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1. Introduction

This paper studies the identification of continuous time models
from discrete time observations in the context of linear versions
of the class of rational expectations dynamic economic models that
Lucas [10], Lucas and Prescott [12], and Lucas and Sargent [13] have
advocated. The endeavor of building models of this class is motivated
by the desire to retain.the capability of analyzing an interesting
class of policy interventions that is promised by "struc;ural" models,
while meeting the criticisms of most econometric poliey evaluation
methods that were made by Lucas [10]. As Lucas [10], Lucas and
Sargent [13] and Hansen and Sargent [6, 7, 8] have pointed out in
several related contexts, even linear rational expectations mod;ls
typically are characterized by sets of highly nonlinear cross—equation
identifying restrictions, which to a large extent replace the linear
(usually exclusion, usually within-equation) restrictions used to
identify most existing econometric models. Analysis of these cross-
equation restiictions and tractable procedures for implementing them
have only begun to be developed. 1/ The purpose of this paper is
to indicate how these cross-equation restrictions are useful in
estimating continuous time rational expectations models. In particular,
we illustrate in a simple context how the nonlinear cross—equation
restrictions implied by rational expectations can serve to solve the

"aliasing" identification problem involved in deducing parameters of

a continuous time model from data that are sampled at discrete points

in time.



-2

Sims [20] and Geweke [4] have discussed the aliasing problem
in a general context that is relatively free of the use of any explicit
economic theory. Sims's approach was to characterize how the pro-
jection of y(t) on an entire process {x(s), s € (=», ©), s real}
in continuous time is related to the discrete time projection of
y(t) on {x(s), s € (==, ®»), s an integer}. Sims supplied conditions
under which the d;screte time lag distribution "looks like" the under-
lying continuous time lag distribution.

P.C.B. Phillips [15, 16, 17] studied the aliasing problem in a
context that was more restricted than Sims's both in terms of studying
a narrower class of continuous time stochastic processes, and in terms
of building models with more a priori theoretical restrictions.
Phillips [17] showed how various kinds of linear restrictions of the
Cowles Commission v;riety could be used to identify a continuous time
model from discrete time sampled ‘observations. Phillips's [17] work
is the closest precedent of this paper. We analyze a class of linear
rational expectations models that give rise to systems of stochastic
differential and difference equations that closely resemble the forms
of Phillips's systemé. The big difference is that we shall analyze
identifying restrictions of quite a different variety than those
studied by Phillips.

Section 2 of this paper is devoted to deriving a convenient form
for the "decision rule" or "rational expectations equilibrium" that
solves a multivariable continuous time linear - quadratic stochastic
optimum problem. This derivation is of interest in its own right,
since it leads to compact expressions for the optimum decision rules
that prove useful not only for theoretical analysis but for econo-

metric implementation. Section 3 of the paper discusses the aliasing
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problem as formulated by Phillips [17], and corrects an assertion
made by Phillips [17]. In the finite parameter model used both by
Phillips and ourselves, the identification problem due to aiiasing
is not as bad as Phillips asserted: instead of there being a count-
able infinity of observationally equivalent continuous time models,
there is at most a finite number. This modification of Phillips's
regults is of practical importance, since ia finite parametef models
one may sometimes encounter examples in which, even with no restrictions
on the continuous time moael,there is a unique continuous time model
consistent with the data. Section 4 illustrates how the nonlinear
rational expectations restrictions derived in section 2 can be used
to overcome the aliasing identification problem. Our conclusions
are stated in section 5.

This paper does not deal with questions of estimation. A sequel
to this paper [8] deals with eséimation issues in the convenient
context of somewhat more general models of the continuous time
stochastic processes. That greater generality is achieved at the
cost of obscuring the identification issue. It is for this reason
and also because we believe it helpful to the reader that our setup
matches that of Phillips [17] as closely as possible, that we choose

to concentrate on identification using the setup of this paper.
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2. The Optimum Decision Rule

An agent maximizes over strategies for k(t) the criterion

(1 Eg/gf (K(E), k(E), t, J(£), £(£))de
where
(2) F(k(t), K(t), t, J(t), £(£)) = {[£, + £ (£)]"k(E)

- k(t)'Qk(t) - J'(t)k(t) - k'(c)Hk(t)}e TF

Here k(t) is an (nxl) vector of stocks, J(t) an (xl) vector

of relative prices of stocks, fl(t) an (nxL) vector of random shocks

to productivity; while fO is an (oxl) vector of positive constants;

Q and H are_sfmmetric positive definite matrices, and r 1s a fixed
positive discount rate. The vectors J(t) and fl(t) are the first n
elements of the (pxl) and (qx1) vectors g(t) and y(t), respectively,
where p > n, q > n. The vectors z(t) and y(t) are governed by the

2/

first order linear stochastic differential equations™
(3) z(t) = Cz(t) + 5 (t)
) y(£) = Gy(t) + £(t)

where Z(t) and &§(t) are mutually uncorrelated continuous time white
noise processes, with means of zero and covariances EZ(t)Z(t-T)' =
and V

VlG(tQT) and EZ(t)E(t-t)'= V26(t—r), where V o are positive

1
semi definite matrices:g/ We assume that the eigenvalues of C and G
do not exceed r/2 in real part. The maximization in (1) is over linear

"nonanticipative" contingency plans which in "feedback form" can be

expressed as



-5
(5) k(t) = L(k(t), z(t), y(t)) .

The maximization problem (1) can be viewed as a stochastic,
linear-quadratic, multiple variable version of the Lucas 117, Treadway
[21], Gould [5], Mortensen [14] costly adjustment model. Linear,
multiple factor.versions in continuous time of the Lucas-Prescott [12]
equilibrium model of investment also lead to problems of this form, where
the optimhm problem (1) is solved by a fictitious "social planner" who
uses it to compute a rational expectations competitive equilibrium;i/
A univariate'model similar to problem (1) was used by Geweke [20] to
motivate some econometric interpretations.

To solye the pr;blem, we invoke the widely known fact that the
solution to (1) in feedback form (5) can be obtained simply by solving
the certainty problem that emerges when we set Vl and V2 equal to
zero in (3) and (4), so that g(t) = 0, and g(t) = 0 identically

in timeaéj We find it convenient to solve (1) in the certain case by

using the calculus of variations. The Euler equations are

5F 4 OF
(6) 3k~ dt oL

Calculating the indicated derivatives in (2) and rearranging leads to

the second order linear differential equation
) mk(e) - rHDK(E) - Qk(6) = L[rT(e)-£,(0) - DI(O)] ,

where D is the time derivative operator D = %E . For convenience, we
have set fO = 0. Given the results to follow, the reader can easily

modify the solution to handle the case where £ # 0. Define the trans-
x

_ ~ -5t
formed variables k(t) = e 2 k(t). In terms of the transformed vector

of variables i(t) we have



r
7t
k(t) = e2 k(t)
'; t - r ‘§ t.
(8) Dk(t) = e D(t) + 5 e® k()
r r r
-t A~ =t . 2 = t.
D%k(t) = e D2k(t) + re’ Di(t) + = e? k(r) .

Substituting (8) into (7) gives the modified Euler equation in terms
of the transformed variables,

27 ::2 g 1 -é t
9) -HD"k(t) + [-2;- H + Qlk(t) = - 5 e [ri(e) - fl(t) - DJ(t)]

Consider the‘Laplace transform of the linear operator that operates on

i(t) on the left side of (9), namely

. _
-s%m + [14- H + Q] = S(s)

Evaluating this at s = i gives

2 r2
S(iw) = Huw +—Z-H+Q .

Since both H and Q are positive definite symmetric matrices, it follows
that S(iw) 4is positive definite for all w on the real line. Therefore,
as an implication of the factorization theorem for spectral density
matrices (see Rozanov [16]), there exists a factorization of S(iw) of
the form

2,z

(10) (Hu® + 7= H+ Q) = [a-8(10)] [a+8(1u)]

where o and B are each n¥n matrices, and the zeroes of det (a~Rs8)
lie in the right half plane while the zeroces of det (oe+Bs) lie in the

left half plane. The factorization is unique up to premultiplication
of & and B by a common unitary matrix.

Using the factorization (10) we write the Euler equation (9) in

the operator notation
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T ~ 1 "zt
(11) [o- @] [e+8D]k(t) = 5 e © [DI(£) + £;(£) - £I(E)] .

Since the zeroes of det(oa+Bs) are less than zero in real part, and

those of det(a—ss)T are greater than zero in real part, the solution

that satisfies the transversality condition is

T
'2t

1 la™-gD1 7 e 2 (DI + £,(6) - zI(E)] .

[c+EDIR(E) = 3
Solving for Di(t) gives

I

(12) Dk(t) = -8 Lak(e) + F{a p-E" I L e 2 [DI (E)+E, () -rI(£)] -

Notice that [aTs-BTBs]-l = B_l[aT - B"rs]-:L , So that the zeroes
[aTB - BTBS] are greater than zero in real part. Assume that the zeroes

of det[mT - BTs] are all distinct, and define M(s) = [aTB - BTBS],

80 that é/
u(s) ™t = [o7p - g7gs] 7t = 4L TK8)

@13)

adi M(s)
so(s-sl) ces (s-—sm)

where det M(s) = so(s - sl)...(s - sm) and where sj, j=1l,...,m are
the m 2zeroces of det M(s), each of which exceeds zero in real part.

Using matrix partial fractions, we express (12) as

-1 m N
(14) M(s) = T
j=1 (578
Adj M(sj)
where N, =
' i 8, I (s; - s;)
oi*j: i 7 Sy
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Substituting (14) into (12) gives

r

~ ~ m N -5t
(15) Dk(t)=-8 “ak(t) +3 3 ?3:257 e ? a(r) + £,(r) - £I(®)]
i=1

It is easy to verify that for sj > 0, <S_Sj) is the Laplace transform
of the function

+sg .t

-e i t<0

0 t>0

Therefore (15) becomes
’ ~ -1 - 1 @ M -%(t+v)
(16) Dk(t)=-g “ak(t) - 3 z Njfoe e [DI(t+v) + fl(t-!-v)
. j=1
- rJ(t+v)]dv

Let u,y and- u, be vectors such that J(t) = ulz(t) and fl(t) = uiy(t).
Note that the solutions of (3) and (4) are, respectively,
tv

z(ttv) = eV z(t) + [
t

ec(t+v—T);(t)dr

tv
y(etv) = e yee) + £ SCEFTTe yan
t

Therefore we have that the linear least squares forecasts are
Etz(t+v) = ecvz(t)
17) E 2 (t+v) = Ce“Vz(t)

Ey(etv) = ey (e) .



—9-
Using (17) and J(t) = ulz(t) and fl(k) = uzy(t), we have

(18) E £, (thv) = u Vv (t)

2

19) E, [DI(t+v) = 3(t+v)] = ulté-rx']ec"z ().

The "certainty equivalence principle" applies and implies that the
linear least squares forecasts (18) and (19) can be substituted
for the actual future values in (16) in order to obtain the correct

decision rule for the uncertain problem. Making these substitutions

we obtain
r r
- 1 o~ m R &-(s +=)v
Dk(t) = ~§ “ak(t) - 2 I N.e 2 fct i2 u, [6-r11e%z (t)av
1 m ";'t f°° -(Sj+ —g—)v Gv .
-5 I N,e e u.e t)dv .
2 =1 | 0 2 . Y( )
. ~(8,+ S)v _
Using f; e 32 ecvdv = -[C—(sj + -E-)I] l, we have
r
- -1 o~ 5t m _
(20) DR(t) = -g Tok(t) +3 e ° I N, [C-rIllc~(s, + 1] L)
jal i i
+ = e-%t T N [e-(s, + 511 5y¢e)
2 =1 3 2 83 72 ¥ .
-~ -%t %t ~ r -%:-t“
Now recall that k(t) = e © k(t) so that Dk(t) = e ~ Dk(t) + = e = k(t) .

2
Substituting these expressions into (2) gives the following decision

rule in terms of the original stock variables,

-1 r 1 B T -1
(21) Dk(t) = -[B "a ~ El]k(t) + 5 jEleul[C—rI] [C-—(sj + -E)I] z(t)
1B Ty -1
+ = I N,u,[G=(s, + <=)I] v(t) .
2 =1 j 2 3 2

J
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For convenience we repeat the following equations here

3) “z(t) = Cz(t) + z(r)
(4) y(t) = Gy(t) + &g(t)
r 7 -1 B XN
(14a)  [®g-BB8s] ~ = I ——

j,,,l(s 3_-])
where ) .
adj [aTB-BTBsJ ]
(14b) Nj =

s I (s,~-s.)

O 4pg 1

Equations (21), (3), (4), and (l4a-b) summarize the restrictions that

the decision theory imposes on the joint {k, z, y} stochastic process.

We shall adopt the assumption that continuous time observations on y(t),
k(t) and z(t) are available to the agent, while only discrete-time point in

time sampled observations on k(t) and z(t) are available to the econo-
metrician. On this interpretation the term in y(t) in the decision

rule (21) becomes the source of the error term in the equation to be

fit by the econometrician;zj For the purposes of the following
section, it proves convenient to modify the preceding decision
problem in the following way. We set fl(t) = y(t), and suppose
that fl itself is the derivative of the white noise §&. Under
this assumption (21), hecomes

(22) Dk(t) = ~[8 1a - % Ilk(E) + = B

5 ji:leul[C-rI][C—(sj + 12’-)11'17. (t)

8/

1 m
-3 E NjE(t) . =

j=1
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We adopt this assumption about fl(t) in order to avoid complicated
models of the error term which would obscure but not essentially alter
the main message of this paper about the aliasing problem. 9/ Also,
this assumption is the one that makes our setup as comparable as
possible to that of Phillips [17]. In a sequel to this paper, we
analyze estimation of models under more general assumptions about
the serial correlation properties of the ¥y process.

' The major aim of this paper is to show how the cross-equation
restrictions embodied in (21), (3), (4) and (14) serve uniquely
to identify the parameters of the continuous time model from discrete
time data. Before turning to this task, we pause in the next section
to characterize the dimension of the aliasing phenomenon in the general
class of finite parameter models that we are using. In section 4,

we then take up the identification problem in the context of the

model formed by (21), (3); (4), and (14).
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3. The Aliasing Problem in a Finite Parameter Model Reconsidered

In this section we study the problem of identifying parameters
of a continuous time model from discrete time data, which is widely
referred to as the aliasing problem. We begin with a frequency domain
characterization of the phenomenon. Let £ denote the spectral
density matrix function of a continuous time covariance stationary
vector stochastic process x, and let F denote the spectral density
matrix function of the corresponding discrete time process obtained
by observing x at integer points in time. It is well known that

f and F are linked by the folding formula

PSS
F(w) = T £(w + 2mn) .

n=-—<v

The aliasing.phenomenqn is that many choices of ;ontinuous time spectral
densities f give rise to the same folded spectral dengity F. Since
F summarizes the population covariance properties of x sampled at

the integers, this implies that there is problem in inferring the
function f from discrete time data.

Without additional restrictions, frequency domain characteriza-
tions via spectral density matrices are, at least implicitly, infinite
parameter time series models. P.C.B. Phillips [17] has studied the
aliasing problem in the context of finite parameter time domain
representations. More specifically, he assumed a continuous time

first order vector Markov process of the form
(23) Dx(t) = Ax(t) + e(t)

where € 1is a continuous time vector white noise. The corresponding
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discrete time process has a first order autoregressive representation

24) x(t) = Bx(t-1) + n(t)
where
(25) B =exp A

n(t) = Ofl exp (Av) e(t-v) dv,

By the white noise nature of e, it follows that n 1is a discrete
time vector white noise disturbance when sampled at the integers.

The contemporaneous covariance matrix of n(t) 1is
1 '
(26) W= Of exp(Av) V exp(A'v) dv ,

where Ee(t)e(t-7)' = VG(t-r). As noted by Phillips [17], the covariance
prope£ties of x sampled at the integers are completely characterized
by (B, W). Our goal is to identify the covariance properties of the
continuoﬁs time process, which are-completely characterized by (A, V).
The version of the aliasing phenomenon considered by Phillips [17] is
gimply the fact that given (B, W) one cannot in general solve uniquely
for (A, V) using equations (25) and (26). We investigate this
problem in detail in this section of the paper, and modify Phillips’s
[17] characterization of the aliasing problem.

To begin, we consider equation (25) and ask the question of whether

the matrix equation
@27 exp A* = B = exp A

implies that A* = A, Without restrictions on the matrix A%, the
answer is in general no. If the matrix A has complex eigenvalues

then there is a countable infinity of matrices A% that satisfy (27).
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To see this, assume that the eigenvalues of A are distinct and

write the spectral decomposition of A,

(28) A=TpT!

where A 1is a diagonal matrix of eigenvalues of A and T is a
matrix of eigenvectors of A. Without loss of generality, we are
free to assume that the first M - 2p diagonal elements are real
and that the remainder occur in complex conjugate pairs as
XM—20+1""’1M-6 AMrp+1 = xM—p+1""’lM = xM—p’ where the bar
denotes complex conjugation. We assume that the eigenvalues of A
do not differ by multiples of 2wi. TFollowing Phillips [17] and

Coddington and Levinson [1], if a matrix A* satisfies (27) then

@9) A* = A+ 21T [0 o o|Tt
9 P o0
0 o0 -p

where P is a p by p diagonal matrix of integers. Any choice
of integers for the diagonal elements of P will give rise to a
solution of the matrix equation (27).

fhillips [17] asserted that the pair (A, V) is identifiable
in (B, W) 1if and only if the matrix A is identifiable in B. He
reagoned this by an implicit claim that given a matrix A* of the

form specified in (29) it is possible to find a V* such that
(30) ofl exp (A*v) V¥exp(A*'v)dv = W = Ofl exp (Av)Vexp(A'v)dv.

In fact Phillips's [17] equation (4) illustrates how to compute V¥
from A* and W. A problem with this reasoning is that V* need

not be positive semidefinite and thus need not be a valid covariance

matrix. This indicates the presence of extra identifying information
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about A in the discrete innovation covariance matrix W via
equation (26). Indeed, we shall show that this observation requires
modifying Phillips's characteri;ation of the identification problem.
Phillips asserted that if A has complex eigenvalues, then without
additional restrictions, there is a countable infiniﬁy of pairs
(A*, V¥) that are observationally equivalent to (A, V) given
discrete time data. 1In fact, the number of pairs (A%, V%) that
are observationally equivalent to (A, V) 1is, except for singular
cases, at most finite and in some cases is equal to one even if A
has complex eigenvalues. We proceed to substantiate this claim.
Following Phillips [17], from equation (30) we can deduce an

alternative relationship
(31) | exp(A%)V* exp(A*') - Vk = Avi + Wak' 12/

where " ' " denotes transposition and conjugation. By comstruction

A* has the same eigenvectors as A and thus we can write
' -1
(32) A* = T A% T

where A% d1is a diagonal matrix of eigenvalues of A%, Using

expression (29), it follows that

A = A+ 27d (O O

Also we can write
(33) exp(A%) = T exp (A%)T T .

Substituting (32) and (33) into (31), we have that
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1 1

- -ll? - -1
(34) T exp(A*)T SVAT T exp(A*t)T' V% = TAXT Ly + WT © A%'T!

"oy n

where again denotes transpose and conjugation. Premultiplying

— -l?
and postmultiplying both sides of (34) by T 1 and T l‘, respectively,

we obtain
- -' -4-
(35) exp(A%) T Iv4T L exp(A%') - T lyar L'
- =11 - -11
= pxr el ¢ ol Ak
Let
- -11 ‘ - it
R¥ = T Lysr L R=r1tyr!
- _'
s = 7 Lyp L

and substitute into (35). The result is
(36) exp(A*)R*exp(A*') - R* = A%S + SA*' |

Now R* 1s positive semidefinite if and only if V* dis. We can

solve for R* 1in terms of S and A%, Let

R* = [rg,k]

S = [sy g

A* = diag(lf,...,lﬁ)

Equation (36) informs us that

exp(lg)r§’kexp(kﬁ) - rg’k = kgsj’k + Sj,kX§

or

* + %
(Aj A])sj’]
i,k by
’ % 4 \%)-
exp(Aj A]) 1
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Let

-1 -1
R=[r, J=T ot
A= diag(ll, )\2,...,AM) .

Using the fact that A, and A% differ by a multiple of 2wi, it

h| h

follows that

1 - exp(l? + Aﬁ) =1 - exp(lj + Ak)
and that

Ak + X% o= A+ X, .

h| h| h
Therefore
%* =
I I

i.e., the diagonal elements of R are the same as the diagonal
elements of R¥*. The off-diagonal elements of R and R¥ differ,
however. By construction R 1is positive semidefinite since V is
positive semidefinite. The question is whether V* or equivalently
R* need be positive semidefinite.

We first investigate this in the context of an example. Suppose

M=20 =2, Thus P is a scaler, and
Ak = Al + 2wiP

X om ) -
12 Al 27iP

% =
r rl,l

r¥ = r2,2

(2)\1 + AwiP)sl’z AwiPsl’z

1,2 T ¥ emp(2h) | 71,2 Rl s exp (21
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Now the determinant of R* is given by

= prk Tk = pk ok
(37 . det R rl,lr2,2 rl,2r2,l
-, ] ) [r N 4wiPsl,2 l 2
1,172,2 1,2 =1 + exp(ZAl)

It i8 clear from equation (37) that so long as 51,2 is not zero,
for a sufficiently large choice of integer P the determinant of
R* will be negative and hence R* will fail to be positive semi-
definite. Thus when M = 2p = 2, there is at most a finite number
of R*'s and hence V*'s that are positive semidefinite, except
for the special cases in which T-l diagonalizes W.

Now consider the general case. It turns out that we can apply

the same logic as above to the two by two matrices,

Tk R

M-20+3, M=-20+3 M~-20+3, M=-p +]
(38) : '

r* r*

M- p+3, M=-2 +j M- p+j, M~p+ ]

for i =1,..., p. In order that R* be positive semidefinite, each
of the two by two matrices given in (38) must be positive semidefinite.

Let

P = diag [pl,...,pp] .

As was shown above, there is only a finite number of integer choices
of pj for each j that give rise to positive semidefinite matrices
R* and V%, so long as there are no zeroes in the 2p by 20 sub-
matrix in the bottom right-hand cornmer of S. Thus, except for some
special cases, there is at most a finite number of pairs (A%, V%)
that satisfy both equation (27) and equation (30), and for which V*

is positive semidefinite.

1



The nature of expression (37) suggests that examples will occur
in which there will be at most a small finite number of pairs (A%, V%)
that satisfy (27) and (30), with V* positive semidefinite. Such
examples require that 81’2 be sufficiently large relative to r1,2'
The upshot of this situation is that for certain values of the system
matrix A, the identification problem may be much less drastic than
was suggestéd by Phillips's characterization.

However, although the dimension of the identification problem
i8 less than was suggested by Phillipg, it is still genérally present
for the finite parameter models considered by Phillips and ourselves.
Despite the preceding modifications of Phillips's characterization,
we are in general in need of prior information about A iﬁ order to
identify it uniquely from discfete data. In the next section,
we describe how the cross-equation rational expectatioﬁs restrictions

can help achieve identification.
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4. Rational Expectations Restrictions

In the previous segtion we discussed the aliasing phenomenon
in the context of first order stochastic differential aquations
driven by white noise. In particular it was shown that a sufficient
condition for the pair (A, V) to be identified in (B, W) is that
A be identified in B. Phillips [17] has described a set of
restrictions of the Cowles commission exclusion variety that are
gufficient uniquely to identify A from B. While interesting
and useful in various contexts, the restrictions considered by
Phillips are not of the nonlinear cross—equation variety characteristic
of the class of rational expectations models exemplified by the model
described in section 2. As it turns out, the cross-equation
restrictions imposed on the continuous time model b& rational
expectations are sufficiént to identify A from B under general
conditions. We shall argue this in the context of the theoretical
model derived in section 2. More precisely, we shall study the.

continuous time model of the joint {k, z} process

-1 r 1 T
(22) Dk(t) = -[8 a—-Z-IIk(t) += 2 N,u, [C~r1][C~(s

r -1
3 1219 +I] Tz(t)

3

13
- —Z-j‘lef;'(t).

(3) Dz(t) = Cz(t) + z(t)

where 7 and £ are continuous time white noises and the N,'s

h|
obey
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adj [aTa-sTss 1
s,)

(14b) Nj =
8 I (s~

0 i j
1

where det[aTB—BTBS] = so(s—sl)...(s—sm). We can write (22) and (3) as the

- joint first—order linear stochastic differential equation

(24) Dx(t) = Ax(t) + e(t)
where

A A
(38) A=

0 A22

Ay == (£t~ 1]

m

1

=3 [C-rI][C~ (s + )I]
512 j=l Ny
Ay, = C
m

k(t) lj LNy
X(t) = ’ g(t)::

z(t) t z(t)

As noted in section 3, the discrete time model that describes
observations on =x(t) sampled at points in time separated by one

unit of time is

(24) x(t) = Bx(t-1) + n(t)

where
+ (25) B =exp A

n(t) = l R e(t-v)dv.
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By virtue of the serial uncorrelatedness of n, it follows that
with discrete time data the parameters in B can be estimated
consistently by least squares or various least squares based methods,
such as approximations to generalized least squares. Given the
matrix B, 1is it possible uniquely to determine the parameters

the matrix A? That is, does the matrix equation

(27) exp A* = B = exp A

imply that A* = A. Following the érgument in section 3, assume that
the eigenvalues of A are distinct and write the spectral decompo-

sition of A,

(28)  A=TaATE

where A i3 a diagonal matrix of eigenvalues of A and T is the
mﬁtrix whose columms are eigenvectors of A. Partition the matrices
T and A in the eigenvalue decomposition of A conformably with A

g8o that

-1 -1
it is readily verified that A, = TllAlTll and Ay, = TZZAZTZZ’

80 that A1 and A2 are the diagonal matrices of the eigenvalues of
All and A, respectively. Now let the first M1 - 2pl eigenvalues

of Al be real, and the remainder occur in complex conjugate pairs as

A =20 H 0 A Mmpy v A M= HL T Auag-gp #10 ey T A

where the bar denotes complex conjugation and 0 < Py 2 Dﬁl/z] where
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Mi is the dimension of A Further, let the first M, - p

1° 2 2
eigenvalues of Az be real, and the remainder occur in complex

A

conjugate pairs as AZ,M2-2p2+l"'"AZ,MZ-QZ’ 'Z’MZ

P41

o ar o seees A =X _. s where 0 < p, < [M /2] where M
2,M2 2p2+1 2,M§ Z,Mé Py 2 2 2
is the demension of Az. As in section 3 we assume that the
eigenvalues of A do not differ by multiples of 2mi. Then if a

matrix A* 18 to satisfy (27), it mﬁst be related to A by

‘
v

0 0 ) 0 0
0 B 0 0 0 0
) 0 -P 0 0 )
* 1 m=l
(39) A A + 2miT 0 0 0 0 0 o IT
0 0 0 0 2 0
uo 0 0 0 0 -sz

where Pl and P2 are any diagonal matrices whose diagonal elements

are a;bitrary integers, of dimension Pl and Py regspectively. 1In
effect, (39) displays a class of perturbations of the complex eigenvalues
of A which leave the relation B = exp A* satisfied.

To show that the restrictions imposed on the model by rational
expéctations are sufficient to identify A from B under general
conditions we shall use the special nature of the perturbations of
A which are admissible under (39). In particular, notice that all
A*'s that satisfy (39) must have identical matrices of eigenvectors,
that is T matrices, and can differ only in the imaginary parts of

their complex eigenvalues. We shall indicate how the cross-equation

restrictions imposed by rational expectations in effect make le a
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function of the eigenvalues Al and Az, so that even the

admissible perturbations of the eigenvalues of the kind permitted in

(39) alter T and so lead to violation of (39). This will be

12

"enough to establish the existence of a unique inverse of B = exp A%.

Using the partitioned inverse formula

-1 -1 -1
P b FR F R
-1
0 T,

we obtain the version of (28) appropriate for our problem

1 -1 -lT -1

TyaihTyy TyohoTos = TygAiTy9Ty5T0)
A= 0 T A ToL
2242723
It follows that
(40) = [T, AT - AT, Tor]
Al 1289T22 = 4917757551 -

We use (38) and (40) to express the cross—equation restrictions implied

by the model in the form

-1 -1
(T12%T52 = 411T12T201 =

1 B T, .~1
’f j Zleul [A22-rI] [AZZ-(Bj + 'i')I]
or
1= r -
(41) Ty o081 710 = —2-3 -Zizjul[Azz-rI] [Azz-(sj + 51l 1'r22 .

t
Our aim is to solve (41) for Ty, Let 12j be the 1 h eigenvalue

th
of A2 and llk the k

to have a unique solution le if and only if

eigenvalue of All' Then (41) is known
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(42) Ay, = A, #0

23 1k

for any pair (J, k), such that j # k (see Gantmacher [4]). From
(38), A11 = -[B-la --% I]. Recall that the zeroes of det (o + Bs)
are less than zero in real part. Notice that the zeroces of

1

det (sI + B ~a - %—I) are less than %- in real part. Thus the

eigenvalues of A are less than g- in real part. The eigenvalues

11
of A22 have been assumed to be less than %- in real part. The
upshot of these remarks is that condition (42) for the existence of

a unique solution sﬁlution le of (41) is not necessarily met given
the restrictions that we have on the eigenvalues of A11 and A22’
However, given the nature of A11 and A22, failure of (42) to

hold is a singular case which we shall assume does not obtain.
Therefore we shall restrict ourselves to the case in which (41)

. uniquely determines le. |

We proceed to exhibit an explicit representation of the solution

for T,,. Write (41) as

12
(43) (A Ty * Tpohy = ¢
where o) 8-% g Njuj[Azzi- rI][A22 - (sj + §)Il-lT22 .
j=1

Equivalently we can express (43) as
(—A11 8 I)vec T12 + (I 8 AZ) vec le = vec ¢

where vec represents the vector formed by taking the direct sum of the
rows of a matrix, and 8 denotes the Kronecker product. Given the
restrictions on the eigenvalues of A1l and A22 it follows that the

matrix
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(-All 8I)+ (I8 Az)
is invertible and thus
-1
(44) vec T,, = [(—A11 8 I) + (I8 AZ)] vec ¢ .

Equation (44) can be used to investigate the question that we
originally posed: will perturbations of the complex eigenvalues of

A11 or A22 of the admissible class defined by (39) leave the le

implicitly defined generally by (41) unaltered? The answer is in

general no. Under the rational expectations restrictions, T is

12
a function of the eigenvalues of All and A22 and is altered even
by "admissible" perturbations. This is sufficient to guarantee that
subject to the rational expectation restricfions, B=exp A has a
ugique inverse expressing the parameters A of the continuous time

-

model.
It is useful to illustrate the situation with an example in
which the number of stocks n 1is one so that A11 is a scalar.

Where n = 1, we have A11 = -[B-la - %ﬂ and [aB - st] =

- [s - gj-l so that s, = g and N, = :l-. Therefore with n =1,
62 8 1 B8 1 82

the decision rule can be written

45)  Dk(t) = =[8 o - SIk(t) - ;17“1“22 - @+ HuT 2w
B8

1
- &) .
282

Welet v =0, 8=1, a=1l. We set A22 and then computed A12 from

1 a r ~1
Ag = - 26 uyl8y, - G+ I

We first chose A so that the resulting A matrix was

22



=27~

-1 . 42857 .14286
(46) A= 0 -1.0 1.0
0 -1.0 -200

The eigenvector and eigenvalue matrices of A are

1+ 01 -.24744 - ,285711 -.24744 + ,285711
T = {0+ 01 .86603 - .51 .86603 + .51
0+ 01 0+ 1 0-141
-1+ 01 0 : 0
A = 0 -1.5 + .866031 0
0 0 -1.5 - .866031

We then perturbed (46) with an "admissible perturbation” according to

(39). The new A%* matrix was

-1.0 .11554 14392
47) A*= | o0 2.62760 8.25520
0 ~8.25520 -5.62760

with eigenvectors and eigenvalues '

1 .01102 - .014774 .01102 + .014774
T =|0  .86603 - .51 .86603 + .51
0 0+1 0-1
and
-1 0 0
A =] 0 -1.5+ 7.149211 0
0 0 1.5 - 7.149211

The matrix B corresponding to (46) (i.e. B = exp A) is
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.36788 . .11988  .08169
(48) B=| 0 .24269  .19627
0 -.19627  .04642

while the B* = exp A* corresponding to (47) is

.36788 .00006 .00520
49) " BE=| 0 .24269 .19627] -
0 ~.19627 . 04642

. 4
Notice that while the Bll’ 321 and B22 8 are identical in

and (49), the Blz's differ. This reflects the cross—equation restrictions

at work achieving identification. Notice how the experiment perturbs

the eigenvalues of A22 admissibly, i.e. by adding and subtracting
2ri to elements of the pair of eigenvalues in A. The parts of the

eigenvectors in T T and T22 are left unchanged by this perturbation,

11> T21?

but le is altered. It is the alteration of le under the perturbation

that leads B12 to be altered.
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4. Conclusions

This paper indicates how the cross-equation restrictions delivered
by dynamic economic theory of the rational expectations variety can
serve to identify a continuous time model from discrete time observations.
In effect, the dynamic economic theory underlying the cross equation
restrictions provides enough prior information to overcome the aliasing
problem. These restrictions are highly nonlinear and characteristically
apply across equations.

This paper is intended as a prologue to further work that developes
econometrically practical methods for estimating continuous time
rational expectations models from discrete time data. A sequel to this

paper [8] is devoted to estimation issues. 11/



Footnotas

See Hansen apd Sargeat [6, 7] for discussion of the ecomometrics of
discrate-time ratiomal expectations models.

For ;n introduction te linear stochastic differential equatiouns, saes
Kwakernaak and Sivan {9].

BHere 5 is the Dirac delta generalized function. See Kwakernmaak and
Sivan [9] for anm introduction to its properties and uses.

For some examples, see Hansen and Sargent [6, 7].

This is proved, for example, in Kwakernask and Sivan {9l.

OQur treatzent of the darivation of the decisicn rule, and in particular

of the representation of M(s)-l by partial fractiomns parallels the

treatment of tha discrete time case to be found in Hausen and Sargent [7].

This modal of the ervor tarm is proposed and analyzed for discreta time
models by Bansen and Sargent [6].

Tha’assumétiou fl is the derivative of the white noise § is admittedly
contrived in order that the decisiom rule will have a white noise dis-
turbanca. To see that (22) is the correct axprassion for the decision
rule, note that

sj-+§9

+5y e ¢ Ve(etv)dv.

I 27

Taking conditional expectations as of time pericd & we obtain

© - ==
o e (sj Vg (tv)dy = §(E) + (s

T
+2)

Etofme"(sj VDL (tr)dv = ().

Given that fl is not plysically realizable, we ara not proposing this
as a plausible model of a disturbance term.

See Hansen and Sargent (6] for a treatment showing how to generalize
things beyond the whifa noise assumption for the case of a discrate

time model.



10. See Phillips [17] page 354. Equation (31) is readily deduced
from results of Kwakernaak and Sivan [9, p. 100-103] as follows.

Consider the stochastic differential equation system of the form

(23) Dx(t) = Ax(t) + e(t), Ee(t)e(t-s)'= V§(t~-s)
with initial condition =x(0) = 0. Kwakernaak and Sivan [9, p.
103, eqn. 1~514] show that =x(t) " has covariance matrix
(*) Q(t) = fgeAsVeA'Sds
 where Q(t) = Ex(t)x(t)'. They also show (p. 101, eqn. 1-502)

that Q(t) obeys the differential equation
(k%) Q(t) = AQ(E) + Q(E)A' + V.
Evaluating é(t) from (*) by using Leibniz's rule and equating
the result with the right side of (**) yields, for t = 1, eguaﬁion
31). ‘ |

11; This sequel is based.on the work of A. W. Phillips [18], Hansén

and Sargent [6, 7], and the present paper.



References

[1] Coddington, E.A. and N. Lavinson, Theory of Ordinary Differential Equationms
(McGraw-Hill, New York) 1955.

[2] Gantmacher, F.R,, The Theory of Matrices, Vol. I. (Chelsea, New York) 1959.

(3] Gaweke, John, '"Wage and Price Dyunamics in U;S. Manufacturing', in C;A. Sims,

ad, New Methods in Business Cycle Research, Federal Raserva Bank of
Minneapolis, 1977. ‘

[4] Geweka, John B., "Temporal Aggregation in the Multivariate Regression Model™,
Econometrica, 46, 1978, 643-662.

{S] Gould, J.P.,."Adjustment Costs in the Theory of Investment of the Firm",

The Review of Ecomomic Studies, 35, 1968, 47-56.

{6] Hansen, L.P. and T.J. Sargent, "Formulating and Estimating Dynamic Linear

Rational Expectations Models", Journal of Economic Dynamics snd Control,
1980.

(7] Hansen, L.P., and T.J. Sargent, "Linear Rational Expectations Models for
Dynamically Intaerrelated Variagbles', in R.E. Lucas, Jr., and T.J. Sargent,
eds., Rational Expectations and Econometric Practice (University of
Minnescta Praess, Minneapolis) 1984Q.

[8] Hansen, L.P. and T.J. Sargent, 'Methods for Estimating Continuous Time
Rational Expectations Models from Discrete Time Data," unpublished man-
uscript, 1980.

{91 Kwakernaak, H. and R. Sivan, Linear Optimal Control Svstems, (Wiley, New
York), 1972.

{10] Lucas, R.E., Jr., "Econcmetric Policy Evaluation: A Critique', in K. Brunner
and A.H. Meltzer, eds, The Phillips Curve and Labor Markets, Carnegie-
Rochesgter Conference Series on Public Policy (North EHolland, Amsterdam)
1976.

(11] Lucas, R.E., Jr., "Adjustment Costs and the Theory of Supply', Journal of
Political Econocmy, 73, 1967, 321-334.

{12] Lucas, R.E., Jr., and E.C. Prescott, '"Investment Under Uncartainty", Econ-
ometrica 39, 1971, 659-681.

[13] Lucas, R.E., Jr., and T.J. Sargent, "Rational Expectations and Econometric
Practica’, iatroductory essay to Rational Exvectations and Ecounometric
Practice, edited by R.E. Lucas, Jr. and T.J. Sargent(University of
Minnesota Press, Minneapolis) 1980.

[14] Mortensen, Dale T., "Generalized Costs of Adjustment and Dymamic Factor
Demand Theory'', Econometrica 41, 1973, 657-665,

[15] Phillips, P.CQB., "The Estimation of Some Continuocus Time Models', Econometrica,
42, 1974, 803-824,




(16]

(17]

(18]

191
(20]

[21]

[22]

Phillips, ?.C.B., "The Structural Estimation of a Stochastic Differential
Equation System', Econometrica, 40, 1972, 1021-1041.

Phillips, P.C.B, "Tha Problem of Identification in Finite Parameter Cou-
einuous Time Models!, Journal of Econometrics, l, 1973, 351-362.

Phillips, A.w;, "The Estimation of Parameters in Systems of Stochastic
Differential Equations’, Biometrika, 59, 1959, 67-76.

Rozanov, Yu-A., Stationary Random Processes, (Holden-Day, San Francisco) 1967.

-

Simg, Christopher A., ''Discrate Approximations to Continuous Time Lag Dis-
tributions in Econometrics', Econcmetrica, 39, 1971, 545-564.

Treadway, A.B., "On Rational Enterpreneurial Behavior and the Demand for
Investment””, Review of Economic Studies, 36, 1969, 227-240.

Wymer, C.R., "Econometric Estimation of Stochastiec Differential Equatioa
Systems', Econometrica, 40, 1972, 565-577.



