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ABSTRACT

We study decentralized learning in organizations. Decentralization is captured through a symme-
try constraint on agents’ strategies. Among such attainable strategies, we solve for optimal and
equilibrium strategies. We model the organization as a repeated game with imperfectly observable
actions. A fixed but unknown subset of action profiles are successes and all other action profiles
are failures. The game is played until either there is a success or the time horizon is reached. For
any time horizon, including infinity, we demonstrate existence of optimal attainable strategies and
show that they are Nash equilibria. For some time horizons, we can solve explicitly for the optimal
attainable strategies and show uniqueness. The solution connects the learning behavior of agents
to the fundamentals that characterize the organization: Agents in the organization respond more
slowly to failure as the future becomes more important, the size of the organization increases and
the probability of success decreases.
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1 Introduction

Organizations are groups of agents linked by a common purpose (North [1994]). An orga-

nization will be more successful at achieving the common goal, the better its members can

coordinate their actions. Institutions like hierarchies and information systems help in solving

an organization’s coordination problems. But inevitably some of the decision making in an

organization will remain decentralized.

Because of decentralization, organizations will behave differently from individuals, cer-

tain tasks are more difficult for organizations than for individuals and, more generally, the

behavior of an organization may depend on its size. Even in an organization whose produc-

tion function is known, coordinating actions may be nontrivial if there are multiple optimal

combinations. The organization’s task is more challenging if the organization has to search

for an optimal production plan.

Day and Tinney [1968] study decentralized learning in a firm with two independent deci-

sion makers. Their decision makers respond to success and failure by modifying their decision

rules until a satisficing criterion is met. They examine the roles of “caution,” “daring” and

“failure response” and show that “learning - tempered by caution in response to failure” can

eventually solve the firm’s problem. Milgrom and Roberts [1990a] describe the coordination

problem of a team of managers that has to adapt to changing technological opportunities.

They show that if the production function is supermodular, adaptive dynamics will find the

firm’s optimum. Outside of economics, there is considerable interest in concurrent learning in

multiagent environments in the computer science literature. For example, Sen and Sekaran

[1998] investigate reinforcement learning in multiagent systems.

None of these approaches attempt either to predict the learning rule or to prescribe an

optimal rule. Indeed, these questions are not well-posed in these models. Day and Tinney’s

learning rules are primitives of their model. The computer science literature, e.g., Sen and

Sekaran, emphasizes domain independence and robustness. Milgrom and Roberts focus on

the outcomes achievable through learning and do not impose restrictions on learning rules

that would distinguish “optimal learning” from going straight to the firm’s optimum. We

impose such constraints and show that the investigation of optimal learning in organizations

is both meaningful and interesting. In particular, we will be able to say just how “daring”

1



individuals in the organization ought to be and how decisively the they should respond to

failure. Moreover, we get to connect these predictions to the fundamental parameters of the

model: the discount factor, the size of the organization and the success probability.

We study decentralized learning in organizations. We require agents to learn by trial and

error. They can observe only success or failure and not the actions taken by other agents.

A failure means that the organizations will want to explore a novel action combination.

Decentralization means that agents change their actions independently. Therefore it may be

unclear which members have to change their actions and, given the observational restrictions,

which agents do change their actions. The learning activities of some agents may confound

the learning of others.

Decentralization is captured through a symmetry constraint on agents’ strategies, called

attainability, that was introduced by Crawford and Haller [1990] (CH in the sequel). An

attainable strategy respects at any point in time whatever symmetries remain in the game.

Among learning rules satisfying the symmetry constraints, we are interested in optimal rules.

Formally, we analyze a repeated n-player game in which a fixed but unknown subset of action

profiles are successes and all other action profiles are failures. The game is played until either

there is a success or the time horizon, T, is reached.

If agents use expected present discounted values to evaluate outcomes in the repeated

game, we find for any time horizon, including infinity, that optimal attainable strategies

exist and that they form equilibria. Our central result is a characterization of optimal and

equilibrium attainable strategies when each agent has two actions and T = 3. We show

that there is a unique optimal attainable strategy and that it coincides with the unique

equilibrium attainable strategy. This strategy is parameterized by the discount factor, δ, the

number of members of the organization, n, and the number of success profiles, k. We find

that agents in an organization respond more slowly to failure as the future becomes more

important, the size of the organization increases and the probability of success decreases.

If we require sequential rationality, then for δ = 0, n = 2 and any T, there exists

an optimal equilibrium attainable with an interesting simple structure: Agents alternate

between switching with probability one and with probability one-half until either there is a

success or the time-horizon is reached. Further, every optimal attainable strategy has this
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property. All solutions for sufficiently small δ approximate this δ = 0 solution. Finally, in

this environment, if we permit some regard for the future by giving agents lexicographic

preferences for early success, the optimal attainable strategy remains the same, but no

attainable Nash equilibrium exists.

Except when δ = 0, attainable equilibria tend to be complex. The unique attainable

equilibrium for T = 3 is not in public strategies. More generally, plausible heuristics, like

always switching with a fixed probability, do not give rise to equilibria.

2 The Game and Restrictions on Strategies

We consider a repeated n-player, m-action game. In the stage game, the players, i ∈ I,
have actions aij , j = 1, . . . ,m and identical payoffs from each action combination a =

(a1j1 , . . . , anjn). All action combinations are either failures or successes. Each player’s payoff

ui(a, θ) in the stage game depends on the action profile a and the random variable θ which

takes values in X and determines which k profiles are successes. At a success, all players earn

a payoff 1 and at a failure they all get 0. The number of successes is commonly known but not

their location. Any assignment of the given number of successes across action combinations

is equally likely.

In the repeated game the random assignment of successes to action profiles is determined

once-and-for-all before the first play of the game. The stage game is repeated in periods

t = 0, 1, . . . , T, until either a success is played once or the time horizon T is reached.1 Note

that period 0 is the first period; period 1, the second period; and so on. We consider both

finite and infinite T. Denote the repeated game with time horizon T by ΓT . Players observe

only their own actions and their own payoffs, not the actions of the other player. We assume

that players maximize the expected present discounted value of future payoffs with 0 ≤ δ < 1;

except where indicated, we assume that δ > 0. Thus preferences over strategy profiles have

a utility function representation, which is of the von Neumann-Morgenstern type.2

Let Ai be player i’s set of actions in the stage game and S = {0, c} the set of possible
1For most of our results there is a version that holds for more standard repeated games that continue

until the time horizon is reached regardless of the number of successes. However, our approach of ending
the game as soon as there is a success considerably sharpens the statement of results.

2Toward the end we will also briefly comment on lexicographic preferences for early success.
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payoff realizations in the stage game, failure and success. We adopt the convention that

after a success, histories record the null event “nothing happens” in each period until the

final period T is reached. Since players can observe only success or failure in addition to

their own actions, their strategies can depend only on their private histories hti ∈ Ati × St.
Let ht := (ht1, ..., h

t
n) be an entire history ending in period t, and denote an infinite history

by h. Let H stand for the set of all infinite histories.

A (behavior) strategy for player i is a sequence of functions

f ti : A
t−1
i × St−1 → ∆(Ai),

where ∆(Ai) denotes the set of probability distributions over Ai. For any history h
t−1
i ∈

At−1i ×St−1 and a ∈ Ai, let f ti (ht−1i )(a) denote the probability that player i’s strategy assigns

to his action a after history ht−1i .

Doing well in this game means that players quickly find a success. They will want to

avoid action combinations that have led to failures in the past. They will want to learn

from their failures. With only a single player, someone directing the organization, or some

other mechanism coordinating the organization, this is accomplished by trying a new action

combination in each period until there is a success. With decentralized decision making by

two agents this search process is made difficult by the fact that agents won’t know who

took the wrong action: agent 1, agent 2, or both. With more than two agents the difficulty

increases because any subset of the set of agents could have taken a wrong action.

We use symmetry to capture the non-negligible strategic uncertainty that players are

facing. In particular, since we do not permit prior communication or any other prior inter-

action, symmetries of the game can be removed only through interactions in the game. As

a consequence, up to a bijection between their action spaces, Ai and Ai0, any two players

i and i0 will use identical strategies, and each player i’s strategy is defined only up to a

permutation of Ai. Formally, these two conditions amount to

(1) ∃ a bijection ρ̂ : Ai → Ai0 such that f
t
i (h

t−1
i )(a) = f ti0(ρ̂(h

t−1
i ))(ρ̂(a)), and

(2) f ti (h
t−1
i )(a) = f ti (ρ̃(h

t−1
i ))(ρ̃(a)), ∀ bijections ρ̃ : Ai → Ai.

We call strategy profiles that satisfy our restrictions attainable. Strategy profiles that

maximize players’ payoffs among the set of attainable strategies will be called optimal at-

tainable strategies. Attainable strategy profiles that are Nash equilibria are referred to as
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equilibrium attainable strategy profiles. Note that when we check for equilibrium we impose

no restrictions on deviations; the symmetry restrictions apply only on the solution path,

whether it is optimal or equilibrium. Our goal is to characterize optimal attainable strat-

egy profiles and equilibrium attainable strategy profiles in repeated success-or-failure games.

Individual strategies will be called attainable if they satisfy the second condition. Since play-

ers have to use identical strategies we will often limit our discussion to individual strategies

rather than entire profiles. We denote the set of attainable behavior strategies of player i in

a T -period success-or-failure game by FT
i and the set of attainable strategy profiles by FT .

Since payoffs in the stage game are bounded and future payoffs are discounted with

discount factor δ < 1, the repeated success-or-failure game is continuous at infinity (see

Fudenberg and Levine [1983]), i.e., behavior in the far distant future has a vanishing effect

on payoffs. Formally, if V i(x, h) is the payoff of player i in the infinite horizon game as a

function of the realization, x, of the random variable θ and the history h and h(τ) denotes

the truncation of the infinite history h after period τ, then the game is continuous at infinity

if

sup
i∈I, x∈X, h,h0∈H, h(τ)=h0(τ)

|V i(x, h)− V i(x, h0)|→ 0 as τ →∞.

This continuity property will be used in the next section to help establish existence of optimal

attainable strategies and of equilibrium attainable strategies.

Any behavior strategy profile f induces a probability πt(f) of a success in period t, taking

into account that a success ends the game. Note that it suffices to write this probability as

πt(f
0, . . . , f t), that is, as a function of behavior only up to and including period t. In the

discounting case, we can then write each player’s payoff from profile f as

Π(f) =
TX
t=0

δtπt(f
0, . . . , f t).

For any two strategies f and g denote by g(f, τ) the strategy obtained from g by following

f until period τ and g thereafter. Then, as a consequence of continuity at infinity we have

the following property: For any ² > 0, there exists τ0 such that

sup
f,g
|Π(f)−Π(g(f, τ))| < ² ∀τ > τ0.
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3 Optimal Attainable Strategies: Existence and Rela-

tion to Equilibrium

In this section we establish the existence of optimal attainable strategies in repeated success-

or-failure games for any time horizon and show that optimal attainable strategies are Nash

equilibrium strategies. This conveniently establishes the existence of equilibrium attainable

strategies.3

We begin by proving existence of optimal attainable strategies. The idea is simple: We

have to show that a constrained optimization problem has a solution. This will be the case

if the objective function and constraint set are well behaved.

Proposition 1 An optimal attainable strategy exists in any repeated success-or-failure game

with discounting.

Proof. At a given information set, a behavior strategy specifies a probability distribution

with finite support. The space of such probability distributions is compact. The attainability

constraints at that information set are linear. Therefore, at any given information set, the

set of probability distributions induced by an attainable behavior strategy is a closed subset

of a compact set and therefore compact.

The space FT of attainable behavior strategy profiles is a product of the spaces of attain-
able behavior strategies which itself is a product of the attainable probability distributions

at each information set. Therefore by Tychonoff’s Theorem FT is compact in the product
topology.4

In the finite horizon case the payoff function Π(·) is clearly continuous relative to the
product topology. Hence, in this case, finding an optimal attainable strategy amounts to

maximizing a continuous function over a compact set. A solution exists by Weierstrass’

Theorem.

For the infinite horizon case, note that since F∞ is a countable product, F∞ endowed

with the product topology is metrizable. Recall that in a metrizable space compactness

3While the equilibrium property of optimal attainable strategies is convenient and intuitive, it deserves
emphasis that this link may fail, despite the common interest among players, if players use criteria other
than expected present discounted values to evaluate outcomes in the repeated game. An interesting case
where this occurs is that of lexicographic preferences for early success.

4For this and later references to topology see, e.g., Munkres [1975].
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implies sequential compactness.

Let f∗T be an optimal attainable strategy in ΓT for finite T. Let f̃ ∗T be the extension

of f∗T to Γ∞ that is obtained by prescribing uniform randomization at every information

set after time T. Since F∞ is sequentially compact, the sequence {f̃ ∗T}∞T=1 has a convergent
subsequence. Denote this sequence (after reindexing) by {f̃ ∗T}∞T=1 as well and its limit by f̃ .
Note that f̃ is attainable.

In order to obtain a contradiction, suppose there exists an attainable profile f̂ and an

² > 0 such that Π(f̂)−Π(f̃) > ². Let f̂T and f̃T denote the strategies obtained from f̂ and f̃

by truncating after T periods and prescribing uniform randomization thereafter. Since the

payoff function is continuous at infinity, there exists a T such that for all T > T , we have

Π(f̂T )−Π(f̃T ) >
²

2
.

Π(f̃ ∗n) is a bounded increasing sequence and therefore converges. Denote the limit by

Π∗. Let f̃∗n,T denote the strategy obtained from f̃ ∗n by truncating after period T and pre-

scribing uniform randomization thereafter. Because convergence in the product topology

implies pointwise convergence, for any T, f̃∗n,T converges to f̃T . Since Π is continuous in the

arguments referring to the first T periods, Π(f̃ ∗n,T ) converges to Π(f̃T ). Combining this with

continuity at infinity of the payoff function implies that Π(f̃) = Π∗. Hence, there exists a T

such that |Π(f̃T )− Π(f̃ ∗T )| < ²
4
.

⇒ Π(f̂T )− Π(f̃T )− (Π(f̃∗T )−Π(f̃T )) >
²

4

and thus

Π(f̂T )−Π(f̃ ∗T ) > 0,

which contradicts the optimality of f∗T in the game with time horizon T. 2

When players have identical payoffs, as in the repeated success-or-failure game, it is

intuitive that optimal attainable strategy combinations are Nash equilibria. The following

result confirms this intuition.

Proposition 2 Any optimal attainable strategy in a repeated success-or-failure game with

discounting is a Nash equilibrium strategy.5

5CH prove an analogous result for repeated coordination games without payoff uncertainty.
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The proof makes use of the fact that preferences over strategy profiles have utility func-

tion representation and, more specifically, that this representation has the von Neumann-

Morgenstern form. We will show later that without this assumption there may be no attain-

able Nash equilibrium in the repeated success-or-failure game, even if we permit the use of

mixed strategies.

Proof. f ∗ is an optimal attainable strategy profile if it solves maxf∈FT Π(f). If f ∗ is not

a Nash equilibrium, then there exists a strategy f̂1 for player one such that

Π(f̂1, f
∗
−1) > Π(f ∗).

Note that because the game is symmetric, it is without loss of generality to consider only

deviations of player one. Since actions are payoff equivalent as long as they have not been

taken, it is also without loss of generality to let f̂1 be an attainable strategy. Consider a

strategy f̃ in which each player plays f ∗ with probability 1 − ² and f̂ with probability ².
Denote the common payoff from m players using strategy f̂ and the remaining n−m players

using strategy f ∗ by Πm,n(f̂ ; f∗); this uses the fact that preferences over strategy profiles

have a utility-function representation. Then the common expected payoff from f̃ is

Π(f̃) =
nX

m=0

(nm) ²
m(1− ²)n−mΠm,n(f̂ ; f ∗)

= (1− ²)nΠ(f ∗) + n²(1− ²)n−1Π(f̂1, f ∗−1) +
nX

m=2

(nm) ²
m(1− ²)n−mΠm,n(f̂ ; f ∗).

Here, we use the fact that the utility function representing preferences has the von Neumann-

Morgenstern form. For small ² the third term on the right of the equation is at least a

magnitude smaller than the second term. Hence,

Π(f̃) > Π(f ∗)

for sufficiently small ², which contradicts our assumption of f ∗ being an optimal attainable

strategy. 2

Combining propositions 1 and 2, we immediately obtain the following existence result for

attainable equilibria.

Corollary 1 An optimal attainable Nash equilibrium strategy exists in any repeated success-

or-failure game.
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4 The Solution for the Three-Period Case

In this section, we study the three-period game with two actions per player, n players and k

success profiles under the assumption that the n players discount the future with an identical

constant discount factor δ. We assume that the number of success locations is less than the

total number of n-tuples available to the players minus 1, i.e., k < 2n − 1, to ensure that an
individual player cannot guarantee a success in the three-period game.

For tractability reasons, here and in the following sections, we confine ourselves to the case

where players each have two actions. In that case, our two attainability conditions amount to

players using identical switching probabilities, given identical switching histories. Let a “1”

denote a switch from one action to another and a “0” no such switch. Define W := {0, 1}.
Then a player’s “relevant history” at time t = 1, 2, . . . is an element of W t−1 × St−1, the
history of his own switches and of the (publicly observable) failures and successes. We can

analyze the game in terms of players’ “switching strategies”:

σi : W
t−1 × St−1 → ∆(W ).

Our condition (2) for attainability implies that players use switching strategies. Condition

(1) implies that these switching strategies have to be identical. We will therefore study pairs

of identical switching strategies and see which ones are optimal and which ones are in Nash

equilibrium.

Since it suffices to study switching strategies in the two-action case and since the initial

choice probabilities are determined by the attainability constraint, each player’s strategy in

the three-period game can be summarized by the triple (p, q0, q1), where p is the probability

of switching in period one, which is the first period in which players can switch, q0 is the

probability of switching in period two conditional on no switch in the previous period, and q1

is the probability of switching in period two conditional on a switch in the previous period.

The following result establishes the existence of a unique optimal attainable strategy.

The proof is constructive and determines the optimal values of p, q0 and q1 as functions of

the discount factor, δ, the number of players, n, and the number of success profiles, k.

Proposition 3 In the three-period repeated failure-or-success game with two actions per

player, common discount factor δ, n players, and k success profiles, there exists a unique
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optimal attainable strategy. It is given by (p, q0, q1) =
¡
p∗(δ, n, k), 1, 1

2

¢
, where

p∗(δ, n, k) =
2µ

1

( 1−δδ )(
2n−2

2n−1−k)+1

¶ 1
n−1

+ 2

.

Proof. If the n players use the switching strategy (p, q0, q1), each player’s expected payoff

is given by

π (p, q0, q1) =

c
k

2n
+ c

µ
2n − k
2n

¶
δ



k
2n−1 (1− (1− p)n)

+δ


(1− p)n k

2n−1 (1− (1− q0)n)
+Σnj=1p

j (1− p)n−j ¡nj ¢¡
2n−1−k
2n−1

¢ ¡
k

2n−2
¢ 1

−qj1 (1− q0)n−j
− (1− q1)j (1− q0)n−j





.

Maximizing π (p, q0, q1) is equivalent to maximizing

π̃ (p, q0, q1) =

µ
2n − k
2n

¶


(1− (1− p)n)

+δ


(1− p)n (1− (1− q0)n)

+Σnj=1p
j (1− p)n−j ¡nj ¢¡

2n−1−k
2n−2

¢µ 1− qj1 (1− q0)n−j
− (1− q1)j (1− q0)n−j

¶


 .

For p = 0, the conditionally optimal value of q0 is 1, giving π̃ (0, 1, q1) =
2n−k
2n

δ. In

contrast, for p = 1, π̃ (1, q0, q1) ≥ 2n−k
2n
. This implies that p = 0 cannot be part of an optimal

strategy.

Since p > 0, the partial derivative of π̃ (1, q0, q1) with respect to q1 is

δΣnj=1p
j (1− p)n−j ¡nj ¢µ2n − 1− k2n − 2

¶µ −jqj−11 (1− q0)n−j
+j (1− q1)j−1 (1− q0)n−j

¶
.

Hence, the corresponding first order condition has a unique solution, q1 =
1
2
. One also easily

checks that the second derivative is negative.
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Next, we consider the optimal solution for q0. If p ∈ (0, 1), then the partial derivative of
π̃ (1, q0, q1) with respect to q0 is

δ

 (1− p)n ¡n (1− q0)n−1¢
+Σnj=1p

j (1− p)n−j ¡nj ¢ ¡2n−1−k2n−2
¢µ (n− j) qj1 (1− q0)n−j−1

+(n− j) (1− q1)j (1− q0)n−j−1
¶  .

In the case where p ∈ (0, 1), this derivative is positive for all values of q0 that are less than
one. Hence, in that case the optimal value of q0 is 1. If p = 1, then q0 is unrestricted. Hence,

the optimal value satisfies q∗0 = 1 if we can show that p∗ ∈ (0, 1). This is the question to
which we turn next.

Finally, we consider the solution for p. Using the solutions to q0 and q1, the partial

derivative of π̃ (1, q0, q1) with respect to p is

µ
2n − k
2n

¶
n (1− p)n−1 − nδ (1− p)n−1

+δ
¡
2n−1−k
2n−2

¢ Σn−1j=1

µ
jpj−1 (1− p)n−j ¡nj ¢

− (n− j) pj (1− p)n−j−1 ¡nj ¢
¶

+npn−1 (1− qn1 − (1− q1)n)


 .

Because

(n− j) ¡nj ¢ = (j + 1) ¡nj+1¢
this is equivalent toµ

2n − k
2n

¶·
n (1− p)n−1 − nδ ¡¡1− ¡2n−1−k

2n−2
¢¢
(1− p)n−1¢

−δ ¡2n−1−k
2n−2

¢
npn−1 + δ

¡
2n−1−k
2n−2

¢
npn−1 (1− qn1 − (1− q1)n)

¸
.

One easily checks that the second derivative is negative for all feasible values of p. Hence, a

solution to the first-order condition is a global optimum. The first-order condition implies

((1− p)n−1 − δ(1− p)n−1)

+δ(1− p)n−12
n − 1− k
2n − 2 − δpn−1

2n − 1− k
2n − 2 (qn1 + (1− q1)n) = 0.

After dividing by pn and solving the resulting equation for
³
1−p
p

´n−1
, we get

µ
1− p
p

¶n−1
=

δ(2n − 1− k)(qn1 + (1− q1)n)
(1− δ)(2n − 2) + δ(2n − 1− k) .

After taking the (n− 1)th root, using q1 = 1
2
and solving for p, we are left with
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p =
2µ

1

( 1−δδ )(
2n−2

2n−1−k)+1

¶ 1
n−1

+ 2

,

as claimed. 2

It is interesting to compare this solution for the three-period game with the optimal

attainable strategy for the two-period game. In the two period-game, we only have to

determine the switching probability, p, in the second period. Since we want to minimize

the probability (1 − p)2 that the first-period action profile is revisited, p = 1 is uniquely

optimal. In contrast, in the three-period game it is optimal to sacrifice some second-period

success probability in order to improve the probability of a better starting position in the

third period.

Since every optimal attainable strategy is an equilibrium strategy, the strategy identified

in the last result is an attainable equilibrium strategy. Since it is unique, it is also the unique

optimal attainable equilibrium strategy. The following result shows that uniqueness is pre-

served even if we drop the optimality requirement. There is a unique attainable equilibrium

strategy.

Proposition 4 In the three-period repeated failure-or-success game with two actions per

player, common discount factor δ, n players, and k success profiles, there exists a unique

attainable equilibrium strategy. It is given by (p, q0, q1) =
¡
p∗(δ, n, k), 1, 1

2

¢
and thus coincides

with the optimal attainable strategy.

Proof. First consider the value of p. Suppose that p = 1. Then player i can guarantee that

in the final period a new action combination is used by defecting to the strategy (0, q0 = 1, q1).

Hence p = 1 is never a part of an attainable equilibrium strategy. Suppose instead that

p = 0. Player i gains by deviating to (p = 1, q0, q1) , which raises the probability of using a

new action combination in period one from zero to one, without affecting the probability of

a new action combination in the final period. Hence, p = 0 is never part of the attainable

equilibrium strategy.

So, in any attainable equilibrium strategy p ∈ (0, 1). Since there is positive probability
that at least one player i does not switch in the second period, at least one other player j

does switch. This implies that it is uniquely optimal for player i to set qi0 = 1.
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Since there is positive probability that player i switches in the second period, qi1 must be

optimal in the third period. Recall that by symmetry, pj 6=i = pi for all j. Against (p, q0, q1),

the payoff in the third period from switching after having switched in the previous period is

c

µ
k

2n − 2
¶
Σn−1j=1p

j−1 (1− p)n−j ¡n−1j−1
¢ h
1− qj−11 (1− q0)n−j

i
while the expected payoff from not switching after having switched in the previous period is

c

µ
k

2n − 2
¶
Σn−1j=1p

j−1 (1− p)n−j ¡n−1j−1
¢ h
1− (1− q1)n−j (1− q0)n−j

i
.

Consequently, if q1 is greater than
1
2
, it is uniquely optimal not to switch in period two

following a switch in period one, i.e., to deviate to q1 = 0. Conversely, if q1 is less than
1
2
, it

is uniquely optimal to switch in period two following a switch in period one, i.e. to deviate

to q1 = 1. Thus, the only possibility for q1 to be optimal is that q1 =
1
2
. Indeed, q1 =

1
2

equates the payoffs from switching and not switching following a switch.

Since p ∈ (0, 1) in any attainable equilibrium strategy, player i’s payoff from switching

in the second period must be identical to the payoff from not switching. Player i’s payoff

from not switching against the putative equilibrium strategy
¡
p, 1, 1

2

¢
in the second period,

Πi
¡
si =

¡
0, 1, 1

2

¢
, sj 6=i =

¡
p, 1, 1

2

¢¢
, is

c
k

2n
+ c

µ
2n − k
2n

¶
δ


k

2n−1

µ
1− (1− p)n−1
+δ (1− p)n−1

¶
+δΣn−1j=1


pj (1− p)n−j−1 ¡n−1j

¢ ¡
2n−1−k
2n−1

¢
¡

k
2n−2

¢µ 1− qj1 (1− q0)n−j
− (1− q1)j (1− q0)n−j

¶ 

 .

Player i’s expected payoff from switching against the putative equilibrium strategy
¡
p, 1, 1

2

¢
used by players j 6= i in the second period, Πi ¡si = ¡1, 1, 1

2

¢
, sj 6=i =

¡
p, 1, 1

2

¢¢
, is

c
k

2n
+ c

µ
2n − k
2n

¶
δ


k

2n−1

+δΣnj=1


pj−1 (1− p)n−j ¡2n−1−k

2n−1
¢

¡
k

2n−2
¢µ 1− qj1 (1− q0)n−j
− (1− q1)j (1− q0)n−j

¶ 
 .

Equating the payoffs from switching in the second period and from not switching in the

second period and using the fact that q0 = 1, we get

13



(−(1− p)n−1 + δ(1− p)n−1)2
n − 2
2n − 1 + δ

n−1X
j=1

pj(1− p)n−j−1
µ
n− 1
j

¶
2n − 1− k
2n − 1

= δ
n−1X
j=1

pj−1(1− p)n−j
µ
n− 1
j − 1

¶
2n − 1− k
2n − 1 + δpn−1

2n − 1− k
2n − 1 (1− qn1 − (1− q1)n).

After eliminating matching terms on both sides of the equation, we are left with

(−(1− p)n−1 + δ(1− p)n−1)2
n − 2
2n − 1

= δ(1− p)n−12
n − 1− k
2n − 1 − δpn−1

2n − 1− k
2n − 1 (qn1 + (1− q1)n).

Now, one can easily check that this equation is equivalent to the first-order condition that

determined p∗(δ, n, k) as part of the unique optimal attainable strategy. 2

Note that in the unique attainable Nash equilibrium, agents condition their behavior on

their own past actions, which are not publicly observable. Therefore no public attainable

Nash equilibrium exists in our game. There has been some recent work on the effects of

restricting the analysis of games with imperfect monitoring to public equilibria. Fudenberg,

Levine and Maskin [1994] obtain a Folk Theorem in perfect public strategies for games

with imperfect public monitoring as long as the public signal permits statistical detection

of individual deviations. In contrast, Radner, Myerson and Maskin [1986] show that perfect

public equilibrium payoffs are uniformly bounded away (in the discount factor) from the

efficient frontier in repeated partnership games with discounting, while Radner [1986] shows

that efficiency can be attained in repeated partnership games without discounting. Recently

Obara [2000] has shown that the equilibrium payoffs obtainable with perfect public strategies

in the Radner-Myerson-Maskin example can be improved upon by permitting players to

condition their behavior on their own past actions, which are not publicly observable. Thus,

Obara shows that the restriction to public strategies may constrain efficiency, while our

example shows that this restriction in conjunction with the attainability requirement can

rule out existence.

Simple inspection of p∗(δ, n, k) yields a number of interesting comparative statics predic-

tions.
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Proposition 5 In the three-period repeated failure-or-success game with two actions per

player, common discount factor δ, n players, and k success profiles, the unique optimal and

equilibrium value of the second-period switching probability p is a monotonic function of δ, n

and k. The function p∗(δ, n, k) (1) is strictly decreasing in δ, (2) is strictly decreasing in n,

(3) is strictly decreasing in n even if k
2n
is kept constant, (4) is strictly increasing in k, (5)

converges to 2
3
as δ → 1, (6) converges to 1 as δ → 0, and (7) converges to 2

3
as n→∞.

For the three-period case, the proposition summarizes how agents’ responses to failure

in an organization vary with the fundamentals that characterize the organization. Since the

third-period switching probabilities do not vary with the parameters, the proposition focuses

on the switching probability in the second period, following a failure in the initial period. In

the three-period model all three parameters, i.e., the discount factor, the number of agents

in the organization, and the initial success probability, affect this switching probability; this

contrasts with the two-period case where agents always prefer to switch with probability

one following a failure.6 We infer the following from the proposition: (1) Agents in the

organization respond more slowly to failure as the future becomes more important. Rather

than always immediately seizing a new success opportunity, agents take into account how

their behavior affects the point of departure in the next period if they do not succeed in

the present period. (2) Agents respond more slowly to failure as the size of the organization

increases. The larger the organization, the greater is the incentive to rely on others for

change. Note that the benefit from relying on others does not derive from free-riding but from

the increased probability of generating asymmetries. (3) The effect of increasing organization

size on agents’ responses to failure remains the same even if the a priori success probability

is kept constant. This can be interpreted as meaning that the size effect remains even if large

organizations have the same technology as small ones. Since the effect of size on reactivity

is strictly negative in this case, it would remain so even if larger organizations had slightly

better technologies. (4) Agents in the organization respond faster to failure as the success

probability is increased. (5) Even very patient agents change their behavior with positive

6It is difficult to obtain analytical and even numerical solutions for four and more periods. We have
explored the four-period case for n = 2 and k = 1. In that case, the comparative statics for δ remain the
same as in the three-period case. We expect that at least for moderate discount factors, adding more periods
does not affect our comparative statics results too much. For small discount factors, n = 2 and k = 1, the
infinite horizon case is analyzed in the following section.
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probability. (6) Very impatient agents seek immediate success. (7) Even in a very large

organization agents respond to failure with a probability that is bounded away from zero.

5 The Infinite Horizon Case

For large T, the analysis of the general version of the repeated success-and-failure game

becomes increasingly intractable, even if we limit ourselves to two players, two actions and

a single success pair, as we will from here on. It turns out, however, that for small discount

factors we can approximately characterize the solution for any horizon. The case of small

discount factors is interesting because, unlike in the case of ordinary repeated games, there

are significant intertemporal links no matter how small the discount factor. Indeed, the

analysis of the limit lays bare the role of information in determining play.

For expositional purposes, we formulate our results for the infinite horizon. Statements

and proofs apply to any horizon with hardly any changes. Our approach will be to identify the

solution for δ = 0 and then to argue that any solution for small but positive δ approximates

the solution for δ = 0. Some care is required in order to discuss in a meaningful way optimal

attainable strategies when δ = 0. In particular, we want to get restrictions on behavior not

just in the first period. For that reason we employ a mild sequential optimality condition:

We require an optimal attainable strategy to remain optimal attainable after every positive

probability history. The same holds for equilibrium attainable strategies. For δ > 0, this

condition is automatically satisfied. Thus, it is natural to maintain it in studying optimal

solutions in the limit.

To state the next result, we need to introduce switching probabilities conditional on sets

of histories. By definition, a switching strategy σ specifies a switching probability σ(ht)

conditional on each individual history ht ending in period t − 1. In addition, for any set
of histories Hαt ending in period t − 1 that has positive probability under σ we can define
an aggregate switching probability, the probability of switching conditional on the history

being in the set Hαt; α is an index that is either “odd” or “even” and will later be used

to differentiate between the set of length t − 1 histories with an even number and an odd
number of switches. Let ρ(ht, σ) denote the probability of history ht that is induced by

switching strategy σ, and define the probability of history ht conditional on being in the
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σ-positive-probability set Hαt as

ρ(ht, σ|Hαt) :=
ρ(ht, σ)P

h0t∈Hαt ρ(h0t, σ)
.

The switching probability conditional on set Hαt can then be defined as

σ(Hαt) :=
X

ht∈Hαt

σ(ht)ρ(ht, σ|Hαt).

Note that for any σ-positive-probability set Hαt the switching probability conditional on Hαt

is independent of the specification of switching probabilities after individual histories that

are in Hαt but have probability zero under σ. Define the set Het of histories with an even

number of switches and the set Hot of histories with an odd number of switches, and call the

switching probabilities conditional on these sets, when they are well-defined, the switching

probability conditional on even and odd histories, respectively.

Proposition 6 In the infinite horizon repeated failure-or-success game with two actions per

player, common discount factor δ = 0, 2 players, and 1 success profile, (1) there exists a

public optimal attainable strategy σ∗ that prescribes switching with probability one in odd

periods and with probability one-half in even periods; and, (2) in every optimal attainable

strategy σ the switching probability is one in odd periods, and in even periods both the switch-

ing probability conditional on odd histories and the switching probability conditional on even

histories equal one-half.

Proof. We show that any attainable strategy σ whose switching probabilities conditional

on odd and even histories equal one-half in even periods and whose switching probability

in odd periods equals one is an optimal attainable strategy. We proceed by induction. We

first show that switching with probability one is uniquely optimal in period one and that

conditional on having switched with probability one in period one, it is uniquely optimal

to switch with probability one-half in period two. We then show for any t that if σ is as

specified until period t−1 then it is uniquely optimal to satisfy the specification in period t.
Recall that the initial, 0 period, randomization is constrained to assigning probability

one-half to either action. If the 0-period-action pair was not successful, switching with

probability one is the only way to ensure that the same pair will not be chosen in period
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1. Since all other action pairs are equally likely to be the success pair, minimizing the

probability of repeating the first-round choices is uniquely optimal in period one. If there is

a unique optimal switching probability in a given period, δ = 0 requires that this switching

probability be part of any optimal strategy.

Without success prior to period 2, the goal in period 2 is to minimize the probability of

repeating the two first-round choice pairs. A new action pair will be chosen exactly when

one player switches and the other does not. Denoting the switching probability in period

2 by σ2, the probability of success in that period is
1
2
σ2(1 − σ2), which is again uniquely

maximized with a switching probability of one-half.

A similar argument applies after any success-free history conforming with σ in which the

last switch was a probability one switch. The argument is slightly different because we have

to allow players to condition their switching probabilities on their individual histories.

Let period t be even. Since period t is even, by assumption both players switched with

probability one in the preceding period. Since we are in period four or higher, there have

been at least two simultaneous probability-one switches. Hence it is impossible to have

reached the current period without success while one player’s history is even and the other

player’s history is odd. Thus, either both players’ histories are even, or they are both odd.

Therefore, given that σ is as specified in the proposition until period t− 1, with probability
one-half both players’ histories are in Het, and otherwise they are both in Hot. In either case,

in order to have a chance for a success one of the players has to switch while the other stays

put. There are two ways in which this can happen, and if it does there is a one-half chance

of a success. Therefore, the success probability conditional on having reached period t is

Π(t) = c
1

2
2σ(Het)(1− σ(Het))

1

2
+ c
1

2
2σ(Hot)(1− σ(Hot))

1

2
=

c
1

2
σ(Het)(1− σ(Het)) + c

1

2
σ(Hot)(1− σ(Hot)).

This function attains its maximum whenever

σ(Het) = σ(Hot) =
1

2
.

It remains to show that if t is odd and given that σ has been followed until period

t− 1, it is uniquely optimal to switch with probability one in period t. By assumption, both
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players switched with probability one-half in period t− 1 and with probability one in period
t − 2. Conditional on no success in period t − 1, a precondition for arriving in period t,
the probability of being at one of the two action pairs visited in periods t − 3 and t − 2 is
two-thirds and the probability of being at one of the remaining action pairs is one-third. In

the two-thirds case, for a success to be possible one of the players must switch while the

other stays put. With probability one-half this happens when both players’ histories are

even (odd), in which case there are two ways in which it can happen, both of which have

success probability one-half. In the one-third case, there is certain success if and only if both

players switch. Hence, if t is odd and σ has been followed until period t−1, then the success
probability in period t is

Π(t) = c
2

3
(
1

2
σ(Het)(1− σ(Het)) + c

1

2
σ(Hot)(1− σ(Hot))) + c

1

3
σ(Het)σ(Hot).

The derivative of the success probability with respect to σ(Het) is

∂Π(t)

∂σ(Het)
= c

1

3
− c2

3
σ(Het) + c

1

3
σ(Hot),

and similarly

∂Π(t)

∂σ(Hot)
= c

1

3
− c2

3
σ(Hot) + c

1

3
σ(Het).

Either both switching probabilities equal one, and we are done, or the sum of both

derivatives is positive. Suppose the latter holds. Since the sum of the two expressions is

positive, at least one of them must be positive. Suppose ∂Π(t)
∂σ(Het)

> 0 at the optimum, then

σ(Het) = 1. But then ∂Π(t)
∂σ(Hot)

= 2
3
− 2

3
σ(Hot), which is strictly greater than zero unless

σ(Hot) = 1 as well. Thus, in either case σ(Hot) = 1. Since the argument is symmetric, it

has to be the case that σ(h) = 1 ∀h ∈ Het and σ(h) = 1 ∀h ∈ Hot. 2

The optimal attainable strategy of switching in odd periods and randomizing with prob-

ability one-half in even periods conditions only on time and is therefore a public strategy.

This contrasts with the case of δ > 0 and three-periods, where the unique optimal attainable

strategy made behavior-contingent on players’ own past switches.
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Proposition 7 If we let σ(Het; δ) denote the switching probability after even histories under

any strategy σ that is optimal attainable given the discount factor δ (and similarly for odd

histories), then

σ(Hαt; δn)→ σ(Hαt; 0)

for α = e, o, t = 1, 2, . . . and δn → 0.

Proof. A moment’s reflection shows that the payoff function Π has the following general

form:

Π(σ, δ) = c
1

4
+ c

∞X
t=1

δtπt(σ1, . . . , σt),

where σt is the vector of history-dependent switching probabilities in period t and πt(. . .)

is the probability of success in period t as a function of all probability choices that affect

period t, i.e., all those prior to and in period t. Each πt(. . .) is a polynomial and therefore

continuous.

We proceed by induction on t. Recall from the previous result that σ(Hα1; 0) is uniquely

determined in any solution to the problem of maximizing π1(σ1). In other words, for any

alternative strategy σ̃ such that σ̃(Hα1; 0) 6= σ(Hα1; 0), we have

π1(σ1)− π1(σ̃1) > ²

for some ² > 0. Therefore

Π(σ, δ)− Π(σ̃, δ) > δ²− δ2,

where we use the fact that the maximum payoff in the game is one, corresponding to im-

mediate success, and that payoffs are bounded below by zero. Hence, as soon as δ < ², we

have

Π(σ, δ)− Π(σ̃, δ) > 0,

which establishes our claim for t = 1.

Suppose the claim holds for any τ < t. We will show that it holds for period t. We

know from the previous result that if σ(Hατ ; 0) = 1 for α = e, o and all odd τ < t, and

σ(Hατ ; 0) = 1
2
for α = e, o and all even τ < t, then any attainable σt that maximizes

πt(σ1, . . . ,σt−1,σt) must satisfy the same two conditions with t replacing τ.
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Consider a sequence {σ(δn)} of optimal attainable strategies corresponding to a sequence
of discount factors δn → 0. Suppose, in order to obtain a contradiction, that

σ(Hαt; δn) 6→ σ(Hαt; 0).

Then there exists an η and a subsequence {δnk} of {δn} such that

|σ(Hαt; δnk)− σ(Hαt; 0)| > η ∀k = 1, 2, . . . .

Then σ(δnk) has a convergent subsequence, which after reindexing we also denote by {σ(δnk)}.
Denoting the limit of this subsequence by σ̃, we infer that

|σ̃(Hαt)− σ(Hαt; 0)| > η.

From the previous result, there exists an ² > 0 such that

π(σ1(0), . . . ,σt−1(0), σt(0))− π(σ1(0), . . . ,σt−1(0), σ̃t) > ².

Thus, using the fact that

σ̃(Hατ ) = σ(Hατ ; 0) ∀ τ < t,

we get

Π(σ(0), δ)− Π(σ̃, δ) > ²δt − δt+1.

Therefore, for any δ < ², we get

Π(σ(0), δ)−Π(σ̃, δ) > 0

such that convergence of σ(δnk) to σ̃ and the continuity of Π imply that for all sufficiently

large k

Π(σ(0), δnk)−Π(σ(δnk), δnk) > 0

which contradicts the presumed optimality of σ(δnk). 2

Since we proved earlier that every optimal attainable strategy is an equilibrium strategy,

we immediately infer that the simple public strategy that is optimal attainable for δ = 0 is

also an equilibrium strategy.
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Corollary 2 With an infinite time horizon and δ = 0, there exists an equilibrium attainable

strategy in which both players switch with probability one in even periods and with probability

one-half in odd periods.

In the discounting case, there is a simple intuitive link between optimality and equi-

librium for attainable strategies. Lest the reader think this is obvious we note that this

link disappears if we replace discounting with δ = 0 by a lexicographic preference for early

success.

For any two sequences of expected stage-game payoffs of player i, πi and π̂i, define

t∗ := max{t ≥ 0|πiτ = π̂iτ ∀τ < t}.

We say that player i lexicographically prefers the sequence πi of expected stage-game payoffs

to the sequence π̂i, πi Âi π̂i, if and only if πit∗ > π̂it∗.

Proposition 8 With lexicographic preferences for early success, the infinitely repeated game

does not have an attainable Nash equilibrium.

Proof. To derive a contradiction, suppose there is such an equilibrium. The attainability

restrictions on strategies imply that in the initial (0 period) players uniformly randomize

over their actions. If players’ switching probability in period one is less than one, each

player’s unique best reply is to switch with probability one. Thus, the only candidate for an

attainable equilibrium requires players to switch with probability one in period one. Then,

the switching probability in period two cannot equal zero or one because otherwise each

player could gain by deviating to switching with probability one or zero.

Thus in any candidate σ∗ for an attainable Nash equilibrium, the period-one switching

probability is one and the period-two switching probability σ∗2 (conditional on switching

in period 1) satisfies 0 < σ∗2 < 1. As a consequence, conditional on no success in the

first two periods, the expected number of action combinations examined in the first three

periods is less than three. However, a player can deviate to the following strategy: switch

with probability zero in period one and with probability one in period two. The success

probabilities in periods zero and one are identical to the equilibrium candidate’s success

probability, and conditional on no success, the number of action combinations examined in

the first three periods equal three. 2
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6 Related Literature

Interest in organizational learning dates back to at least Cyert and March [1963]. They view

an organization as an “information gathering and decision-rendering system” and share with

Simon [1947] the emphasis on decision processes in organizations. According to them, some

problems are routine and handled by “standard operating procedures.” If problems change,

routines are adjusted through learning. Organizations search for better solutions, and search

order itself changes according to success and failure with a given search order in problems

of the same type. Cyert and March also point out that the code or language in which an

organization frames its problems changes through experience.

Simon views the organization as composed of boundedly rational agents and Cyert and

March refer to the firm as an adaptively rational system. Much of the recent work on

organizational learning is in this tradition. While we share the interest in how information

is processed and decisions are rendered, the present paper explores what we can learn from a

fully rational learning perspective. To the extent that equilibrium matters for the bounded

rationality approach, one can perhaps characterize it as learning an equilibrium, whereas we

investigate learning in equilibrium.

Organizational learning differs from individual learning because of decentralization of

information and decisions. Because of decentralization of decisions, the learning activity

of some agents may confound and frustrate the learning of others. This perspective on

organizational learning is in line with the transaction cost view of the firm and in contrast

with the neoclassical view of the firm as a single decision maker. Because of decentralized

learning activities, organizational learning poses a complex coordination problem. Ideally,

to learn efficiently, the organization may have to induce an intricate pattern of contingent

decisions by its members. If decision making is diffuse, this may be next to impossible.

To formally represent the problem posed by decentralization, it is necessary but not

sufficient to model the firm as a collection of independent strategic agents, i.e., a game.

If we ignore conflicts of interest in the organization, the intricate decision pattern alluded

to above may well be a Nash equilibrium of this game. The problem though is how to

achieve the necessary coordination. In order to capture what differentiates organizational

from individual learning, we need to formalize the constraints that decentralization imposes
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on the organization’s ability to coordinate on an efficient learning equilibrium.

We model the decentralization constraints as lack of a common language. Following

Crawford and Haller [1990], lack of a common language for a set of objects (e.g., actions

in a game or decisions and agents in an organization) can be represented via symmetry

restrictions on agents’ beliefs about the strategies of other agents. One can modulate the

symmetry constraints to represent various degrees of severity of the decentralization con-

straints. In addition, the history of repeated interaction in the organization may help in

(partially) removing symmetry constraints. Thus part of the learning process consists of the

construction of a common language to label decisions and agents in the organization.

We study the role of decentralization constraints for an organization that gathers informa-

tion about which action profiles are optimal. The generation and processing of information is

central to organizational activity. Prescott and Visscher [1980] go as far as saying that “The

manner in which information is accumulated in the firm offers an explanation for the firm’s

existence.” In Prescott and Visscher’s setting a central agency in the organization accumu-

lates the information. In our setting information entirely resides with the individual agents

in the organization. Thus we are considering problems facing the “several-person firm” de-

scribed by Marschak [1960], where each decision maker “decides about different things and

on the basis of different information.” Marschak [1960] and Milgrom and Roberts [1990a,b]

emphasize independent decision making and the role of complementarities for organizational

form. Marschak emphasizes the possibility of managers “step[ping] on each other’s toes”

and notes that complementarities may play a greater role when successive operations are re-

quired. Noting that there may be multiple optima, he observes that “two or more timetables

are often equally good, but some ‘co-ordinator’ has to choose one.”

The need to newly discover optimal action profiles arises in a changing environment. If

these changes are routine, the discovery process may itself follow a possibly complicated

routine, as if it were coordinated by a central agency. If changes are novel, e.g., because

they frequently involve different subsets of agents in the organization, new agents in the

organization, or completely new sets of available action, it is less likely that complicated

learning routines develop. We offer a model of individual learning in an organization where

novelty is captured through symmetry. In a novel situation agents are likely to lack at
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least some of the common distinctions necessary to implement intricate asymmetric learning

schemes. The case of extreme symmetry, without any common distinctions of actions and

agents, can be viewed as a benchmark for the value of coordination and of corporate culture.

Organizations need to learn to overcome absence of a common language each time they

encounter novel circumstances. Recurrent novelty provides a role for (corporate) culture

to guide this learning process. Culture can be viewed as a partial language, with some of

the symmetries removed. It can serve as a focal point, Schelling [1960], in unanticipated

situations. This is in line with Kreps’ [1990] discussion of corporate culture as an answer to

coordination difficulties that arise due to novel circumstances, or “unforeseen contingencies.”

Both Crémer [1993] and Hermalin [2000] make the connection between corporate culture and

a common language. Crémer defines culture as common language plus shared knowledge of

facts plus shared knowledge of simple rules. Hermalin [2000] argues that both coordination

issues and unforeseen contingencies justify a role for culture. He adopts a partition view of

a partial language that is consistent with our and Crawford and Haller’s [1990] approach of

using (partial) symmetry to express (partial) lack of a common language. Corporate culture

assists organizational learning by labeling agents and decisions and thereby providing a

scaffold for the construction of intricate learning schemes.

Crawford and Haller’s approach to modeling language constraints through symmetry

has been further developed and used in a number of recent papers. Blume [2000] studies

partial languages with structure akin to a grammar or culture that enhances the use of the

language in coordination and learning. Rubinstein [1996, 2000] uses an alternative approach

for studying structure in language through properties of binary relations. Kramarz [1996]

extends CH’s work to n-player games. Bhaskar [2000] applies CH’s approach to a game

with conflict, the infinitely repeated Battle of the Sexes. Alpern and Reyniers [2000] study

attainable strategies, subject to additional Markov restrictions, in games with many players

whose goal is to disperse themselves among a finite set of locations.

Symmetry and language construction have also been looked at in the experimental liter-

ature. Blume, DeJong, Kim and Sprinkle [1998, 2001] experimentally study the emergence

of meaning for a priori meaningless messages in repeated sender-receiver games. Blume and

Gneezy [2000] find evidence for attainability in cognitively simple games. Blume and Gneezy

25



[2001] show that the attainability idea can also be used in settings where players do not have

common knowledge of the language they are using. They show that players form beliefs

about each other’s languages and use cognitive forward induction, i.e., signal their language

if given the opportunity. Weber and Camerer [2001] use a language construction experiment

to study conflicting organizational cultures in the laboratory. In the experiment, “firms”

develop some common language and are then merged. As one might expect, performance

deteriorates immediately after the merger as a result of the conflict cultures, or local idioms.

It takes time for the languages to be harmonized again.

Language provides both the means for communicating within the organization and the

shared concepts used by members to infer how others think within the organization. While

in this paper we focus on language constraints as constraints on common concepts in orga-

nizations, the importance of similar constraints on communication in organizations has been

noted as well. The philosopher Putnam [1973] formulates the “hypothesis of the universality

of the division of linguistic labor.” Arrow [1974] stresses the local nature of an organization’s

code and links differences in codes to multiple equilibria and history dependence. Nelson

and Winter [1982] speak of the “internal language of communication in an organization.”

Learning in environments with multiple independent decision makers has recently at-

tracted attention across a wide array of disciplines and with a large number of different

approaches. Computer scientists, e.g., Sen and Sekaran [1998], Huhns and Weiss [1998] (for

a brief survey) and Wellman and Hu [1998], have studied multi-agent learning, often with

adaptive routines, such as reinforcement learning. On the boundary of computer science and

psychology, there is work on collaborative learning, Dillenbourg [1999], which is, for example,

interested in the “co-construction of a common language” (culture) in environments charac-

terized by action symmetry, shared goals, and low division of labor into sub-tasks. Within

cognitive science, there has been interest in distributed cognition, e.g., Hutchins [1995] and

Hollan, Hutchins and Kirsh [1999]. This work emphasizes that the relevant cognitive entity

is not necessarily the individual and studies organizational learning from this perspective.

Organizational learning is also addressed in the strategic management literature; for a dis-

cussion of that literature and its link with the economics literatures on learning and the

firm see, for example, Boerner, Macher and Teece [2000]. Closely related to the computer

26



science work on multi-agent learning, there is work on organizational learning in computa-

tional organization theory, e.g., Carley [1998] and Carley and Hill [2001]. One of the themes

there is to view organizations as synthetic agents, with knowledge existing in their culture

and structure. Another branch of organization theory has been concerned with how to opti-

mally structure hierarchies that search for optimal production plans, e.g., Beckmann [1977]

and Keren and Levhari [1983]. Radner [1993] under some conditions derives hierarchies as

efficient structures for decentralized information processing in organizations.

The bulk of the work just described invokes some kind of bounded rationality of the

agents and sometimes argues that the cognitive ability of an organization may transcend

that of the agents comprising it. In contrast, the present paper assumes that agents are

fully rational and obtains its predictions from the interplay of rational learning, limited

observability, and symmetry constraints. Fully rational learning in strategic settings is also

investigated in the literature on many-agent versions of the multi-armed bandit problem,

Bolton and Harris [1999], games with unknown payoff distributions, Wiseman [2000], and

the literature on informational herding, e.g., Banerjee [1992] and Bikchandani, Hirshleifer

and Welch [1992].
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