2 = = [BCo |20rgryr(a) + | () aamms |2 -1}, (27)

This approximation is good when p/g > > 1, where p = min(px,py).

Once again an estimate of {h(k)} can be obtained by taking the discrete

A

inverse transform of H(w) as given by (26). Further, we could obtain the

~

approximate variance of {h(k)} by repeating the steps used to obtain (11)

using (27) in place of (9). This variance is -

- 1 2« 2.2 1-px 0x? 2
Var|h(k) | = Py fo |HCw) | {ygryr(w) + I_(—;—-);;-(-;;;J - 1}du. (28)
X

It can be estimated in the same way that (1ll1) was estimated above.
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~

Once again, we note that the asymptotic variance of h(k) is the same
for all lag coefficients. Further, note that if cles(m) and oYZ/Sx(w) are
close to unity for all w and py = Py = P the variance in the case missing
observations will be more than p2 times that for the case in which no
observations are missing.2 Further, when p gets small, the standard errors of

{h(k)} are of the order (pv/m)~l.

215 Ozp = 0 or cx§ = 0, it is easy to show that

2 () = o)/ {1 - (e ox’ I (o) o b .o (29)
1ot(w) = 1 + =mmmme o |1 4 ==l I},
Tx'yt (@) = Yy(w)/{] Px Sx(m)J By Sy(m)j

2 2
Thus, if Sy(w) = ox and Sy(w) = oy, the terms in brackets in (29) are

-1 -1
approximately equal to py and Py » respectively. Thus, for this for this

2 2
case Yytyt(w) = (pxPy)Yxy(w).
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3. Results with Artifically Created Data:

In oxder to evaluate our frequency-domain approach to estimating
distributed lags when observations are randomly missing, we used it on some
artifically created data. Specifically, we generated {y(t)} according to (1)
using the welghts

0.25 k=1,35
0.75 k=2,14

h(k) = (30)
1.0 k =3

0.0 otherwise.

The errors {e(t)} were computed by a normal N(0,1) pseudo-random number
generator. For all experiments the number of observations was 12000, which
is approximately the number of days since 1947. The independent Bernoulli
trials used to create {z(t)} and {z(t)} were obtained using a uniform (0,1)
pseudo-random number generator. In the case of {z(t)}, if the value of the
t—-th random number exceeded py, then z(t) was set equal to zero. Otherwise,
z(t) = 1. A similar procedure was used to generate {z(t)} with Py used in
place of py. In all experiments {z(t)} and {z(t)} were independent.3 All
spectral estimates were obtained by smoothing periodograms. The weights used

-~ -~

in the smoothing of Sx'y’(wk) and Sy'(wy) are discussed below. In the

3The specific normal pseudo-random number generator used was the FTGEN
subroutine in the International Mathematics and Statistics Library (IMSL).
The specific uniform (0,1) pseudo-random number generator used was the GGUBS
subroutine of IMSL.
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calculation of (26) actual values of pg, Py, and g, were used instead of
estimated ones.* The variance of {x(t)} was estimated using only the non-zero
values of {x'(t)}.

The first set of experiments were performed letting {x(t)} be white noise
normal random variables with unit variance. The {x(t)} were generated with
the same computer subroutine used to generate {e(t)}. The results for each of
up to ten runs are presented in Table 1. The values used for py and py are
given in the column labeled "Percentage Observation.” In all runs a 999 point
moving average was used to smooth the periodogram to obtain the spectral

estimates. The row labeled "Squared Error Fit" contains the values of

11999
) [h(k) - n(k) |2,
k=0

which is the sum of squared differences between the actual and estimated lag
coefficlents.

There are three major points concerning these results. The first is that
the estimated lag coefficients track the actual lag coefficients quite well as
long as py and py are 0.2 or above. This can be seen both in the low values
of the squared error of fit and the high degree of correspondence between the
means of the estimated lag coefficients and their actual values.

The second point is that the variances of the parameter estimates
increase as the percentage of missing observations increasesas (28) and (29)
indicates they should. This can be seen in the increasing standard errors of

all of the estimates as the "Percentage Observation” decreases. Further, it

43ince the values which would have been obtained if Px»Py and Ozg had
been estimated were close to the true values, the results wouZd not change
much if estimated values of those parameters had been used instead.
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is interesting to note as long as py and py are 0.2 or above, these standard
errors are roughly constant cross coefficients as (27) indicates they should
be,

The third point is that there is a downward bias in the estimates of h(l)
to h(5), the non-zero lag coefficients. Our conjecture is that this downward
bias 1s caused by the bias imparted to the spectral estimates due to including
999 terms in the moving average used to smooth the periodogram. To test this
conjecture, we redid several of the runs with Szryt(wg) and Sx(wy) estimated
using only 99 terms in the moving average. These results are contained in
Table 2. As can be seen, this modification does decrease the downward bias
for the cases py = Py = «9 and py = Py = «5. However, it is also apparent
that for this case the estimated lag coefficients track the true lag
distributions well only when no more than 50 percent of the observations are
missing. Thus, we havg the classic trade—off between bias and va:iance due to
the fact that increasing the number of terms used to smooth the periodogram
decreases the variance but increases the bias of the estimates of the
spectrum, {

We also evaluated our procedure when {x(t)} was colored. Specifically,
using the same nNormal N(O,l) pseudo-random number generator as before we

generated
x(t) = px(t=-1) + v(t), (19)

2
with p = 0.5 and o, = 1. We also generated enough observations on x(t) prior

to those used to estimate the lag coefficients, so that the choice of initial
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x(t) should not influence the results. Our results for this case are
presented in Table 3. Once again we find that we are able to track the lag
distribution well as long as no more than 50 percent of the observations are
missing. Further, the results for this case continue to show that variance of
the estimates increase as py and Py decrease and that including more points in
the moving average used to smooth the periodograms increases the bias, but

decreases the varlance of the estimated coefficients.

Acknowledgement: Professor Hinich's research was supported by the Office of

Naval Research (Statistics and Probability Program) under contract.



Table 1 - Results with x(t) White Noise and 999 Point Moving Average

sysaIuadud U} sazaurivd Jo angea onig,

|
|
|

| e %966°0 qomce.c L6ST°0 e«@mn.c 099y °0 9Ty °¢ $£89°0  951%°0 1(82°0 ,BO%1°0 IALA qc—wﬁ.o |
tA 6150°0 8902°0 6502°0 0€LZ°0 1y61°0 %611°0  81Y2°0 314 30
LTA 89€0°0 £EYL O ¢SL1°0  [BL1°O €ICl°0  9880°0 [T%1°O Joaay paaenbg
s* SS10°0 9¢£0°0 L%90°0 1290°0 9960°0 2¢80°0 S080°0 1£80°0 %7L0°0 1580°0 BLG0O'0  89%0°C
6° %500°0 £900°0 6£90°0 8650°0 £190°0 1890°0 9090°C 6.S0°0 2690°0 $690°0 6190°0 ¢¥S0°0
1
: 1
| 96.6°0 89%0°0 LLL0°0~ 29¢°1- 6E1C°0- 9020°0- LOL1°0 12L0°0~ 6.50°0 PAA T i 19¢°¢ ¢9vL0
[AS 06€0°0 g9880°0 68¢0°0 T120°0—- 67L0°0 88£0°Q BCLO'O (0°0)
s¢* 7€80°0 7900°0 . 1£20°0- 6€20°0~ €Y20°0 6S00°0 9150°0 (94
S* 90¢0°0 LY10°0 00%0°0 9010°0 0850°C S810°0 0Ol10°0 £500°0~ ¢700°0- €£00°0 6500°0- 0610°0
6° 0010°0 8510°0 0900°0 %600°0 %¥¢20°0 £910°0 L%20°0  0$00°0 L120°0 €YE0°0  9010°0 {L00°0
1° 19%6°0 £€095°0 6%0L °0 160870~ [£00°0 8CYS°0 T6L2°0 SSET'0  EIYC°O $09°0 ocL e 99%°1
7 9890°0 9%$¢°0 y812°0 {c81°0 [A A VIR 118 /A S 3 £ 1] (5¢°0)
LTA 05¢0°0 9L12°0 €L12'0 989170 18%2°0 y002°0 %€52°0 ($Hu
[ %4 2L10°0 ¥561°0 1zeto LE12°0 €961°0  920C°0 LLOT°0  9981°0  2291°0 8981°0  [6L1°0 €561°0
6° £010°0 8561°0 %6120 $661°0 1981°0 EOIC°0  6L61°0 8681°0 SZ61°'0 8L81°0 ¢Y81°0  0561°0
i I
1° 8896°0 61c°1 | 10050 Liet LL9%°0 6€S°1 T%92°0 8EIS°0  61L5°0 [114 B4 11e°¢ 8s9°t |
7° v80°0 1699°0 6L1S°0 9119°0 OE6L°0 9BS9°0 9%0L°0 (sL°0)
s¢° 0160°0 9(59°0 Y¥Z€6°0  €909°C 069L°0 8L19°0 T°e0L’0 ()
[ L820°0 a%y9°0 6€99°0 %889°0 26€9°0 1619°C  9909°C €L09°C 0879°0 1€99°0 <199°0 9999°C
6" 1010°0 8¢€9°0 0%29°'0 98€9°0  T0S9°0 L3779°0 %479°0 0S£9°'0 ¢T?9°0 LLY9°0  S929°0 6£E€9°0
1 i
g 890°1 896°1 | 66L6°0 1€1°¢ 9z1L°0 61%°1 60%S°0 1809°0 68$8°0 w09°¢ 178°¢ w00t |
[Ad 6601°0 66.8°0 89LL°0 6EYL°0  EL56°0  6696°0  %156°0 | (o1
(A 9060°0 85.8°0 LS8L°0  9ULL0 8L66°0 6116°0 02860 | e
s* 9.80°0 v%68°0 $526°0 6956°0 6££3°0 €898°0 £068°0 (E¥8'0 8l16°0 8£68°0C  0%06°C  ¥916°0
6° 6E£10°0 $€06°0 (188°0 - 8L26°0 %060 2206°0 6L16°0 €L68°0 6.88°C £416°0 6888°0 €206°0
! g,
1 1
1° 8E0°1 giel i 8156°0 8g°1 758970 785 °1 £089°0 Y1€S°0 6669°0 6S0°¢ 118°¢ [82°C
[ LYET°0 16%L°0 | £€68S°0 102870 LLE9°0 66LL°0 €816°0 (sL°0)
[ T4 £060°0 1612°0 819°0  CEYLO YyelL o L£99°0 1$8°0 (Hu
[ 1920°0 9¢eL’0 £88L°0 Y12L°0  OvIL'D 16E2°0 €9Z1°0 ¥Y89°0 €OIL°0 BITL"0 £61L°0 01IL°O
6° €600°0 wiL°o LT1L°0 €GZL0 yieLto €S0L°0  ¥669°0 YitL'o [ YAV ¢62L°0 yL0L°0 LLNL O
|
1° 1LL6°0 %9%5°0 | ce6t0 °€91°0- T18B1°0  TITS°0 %860°0 £BEE0  TZLL’0 1991°0- 6L1°E 0016°0
FAd S120°0 0€0E 0 6192’0 60Z€°0 ¥062°0 €OIE°0  SlEE°0 (s2°0)
se* 76%0°0 [A3 A1) 0681°0 S0ZE°0 FA: A rAdi] SOEC°0  9YLT°0 (nu
[ ¢5€0°0 [1155Ad1] 11820 £€922°0 SHET'0  €162°0  8BOT'O  TLB1O 15820 2162°0  S62C°0 0Y92°0
6° S010°0 66€£2°0 052°0 6t%2°0 90tZ°0  6152°0 LTYT°0  96%C°0 S9%C°0 £0¢2°0 16€2°0  %0£2°0
[ 3
I i
r 960°1 4%610°0 gtic° 0~ 1%1°1- 9£90°0- SEIS°0- 0%00°0 QYET°'0- O101°0 [ 1148 & €16°¢ €99L°0 |
<* 1860°0 9890°0 7TY0°0  6651°0 L{80°0~ 6800°0 66£1°0 cﬁc.ov
se” 01%0°0 Sigo’o 60E0°0  €£S£0°0 79€0°0- 7650°0 2890°0 0)u
g €L20°0 go10°0- 9L%0°0 80S0°0- 1900°0- 2Y¥10°0- [S10°0~ €620°0- TL00°0- 08B10°0~ [0T0°0 2LT0°0-
6 %6000 000~ | 1v00°0 0L10°0— €€00°0 0910°0C- 6£10°0- 6€00°0 Z100°0 €L10°0- 0%10°0- 8S00°0-
!
1
NOILVAYESEO woyya NVEH | ot 6 8 L 9 S Y £ z ] WILINVIVI
FIVINIDYAL QYVANVLS |

Ny




Table 2 - Results with x(t) White Noise and 99 Point Moving Average
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Table 3 - Results with x(t) as AR(1), p = 0.5
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APPENDIX

The Approximation (27) for the Mean Squared Error of H(w)

~ ~

Let ex1y1(w) = Sxryr(w) = Sxryt(w) and exr(w) = Syr(w) = Sgr(w). Assume
that the cumulants of {x(t)} and {y(t)} satisfy condition (4.3.10) in

Brillinger (1975).3 From Theorems 4.3.2 and 4.4.1,

Eegryt(w) = 0, Eegxr(w) =0, (AD)
1
Elexvy'(w)lz =3 Sx' (w)Sy1(w), (A2)
1
Eey12(u) = " Syt 2(w), (a3)
and
* 1 %
Eegryr(w)egr(uw) = - Sx'yt(wW)Sxt(w) (A4)

for large n (the approximations are of order n~l). Since the variances of
€x'y' and ex' are of order s~1, whereas the variances of ;x, ;y, and ;XZ are
of order n~l, we can substitute pg, Py, and gy’ for their estimates in (26)
without affecting the order of the approximation when n >> s.

Since 0zz = 0 or gxy = 0,

H(w) = (px/py)[Sx'y'(w) + exvy'(m)J/[Sx'(w) + exr(w) - c] (A5)

5This condition holds if {x(t)} and {e(t)} are Guassian ARMA processes.
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where ¢ = py(l = pg)ogx?. The first order term in a Taylor series

approximation of (AS) is

H(w) - H(w) = PxPy_l(Sx'(N) - c)-l lsx'y'(lﬂ)
(46)
- (Sxr(w) = e)"lsgryr(uw)exr (w) ]

i1t follows from (23), (24), (A2), and (A3) that this approximation is good if

1/p/s is small, where p = min(pg, py). Applying (A2) and (A3) to (46),
E{H(w) = H(w)|2 = s71|pypy~l(Sgr(w) = )~2]
|Sxt (w)Syr(w) =2|Sxryr(w)|2(Sgt(w) = )18y (w)
2
+ [Sgryr(w)|2(8gr(w) = ¢)~25x1(w) |
-2
= 87 pypy LSkt (@) = )72 Syryr(@)] ]2 [vxryr(w)
2
=2(Sgr(w) = e)~1s v (w) + (Sgr = ¢)~2 Syi(w) |
-2
= s‘llﬁ(m)IZ{vay'(m) =1+ |1 = (Sgr(w) = e)~1sx1(w) |2
-2
= s"1|H(w) |2 {vgryt(w) = 1 + [e(Sg(w) = ¢)~1[2}
l-px  ox

-2
= s71|H(W) [2{ygryt(w) = 1 + [(=——=) ——==- 12},
Py Sx(w)



