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These notes contain derivations of expressions and results reported in the main text.
We also provide intuition for some of the results and details on the computation of equi-

libria.

1. The Model

The model is a two-country business cycle model. Each country is populated by a large
number of identical, infinitely-lived consumers. In both countries, intermediate goods are
combined to form final goods which are country specific and cannot be shipped. All trade
between the countries is in intermediate goods that are produced by monopolists who
can charge different prices in the two countries. We assume that each intermediate goods
producer has the exclusive right to sell his own good in the two countries. Thus, there is

no possibility for arbitraging away price differences in intermediate goods.

1.1. Notation

Goods produced in the home country are subscripted with an H, while those produced
in the foreign country are subscripted with an F'. Allocations and prices in the foreign
country are denoted with an asterisk. We use a caret over a variable to denote its logged

deviation from the mean.

1.2. Uncertainty

In each period t, the economy experiences one of finitely many events s;. We denote by
st = (sg,...,8¢) the history of events up through and including period ¢. The probability,

as of period zero, of any particular history s’ is 7(s*). The initial realization sq is given.



1.3. The Final Goods Producers

Final goods producers behave competitively and solve a static profit-maximization prob-
lem. In the home country in each period producers choose inputs yg (i) for i € [0, 1] and

yr (i) for i € [0,1] and output y to maximize profits given by

max Py — /0 Pry (i) (1) di — /O Pr(i)yr(i) di (1.1)

Y= [wl (/01 yH(i)edz)p + ws </Olyp(i)9dz')

where y is the final good, P is the price of the final good, yg (i) and yp(i) are intermediate

subject to

/0 p/07%

(1.2)

goods produced in the home and foreign countries, respectively, and Py (i) and Pp(i) are

their prices. These prices (P, Py, Pr) are in units of the domestic currency.

The first-order conditions of the problem above with respect to yg (i) and yp(i) are

L _wlpyl—p (fyH(i)9 di)g—l— =
yal) = i Py (i) |

L [ Wy Pyl— ([ yr(i)° di)g_l- =
0= Pr(i) _

If we raise the first expression to the power 6, integrate across ¢, and solve for [yg (4)? di,

[ i = forpy = ([t ar) [ patiyet a
= Wi P77 o </ Py ()7 dz’) o

Similarly, we can derive an expression for [ yr(1)? di. Substituting these expressions into

we get

the first-order conditions, we get the input demand functions:

1 Pz
PlT-% P(l—p)(9—1)
ym (i) = P Py y (1.3)
Py (i)T-2
[WQP]Tlp p%
yF(Z) = Fl Yy (14)
Pp (i)™
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6—1

where P; = (fo Pr(i 0 1 dz) ’ for I = H,F.
To get the price of the final good, we use the zero-profit condition which implies that

p—1

1 e
P:<w11"PI§ + 21"P" > : (1.5)

If we solve the analogous problem for the foreigners, we get:

P i P Gl (1.6)
P(i) ™

Yo (i) = [(.UQP*] (]5;}2(1 ISy . 1)
Py (i)

P = (w?ﬂ(ﬁ Vi 4wl (P )T (1.8)

1.4. The Consumer’s Problem

The consumer chooses consumption ¢, labor [, and real balances M /P to maximize:
YO (s U (c(sh), 1(sh), M(s") [ P(s")) , (1.9)
t=0 gt

subject to the sequence of budget constraints

P(s')e(s") + M(s') + ) Q(s"[s")B(s")

St+1

< P(sYw(sHi(sY) + M(s'™1) + B(s") + (s") + T(s") (1.10)

and borrowing constraints B(s*t!) > —P(s!)b. M and B are their holdings of money and
contingent claims, () is the price of the claims, w is the real wage, II are profits, and T are

government transfers.



The first-order conditions for the consumer are:

_ Ui(s") — wi(st

Oy = W) (1.11)
Um(St) t g+ (3t+1) _

() -I-ﬁsil | —( ) 0 (1.12)

U.(st) P(st™1)

Q(3t|3t_1) = 5W(St|8t_1) U.(st=1) P(st)

(1.13)

where U(s') is shorthand notation for U(c(s?),l(s"), M (s')/P(s")).

Let R(s!) and r(s!) be the gross and net nominal interest rates, respectively; they are

defined as follows:

1 t+1
R(st) 1+7r( st Z Qs ’S

St+1

St+1

and 7(s') = R(s') — 1. Notice that we can also write the money demand equation in (1.12)

more simply, (o (s
Un(s’) (s
Udc(st) — 147r(st)

(1.15)

using the definition in (1.14).

1.5. The Foreign Consumer’s Problem

The foreign consumer solves a problem similar to that of the home consumer, namely to

SN Ba(sh) U (e (s, 1% (s), M*(s1)/ P*(s")) (1.16)

subject to the sequence of budget constraints

P*(s')e"(s") + M*(s') + Y Q*(s" s ) Bi(s™) + Y Qs [s") By (s Je(s")

St41 St41

< PH(sHw* (s (s') + M*(s'™1) 4+ Bi(s") 4+ B (s") Je(s') + IT*(s') + T*(s') (1.17)

4



where Bj;(s') and Bj(s') denotes the foreign consumer’s holdings of home and foreign
country bonds in state s’, respectively. The first-order conditions with respect to bonds

are given by:

U*(St) P*(St—l) e(st—l)

Q1) = Bl ) G N T e (1.18)
* St * St—l
Q*(st|st—1) — ﬁﬂ'(st’St_l) Uc( ) P ( ) (1.19)

Us(s'=1) P(s")
If we equate the bond prices derived here (in (1.18)) and above (in (1.13)), we get

Ue(s') P(s'™Y) _ U(s") Pr(s"1)e(s")
Ue(s'=1) P(s')  Ux(s'=1) Px(s) e(s')

We can iterate back to 0 and let g(s!) = e(s!)P*(s!)/P(s') denote the real exchange rate.
Then we find
Us(s')
B =kt 1.2
Q(S ) K UC(St) ( 0)

where x is the real exchange rate at 0 times the ratio of marginal utilities at 0. When

computing an equilibrium, we normalize x to 1.

1.6. The Intermediate Goods Producers

Intermediate goods producers are monopolistically competitive. They set prices for their
goods, but they most hold them fixed for N periods. We assume that price-setting is done
in a staggered fashion so that 1/N of the firms are setting in a particular period. We
compute a symmetric equilibrium so we assume that all firms ¢ € [0, 1/N] behave the same

way and all firms i € [1/N, 2/N] behave the same way, and so on.

The problem solved by the home intermediate goods producers setting prices is to
choose sequences of prices Py, capital stocks k, investments x, and labor inputs [ to
maximize

oo
DD QT [Puliy s ym (i s7) + e(sT) P (i, sT)yf (i, s7)

7=0 s7

— P(sT)w(s™)l(i,s7) — P(s7)x(i, sT)] (1.21)

5



subject to the input demands (1.3) and (1.4), the production technology:
ym (i,8") + g (i,s') = F(k(i, '), Ui, s")), (1.22)
the law of motion for capital used in producing good :
k(i,s") = (1 —8)k(i,s" 1) +x(i,s") — ¢ (W) k(i,s'™h) (1.23)
and the following constraints on prices:

PH(i, St_l) = PH(i, St) =. ..PH(i,St+N_1)

PH(Z, St+N) — PH(Z, St+N+1) — PH(Z, st+2N—1)
Pi(ins) = Ph(is') = .. Pi(i,s N
P (i, sY) = Ph(i, sV = PR (6, 8N

(1.24)

where Q(ST) is the 7th period Arrow-Debreu price (that is, a product of the one-period
Q(St’St_1)7S).
The Lagrangian in this case is

L=.. .+ Q(st){ [PH(Z', s T Ay (sh) + e(sh) Py (4, st 1) 7T A% (1)

— P(sHw(s"I(i,s") — P(s")x(i, s")

+ A(H{(L = 8)k(i,s" ) + z(i, s")
— Olw(i,5) /(i sk, ) — (i, 5}

£ 30 QU ) [ Parl, s T A (81 + e(s ) Py (i, 5 ) T A (57

St41



— P(s"™Hw(s'™Hi(i, s — P(s' (i, ')

1

+ C(St+1){F(k‘(i, St), l(Z, St+1)) _ AH(St+1)PH(i,St—1)m

— Ny (s Py (i, s 7T

+ )\(st“){(l — 8)k(i,s") + z(i,s'™)

= olw(i, s [k, )k, ) — k(i 5™}

+} (1.25)

where
Apr(s') = [wr P(s)] 7 Pry(s' =) T y(s) (1.26)
N (s1) = [waP* ()] 77 (P (st 1)) T y*(st). (1.27)

The variables ¢ and A are multipliers for constraints (1.22) and (1.23), respectively.

Taking the derivative of £ in (1.25) with respect to the monopolist’s prices Py (i, st 1)

and P} (i,s'1), we find

> QIS {0Puliy s YT AR(ST) — (5T Pl T A (s) f =0 (1.28)

1 . —IN2=2 v w T
DD QUL {0e(s7) Pir s ) T A (57) — C(s7) P (i 81 BT ARy (57) =0, (1.29)
Taking the derivative of £ with respect to I(7, "), we find:
—P(sHw(s") + ¢(s") Fi(i, s") = 0. (1.30)
The derivative of £ with respect to x(i, s') is:
_p(st) + At [1— o (202D Y] (1.31)
(i, st—1) ' '

7



Finally, the derivative of £ with respect to k(i, s') is:

A+ QU e A A 10

St+1
2,8 | (26,8 2,5t
— —_— = 0. 1.32
¢( ks ) T\ ThGs ) kG s Jj=0 a3
If we substitute expressions for the multipliers using (1.30) and (1.31) into (1.28),

(1.29), and (1.32), we get
_ 2 2 QTS P(sT)me(i, sT) A u (s7)

Py (i, st7t 1.33

nlh ) 05, 5. QT An(s") (139
T|ot—1 P(ST)WIC(Z ST)A* (ST)

P i,St_l — ZT Zs" Q(S ’S ) ) H 1.34
s Y QW s el A () (139
U (s" , ,

e ¢Ef¢,)st) _ 5; 7r(st+1]st)Uc(st+1){mc(z, S By (i, s

1 . . x(i, stT1)
1-§— t+1 / t+1 ’ (1.
T [ et L
Note that we have used the fact that marginal costs of producer ¢ are given by:
me(i, s') = w(s') /Fy(i, s"). (1.36)

1.7. The Government
Monetary policy is modeled as an exogenous process for monetary growth rates, that is
M(s') = p(s)M(s"™) (1.37)
where p is a stochastic process. The process that we use is
log pu(s') = plog u(s' ™) + (1 — ppu) log pu + €0 1. (1.38)
The home government budget constraint is given by:
T(s") = M(s") — M(s'™h). (1.39)

where T' are transfers to consumers.



1.8. Additional Equilibrium Conditions

We need some additional conditions before computing an equilibrium. The resource con-

straint in the home country is given by
1
y(s') = c(s?) +/ x(i, s") di.
0
The labor market clearing condition is given by
I(s") = /l(i,st)di.

There are analogous conditions for the foreign country.

1.9. Aggregates of Interest

Nominal and real net exports are defined as follows:
NX(s') = e(st)/P}Q(z’, sy (4, 8 di — /Pp(i,st_l)yp(i, s') di
nr(s') = NX(s')/P(s").
Nominal and real GDP are defined as follows:

GDP(s") = P(s")y(s") + NX(s")
gdp(s') = y(s") + / v (i, st di — / yr(i, ) di

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)



1.10. Extensions

The economy just described is our benchmark economy. We now describe four extensions

that we also consider.

1.10.1. Taylor Rule as Fed Policy

Above we assumed that there was an exogenous process for the monetary growth rates.
We also consider cases where the Fed follows a Taylor-like interest rate-setting rule. In

particular, we assume that the nominal interest rate is given by

i r(s'~
t— 2)
r(st— 3)
Eilog P(stt1) —log P(s
;| log P(s') —log P( =
log P(st™1) —log P(s'~
log P(s172) — log P(s'73)
log gdp(s')
log gdp(s'~")
| log gdp(st—2) i

with the foreign rate defined analogously. In this case, we back out money from the money

»—‘A
H-
~—

+ constant + €, ¢ (1.46)

demand equation (1.15), U,,/U. = r/(1 + r), once we know consumption, labor, and the

interest rate.

1.10.2. Incomplete Asset Markets

When markets are complete, we can use the first-order conditions for state contingent
bonds in the two countries (that is, (1.13) and (1.18)) to back out an expression for the
real exchange rate, ¢(s') = UZ(s')/U.(s"). In the incomplete-markets extension, we assume
that there is a bond market in the home country but no cross-country contingent claims.

The budget constraints for the home and foreign country are then given by:

P(s")e(s') + M(s") + ) Q(s"1[s")B(s"+) + V(s")D(s")

St+41

< P(sHw(sHi(s?) + M(s'™1) + B(s') + D(s'™1) + TI(s!) + T(s) (1.47)

10



P(st)e (s1) + MO (1) + 30 Q7 (51 B (541) + V() D (51) fels")

St+1

S P*(st)w*(st)l*(st) —I—M*(St_l) —I—B*(St) —|—D*(St_1)/€(8t)

+ IT*(s") + T (s"). (1.48)

instead of (1.10) and (1.17). D and D* are one-period bonds in the home and foreign
country respectively. Notice that in the foreign budget constraint, we no longer have the

home and foreign contingent claims, B}; and Bj..

The first-order conditions corresponding to the choices of D and D* imply the follow-

ing equations hold in equilibrium:

+1 g
Zﬁw (s7]st) (( )) igw)l) 9
t st} pr(gt (st
;ﬁﬁ +1!S U’("(St)) P*(‘EH)I) €(§t+)1) (1.50)
D(s") + D*(s") =0 (1.51)

Thus, if we eliminate the home budget constraint by Walras’ Law and eliminate D(s?)
as a variable using D + D* = 0, we are left with the foreign budget constraint and the
two first-order conditions for bonds in the two countries. We keep these two as separate
dynamic equations. Then we use the foreign budget constraint to get an expression for the
nominal exchange rate:

V(St)D*(St) o D*(St—l)

) = B (DI (5) — e ()] L T (o)

(1.52)

11



1.10.3. Additional Shocks

Above we assumed that the only shocks in the model were monetary shocks. We also
consider extensions of the benchmark economy with changes in government spending and

technology.

Because we want to consider alternative assumptions about the revelation of shocks,
we will use the following notational convention. Let s* = (sq,...,s;) be the history of
events up through and including period ¢ that is observed by consumers and final goods
producers. Let 2* = (2q,..., 2¢) be the history of events up through and including period
t that is observed by intermediate goods producers when making their pricing decisions.
When making investment and hiring decisions, we assume that they have observed all of

the information contained in s’.

Our default assumption is that consumers and final goods producers know current
(t) and past realizations (¢t — 1,¢ — 2,...) of the three shocks (i.e., money, government
spending, and technology) when making their current ¢ decisions. Thus, s; are realizations
of the three shocks. Intermediate goods producers, on the other hand, do not observe the
current monetary shock and may or may not observe the current real shocks before making
their current pricing decision. If they observe real shocks but don’t observe monetary
shocks when making pricing decisions, then z; contains only information on the government
spending shock and the technology shock. If they see none of these events before deciding

on prices, then z; contains no information.

With spending included in the model, the resource constraint for the home country is
given by .
y(s') = c(s?) +/ x(i, ') di + g(s").
0
with an analogous constraint for the foreigners. With technology shocks, we need to modify

the production function as follows:
yu(iys') + yg (i,s') = F(k(i, '), A(s")I(i, s"))
and therefore the expression for marginal costs,

N w(st)
me(isS) = T s A

12



Throughout, we will assume that g(s') and A(s') are AR(1) processes with means g

and 1, respectively.

1.10.4. Sticky Wages

Finally, we allow for sticky wages in addition to sticky prices. One can think of the
economy organized into a continuum of unions indexed by j. Each union j consists of all
the consumers in the economy with labor of type j. This union realizes that it faces a
downward sloping demand curve for its type of labor. It sets nominal wages for N periods

at t, t + N, t + 2N, and so on. Thus, it faces constraints

W(j,s™h) = W(j,s") = ... = W(j, sV

W(], St+N) — W(], St+N+1) - = W(], St+2N—1)

and so on in addition to the ones below.
The problem now solved by a consumer of type j is
max » > Bn(s") U (c(4,s"), L°(j, '), M?(j, ")/ P(s")) ,
t=0 st

subject to the sequence of budget constraints, the definition of labor supply, and the labor

demands of the firms.

P(s")e(j, s') + M (j,s') + > Q(s"|s")B(j, s')

St+1

<W(j, s L4, s") + Md(j, s 4+ B(j, ") + O(s') + T(s')  (1.53)
L5(j,s") :/l(i,j,st)di

T t 1—v
(i, 4, St) = (%) Ld(i,st), for all 7.

In this case, the consumer chooses the wage but agrees to supply whatever is demanded

at that wage.

13



The Lagrangian in this case is

L=.. .06 Z:W(st){U <c(j, s1), W (s T W (j,s' 1) 71 L4(s"), T;t)

(4,8 H)7TLA(sY) + M, s

{W
+ B(j, st) +TI(s") + T(st)
— P(s")c(j, ') — M%(j,s") = Y Q(s"|s")B(j, s}

St41

M5, 8”1))

+ﬁz t+1’8

U (#1064 oW Gt L),

~ P(stt1)
SO (s =W (G, 8"~ T L) + MY o)
+ B(j, s + II(s'Th) + T (')
- P(st+1)c(j, St—H) Md ], t—|—1 Z Q t+2|8t—|—1 ( . t—|—2)} o
St42
where L(s') = [ L4(i, s*) di.

Taking the derivative of £ with respect to W (3, s!~1) we have

0= 3wl { W W (8 E LG8

v—1

st

W () T (s T L)

(s YW (s T W (j, 8" ) LA (ST UL, ')

St+1

(s s (s YW (s T W (G, 881 TT LAY + .

S¢41
Using the equilibrium bond price and the fact that {(s*) = U.(j, s')/P(s"), we can simplify
this first order conditions to get:
N T T 1 T . T . T
—1) — Zt+ 1257 Q( ’St 1) ( )W( )1_de(S )Ul(.]vs )/UC(.]as ) (154)
v T QUsTls W (s7) T A7)

The other first order conditions for the consumer are the same as in the benchmark econ-

W (j,s'

omy, except for the fact that we need to record the type, e.g.,
Ue(d,8"*1)

Um(jast) t+1 _
B +ﬁz (st+1sh) W_0 (1.55)

St41

14



U(j,s") P(s'1)
Uc(j,st71) P(st)

Q(s'[s'™1) = B (s's'™1) (1.56)

Notice that these conditions imply that

for all 7 and k. So, marginal utilities are equated up to a constant, namely the date 0
Lagrange multiplier on their budget constraint. Here, we assume that initial debts and
transfers among the N types in either country are such that the multipliers are equalized.

In that case, we can summarize these first-order conditions as

Ue(j,8') = Uc(k, s") (1.57)
Un(j;5") = Un(k, ") (1.58)

for all j and k. The equating of U,,’s from the money demand equations.

The problem solved by the intermediate goods producers setting prices in the home
country is to choose sequences of prices Py (i), capital stocks k(7), investments x(7), and

labor inputs I(7, ), 7 = 1,..., N to maximize

S Q) [Pali sy iy s7) + es™) Py (6, s )y i 87)

T7=0 s7

- WS - PN (159
subject to the input demands (1.3) and (1.4), the production technology:
yr (i, 8') + g (i,8') = F(k(i, 1), L3, s")) (1.60)

the constraint on labor

v

L, s") < Uz(z',j, sty dj} : (1.61)

the law of motion for capital used in producing good i in (1.23), and the constraints on

prices in (1.24). The firms take the wages as given.

15



The Lagrangian in this case is

L=.. .+ Q(st){ [PH(Z; s T Ay (st) + e(sh) Py (i, 1) 7T A (1)
— /W(j, st_l)l(z',j, s dj — P(s")x(i, s")

+ C(SY{F(k(i, '), L, s*)) — A (s') Py (i, st 1) 77

— Ny (sh PR (i, st 7T

+ A(sH{(1 = 8)k(i,s" ) + z(i, s")
— Olw(i,5) /(i sk, s ) — (i, 5}

1
v

#rl| [t di] - 2.50)

+ 37 QU ) [Pui, s )T Au(s ) + e(s' ) P (i, 81 T A (51

St+1

— / W (5, s)I(i, 4,8 dj — P(s"T (i, s"+1)

+ C(St+1){F(k(i, St), Ld(i, St—!—l)) — AH(st+1)PH(i, st—l)e_il

1

— Ay (s )Py (i, ') 7T

+ AGSTH{(1 = 8)k(4,s") + (i, s

= 0wl ) [k, )R, 1) — k(i 5™}

1
v

+ li(SH—l){ [/l(i,j, sty dj} ~ LG, St+1)}

+} (1.62)

16



where

1 —0

An(s') = [wiP(s)] 7 Pu(s'™") 0000 y(s") (1.63)
Njr(s') = [waP* (s1)] 77 (Pyy (') T (5. (1.64)
The variables (, A, and s are multipliers for constraints (1.60), (1.23), and (1.61), respec-

tively.

Taking the derivative of £ in (1.25) with respect to the monopolist’s prices Py (i,s'™!)
and P} (i,s'™1), the investment z(i,s'), and the capital stock k(i, s'), we find the same

results as in the benchmark economy, namely (1.28),(1.29), (1.31), and (1.32).

The difference between the sticky wage economy and the benchmark economy is the

labor market. Taking the derivative of £ with respect to L (i, s*), we find:
C(s")Fi(i, s") = k(s") = 0.

Taking the derivative with respect to (i, 7, s'), we find:

11

v

—WUJFU+KGN@$§V”{/M@$§V@} =0
or,
W (j,s" 1) = r(sN(G, 4, ") L6, s7) ' (1.65)
If we integrate both sides of (1.65) we get

UmmHﬁw]
W(s')

v—1
v

K(sh)

(1.66)

which implies that the multipler is equal to the aggregate wage. Substituting that back
into (1.65), we have
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The solution to the decision problem of the intermediate goods producer can also be

found in two steps. First, define an intermediate real wage w(s') as follows:

. . W(,st™h .
t\1rd t\ — ) t
w(s")L(i, ") :l(z‘,ﬁltr)l,w Wl(z,],s ) dj

1
v

subject to L4(i,s') < {/l(i,j, st)Y dj]

Solving this problem yields:
w(s') = W(s')/P(s") (1.67)

where W (s') is defined by (1.66). The second step is to return to (1.21) and everywhere
we see [(i,s'), we replace it with L9(i,s*). Thus, the solution for the intermediate goods
producer’s problem in the benchmark and sticky-wage economies are the same, except
that now we have a composite labor input and a composite wage. In other words, the first
order conditions are given by (1.33)-(1.36) where F is evaluated at L%(i, s'), w is given
in (1.67), and W (s?) is a function of the distribution of wages (which are part of the new

state vector).

The last equations to be changed in the case of sticky wages are the resource constraints

and the equating of money supply and money demand. We replace (1.40) with

y(sh) :/0 c(j,s") dj —1—/0 x(i, s%) di + g(s"), (1.68)

and we add .
M) = [ st d
0

Analogous equations hold for the foreign country.
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2. Computing an Equilibrium

We now describe how to compute an equilibrium for the four economies: the benchmark
economy, the economy with the Fed using a Taylor rule, the incomplete-markets economy,
and the sticky-wage economy.! In each case, there are four steps taken. First, we normalize
variables to make the problem stationary. Second, we derive equations for the steady states
of the stationary variables. Third, we linearize the first-order conditions around the steady
state. Fourth, we describe in detail the codes used for computing a solution to the linearized

system of equations.

2.1. The Benchmark Economy

In this section, we describe the computation for the benchmark economy. Most of the
derivations are done in this section since there are many common equations for the three

economies that we consider.

To simplify things, we assume from here on (unless noted otherwise) that the ith
group of monopolists (i € {1,...N}) is the one who set prices ¢ periods ago. Thus, in

t—1

period ¢, monopolist 1 is assumed to have set prices conditional on seeing s*~*, monopolist

2 set prices conditional on seeing s'~2, and so on.

2.1.1. Normalization in the Benchmark Economy

Since we allow for positive money growth and inflation, we need to normalize prices in

1 For now we assume that there are just monetary shocks. Below, we extend the analysis
to include other shocks.
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order to make the system of equations stationary. Let
p(s") = P(s")/M(s'™")
pI(ivst_l) = Pl(ia St_l)/M(St_i)

pr(s'™h) = Pr(s"h) /M (s
(2.1)
p*(s") = P*(s")/M*(s'™1)

pii,s'™Y) = Pi(i,s'™1)/M* (s
pr(s"™h) = Pr(s"h)/M (s
where I = H or F. Notice that we normalize the intermediate goods prices by M (s'™*) or

M*(st=%). Since we assume that the ith group set prices i periods ago, we are effectively

assuming
PI (7'7 St_l)

TP RGN

= pl(st_i) =

A number of first-order conditions must be changed because they involve nonsta-
tionary variables. First, consider the equations derived from the final goods producer’s
problem. The input demands depend on the prices. Using the normalization above, we
can rewrite the input demand equation for the home intermediate goods as follows:
w1 P(sH)]T7 Py (st T

Py (i, st=1) 77

yu (i, s) y(s')

[w1p(s')] T P (s~ T M (') 7
- pr(i, st=1) 750 M(st—1)T=0

y(s')

_1 p—06 . 1
_ Jwap(s)] 7 pa (8T T (s ) (s )T

pH(% St_l)lTlg

y(s').  (22)

Note that the first relation is from (1.3) when the state is s*. We can similarly rewrite yp,
Y, and Y.

The aggregate price in (1.5) is normalized as follows:

p—1
P

1 B 1 o
plet) = (T 7Pt )7 o ()77 ) (2.3
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and similarly for the foreign price. These equations replace (1.5) and (1.8).

Normalized first-order conditions for the consumer include

Uin(s1) = Uulst) + 5 30 w10+ ) (2.4)

Uds')  p(s)
U (st=1) p(st)u(st=1)

St+1

Q(s'|s'™1) = Br(s'|s'™1) (2.5)

and therefore

1/R(s") =) Q(s"s")

St+1

RN A B )
= 2 A G e e 29

The normalized price of the intermediate goods producer is given by

St+1

(st = — L T e QIS sl s (sT)M ()
| M0 08, 3 Q(s7ls ) Au(sT) M (571 ™7
L X X BTl Ui DA (7)) ol
03, S B (s7 |t Ue(s7) /p(s7) A (57) (") -~ p(s71) 77
where

1

_1 —6
Air(s') = [wip(sh)] 77 prr(s' ™) T y(s"). (2.8)
Expressions for pp, pj;, and p} can be derived similarly.

When we aggregate these prices, we get the following intermediate goods price index

for the home country:

- %pH(st—l)%l +% <p5((; 12))> i
+% <M(St SH-(!-S:(;) N+1))%} v (2.9)
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2.1.2. Steady State in the Benchmark Economy

When we linearize the first order conditions, we will do so around the steady state values
derived below. We will assume that preferences, technologies, and processes for money
are the same in the two countries. Therefore, steady state values of home and foreign

allocations and prices will be equated.

We take the normalized first-order conditions, drop s' arguments and solve for a fixed
point. Consider doing this iteratively. Start with a guess for k(i), i = 1,... N, y, and
Pc/M. With the k(i)'s, we can back out the investments from the law of motion for
capital

k(i —1)

With y, we can get the steady state input demands and total product,

_1 _1
. wlp t=p ﬁH 1=0 i—1 x [+ .
y(i) =y (—) (—) W — ), i=1,... N

k(z‘):(l—é)k(i—l)+x(i)—¢( )k(i—l), i=1,...,N.

PH PH
o\ T
% /- wap —-r PH - i—1 . )
yH(Z):y<__) (—) pT=0 :yF(Z), Z:l"",N
P PH

|<D

= -6
F(z)zy(ﬁ) (p—H> ,ul—%), i=1,...,N
PH bH

using (1.22), (2.2), and the fact that the price ratios p/py and py/py can be written as

explicit functions of parameters,

p=1 p=1
1 _p_ 1 o\ » 1 1\ »
P = (“’11_"131‘5[1 +w£“’ﬁ£‘1) =P (wf‘p +w2“p)
0—1
_ 1 o w-yeN] P
pH:pH|:N<1+'u/1—9+...+'u/ 1—0 >:|

These latter expressions follow directly from (2.3) and (2.9).

With the F(i)’s, k(i)’s, and z(i)’s we back out labor inputs via the production tech-

nology F'(i) = F(k(i —1),1(i)) and marginal costs via the Euler equations for capital:

1 . .
1——qb’(i) = ﬁ(mc(z-l— )Fr(i+1)
+ % 1-6—9¢(i+1)+ ¢ (i +x(i+1)/k()]), i=1,...N

22



where ¢(i) = ¢(x(i)/k(i — 1)).

We can sum up the [(i)’s to get aggregate labor,
1= > 1)
and we can sum up the z(7)’s to get aggregate investment
= — z(7).
N i
With z and y, we have consumption,
c=1y—x.
With Pc/M, we have P/M and therefore
p=uP/M = p[Pc/M]/c

given our definition of p in (2.1).

Now, we can use the following equations to check that we have a fixed point:

me(i) = —U; /(U:Fi(i))

P =7 -
0 1+ Bu™7 + B2 4 G

p <m0(1) +me(2)BuTT +me(3)B2uT0 + ..+ mc(N)ﬁN—lu%>

which are the equations for marginal costs ((1.36) with (1.11) substituted in), the inter-
mediate goods price (2.7), and money demand (1.12).

Finally, our assumption about common preferences implies that ¢ = 1 in a steady

state.
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2.1.3. Linearized Equations in the Benchmark Economy

We now use the steady state values in order to linearize the first order conditions. Here

again we assume that the cohort 1 are the monopolists setting prices this period (in s'=1),

cohort 2 set last period and so on. First-order conditions for the final goods producers can

be linearized to yield the following equations:

1 p—10 . 1
. 5 51t o1 — ——— [Pt — fit—ist e — flu_1] (2.10
YHit = Yt + 1— ppt + =)0 1)pH,t 1779 (D¢ Ht—it1 fie—1] (2.10)
1 p—10 . 1
Uit = 1 D D — ——— Dp—g — p—it1 - — [p— 2.11
Yrit = Yt + 1_ ppt + = 1)pF,t—1 11— [Pri—i — ft—iv1 fii—1] ( )
A~k A~ 1 A~k p— 0 ok 1 A~k ~ % ~ %
Yrit =Yt + 1= ppt + (1= p)(6— 1)pF,t—1 “1-9 [Pri—i = Mi—igr - — fi—1] (2.12)
A~ ~x 1 A~k P — 0 ok 1 Ak ~ ~
Urin =01 + 12 Pl + A= —nrr-1"1-¢ [Drri—i = B—igr - — f1{_1)(2.13)
— o4 P _ -
N ﬁ[ Pt 1+pf; 1T1p a
Dt D Wy "Pgi—1 T Wy "DEia (2.14)
- o P -
A~k ]51 Pt 1i_pA* 1ipA_*
D ; Wy "Pri—1t Wy "PH i1 (2.15)
o I _0 (N—-1)6 -1 A~ 0, . N
PH-1 L+ pt=0 +..op 10 } [Pr—1+ 1™ Prg—2 — flu—1) + - ..
(N—1)6 R . .
+p e (pH,t—N — Mg—1 — .. — Mt—N+1)] (2.16)
~ 6 (N—-1)6 -1 R 0, R
DPri—1 [1 e e e } [pF,t—l + U= (Pre—2 — fle—1) + ...
(N—1)O R R
+ 1= (PN — fi—1— o — fi—Nt1)] (2.17)
~k == *—(N_De -1 ~sk * 78 [ Ak “
Pri-1= [1 R Ty } [Pri—1 + 1 (Do — 7o) + -
* (N_l)e Ak Ak Ak
+ 0 (PN — g e — Mt—N+1)} (2.18)
o et La=ney =l et o
PHt—1 = [1 aal JEEE S A } [Pr—1 + 177 (Pr—2 — fli_1) + - ..
LA =De o o
F T (PN — g — e~ Bioyyn)] (2:19)
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where p; is the steady state value for the intermediate goods (i.e., for pr ¢, pr ¢, Py, and

pr,) and p is the steady state value of the final goods (i.e., for p; and py).

First-order conditions for the consumer can be linearized to yield the following equa-

tions:
A Ucl Ucc A Ull Ucl 2 Ulm Ucm ~ ~
- - U Zim M/P(ju — 2.2
Wt (Ul UC>CCt+ <Ul Uc)llt+ < Ul Uc ) / (,ut pt) ( 0)
Um Ucc Ucm ~ Ucl Ulm 7 Ucm Umm ~ A
- —Zm )] — 2 ) NPy —
W{(a: %)C“+(m l%>t+(ve l%) i m%
U . . R Ul - N
= 5Et< i (Ct41 —Ct) + U(l; (leg1 — 1y)
Ui M/P R R . . R .
+ T/(,UJH-l — Deg1 — fle + Dt) + Pt — D1 — ,ut>. (2.21)

Equation (2.20) is the linearization of wages from (1.11) and equation (2.21) is the money

demand equation from (1.12).

We can also linearize the interest rate r using the definition in (1.14) to get

ﬁ Uccc ~ ~ Uc l 7 7
—;(Tt —r)=E, —Uc (Gt41 — Ct) + —Ui (ler1 — 1)
Ui M /P R R ) . A .
+ T/(Mtﬂ — Peg1 — it + Dt) + Dt — P41 — ,ut>, (2.22)

where 7; is the level of the interest rate and all other variables are logged. Note also that

the linearized money demand equation can be written

B(Tt_r) _ <h . Ucc) Cét+ <% . Ucl) llAt

ur Un U Un U
Umm Ucm ~ ~
+ <—Um T ) M/ P(fir — pr) (2.23)

if we use the dynamic money demand equation (2.21) and the definition of r in (2.22).

From the foreign consumer’s problem we can linearize the expression for the real
exchange rates:

Ual »

~ Uccc ~ Ak T
U (lt - lt) -

UernM/P
e AL Uen M/

Ue

(A = Pe — fig + D) (2.24)
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We next want to log-linearize the pricing equations such as (2.7). If there is positive
inflation, the formulas are a bit messy so we do this in several steps. Consider log-linearizing
the deterministic analogue of (2.7):

>, BT Ue(sT)me(i, sT)Am(s7) (puls') - pu(s™71)) T

pu(i,s™) = — (2.25)
0%, 37 U(s7)/p(s7) A (s7) (p(s?) - pu(s7=1)) 7=

where
1

_1 —0
Air(s") = [wip(sh)] 7 P (s T y(s).
We will add an expectations operator when we are done since we assume that E;_; f(z(s")) &~
E; 1 f'(x)xz;. But, for now, we ignore the expectations operator.
First, rewrite (2.25) as:
HpH(Z', St—l) [ L+ ﬁjUc(8t+j)/p(8t+J)>\H(St+j) (,u(st) . ,U(St+']_1)) =6 4 . ]

1

=4 FU(s")me(i, A (s77) (p(s?) -+ p(sT771)) =7 (2.26)
and then do the linearization of (2.26) in pieces:

Uc(8t+j)/p(3t+j))\H(St+j)(M(St) ... M(Std“j—l))%

UcccC . Ual » UernM/P

g et Tl b T (e = Pe)

~ Uc/p)\Hul—@—%

. : 0 . .
— Praj + AH s+ m(ﬂt + e flerjo1)

UC(sHj)mc(i, st+j)>\H(st+j)(u(st) . M(St+j—1))1+9

Ueccc . Ual - UemM/P .

~ Uemc(i, j) N pT=° TCCH—j + Tcltﬂ‘ + T(Mt+j — Dttj)

. 2 1 R
+C; 445 + AH 145 + m(ut + . fieti—1)

. 1 p—10
b — 5 Drr 4 Uy 2.2
Hi = 7 ppt + (=)@ 1)pH,t 1+ Yt (2.27)
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Therefore, the full equation is:

OpuaUcAm /p(1 + ﬁ,u%" + .. )PH -1

A

Uecc . Ual Uern M/ P )
- 7 (/JH-J‘ - pt+j)

Tl + el
C

U. U.
+}

U..c. Ul » UcmM/P . R
7 G + ﬁlt%-j + T(NH—j — Dt+j)

+9pHUc/\H/p{- .+ (BuTT)

. . 0 . .
— Pt4j + AH 5+ m(ut o fligj—1)

— UC)\H{. A (BuT Y (i, )

. Q r . N
+ 1MCi 45 + AH 45 + m(ﬂt o fugj1) |+ } (2.28)
Crossing out common coefficients in (2.28) and dividing by the coefficient on py, we get
PHijt—1 =
——\1 . . Uccc ~ Uc l ~
pL st (5#11")]%(%]) . Gt + 7llt+j
Opp (14 But=2 +...) c c
UernM/P . . . < r . .
+ T(,U/t—l—j — Dryj) +1MCi 4 j + At + m(ﬂt o 1) |
1 o | Uecc. Udl -
- rn A (BET Y | ==+ iy
(14 But7e +...) Ue Ue
Ui M/P . . . < 0 . .
+ T/(utﬂ' = Pitj) — Deaj T AH 45 + m(ut + o 1) | (}29)

Finally, we use the steady state equation for p in (2.29) to get

ﬁH,i,t—l -
{...+ (37 P, )
S (BT Yme(i, )

A

Uecc Ual,  UsnM/P )
¢ - 7 (:ut+j - pt+j)

g G T

Ue

Vot Ualy  UenM/P o
U, T g U, Ht+j = Pt+j

] ).

. Q 1 R
+ ¢ 44+ AHp45 m(,ut + ... /,Lt+j_1)

. . 0 . N
— Pt4j + AH 5+ m(ut o fhgj—1)
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The derivations are similar for the other three prices.

Putting expectations back in and doing the same exercise for the remaining prices

yields the following linearized price equations:

N-—-1 2
. Uettj < . r . .
Pri—1 =B Y wiy | =L+ Ay + iy + —— (e + o 1)
=~ U, 10
S +J ~ 0 A N
—FEi W2,g — + )\H A+ — Di+j T —(Mt + ... ,ut+j_1) (230)
Ue 1—0
N - B = U:,t—i—j 5\ A % 1 ~ ~
pri-1 = Ei ZO Wi\ g T AR e T\t + - fiej-1)
J:

. . . 0 .
— B E :W2J < 2 Apaag — Dras — Geag + m(ﬂri—---ﬂtﬂ'—l)) (2.31)
C

1
Ak t+ A~ % A%
Pri—1 = Bt Z wi,j ( clariy >\Ft+g +MC g 4y T+ m(ﬂt +... Mt+j—1)>

c NG 0 ok ~ ok
— B Z w2, < T Ay — Prag + m(“t T “Nt+j—1)> (2.32)

1

A~k t+ A~ A~

Pri—1 = Er E w13< ct4j +>\Ht+3+mcj+1t+]+m(,ut +"':ut—|—j_1)>
C

N—-1 ~
U 7t+' 3 * Ak ~ 0 A~ %k Ak
— Et—l Z W2,j < c(] J + >\H7t+j - pt—|—j + qt+j + 1—_0(/“’Lt + [N /,Lt+J_1) (2.33)
j=0 ¢

where wi; = (Bu77 )me(j + 1)/ (807 )Tme(j + 1) and wo,; = (Bu™7)7/ Y (BuT7)]
and (A]Qt is shorthand for the log-linearized marginal utility. Note that in the case with

zero-inflation, the linearized pricing equations simplify to:

N-1 N-1
PHt—1 = Ep1 Z B (Draj + 10Cj 41,045 + fit + - fragj—1) / Z B

=0 j=0

N-1 N-1
Pri—1=Ei Z B (Peaj + €510 o0 j + Geag + fie 4 fagjo1) / Z B

=0 =0
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N-1 N-1
Pri—1 = Ei—1 Z B (Proy + M€y gy + 1+ 1)/ Z I

Jj=0 Jj=0
N—-1 N-1
Ak | [ A% ~ ~ A % A % ]
Pri—1 = L1 Z B (pt+j T MCj 41,645 — Qg T My T :qu—j—l) / Z B
Jj=0 Jj=0

The remaining equations for the monopolists are as follows:

i (0) Grie + Yir(0) Uirie = Fr(@)k(i — 1) ki—1 o1 + Fy(6)1(3) i (2.34)

~

ki = kic11 4+ (8 (1) — Da(i) /(i) |kim10-1 — Tie | - (2.35)

U.cc . . . Uil -~
0= Et{ (Ct41 — Ct) + l (lt+1 - lt)

Ue Ue
+ Z 2L iy = s = -+ )
801 = ! @meli-+ DFG+ 1) [+ () - DD gy
+ <F’“’((Z - 1)) Z;ll((Z:ll))) 14+ 1) di101
REr oI
+3 <1i;,—i(+))) (1 —5—g(i+1)+ ¢+ 1)3“"(2;7)1))

_¢//(i) x(7) .
[1 —¢'(i) k(i — 1) (#ip = kic1,0-1)
$'Gi+1) x(i+1),. )
Ty g G~ o)

1—¢' (i) . z(i+ 1)\, 7
msb (i +1) < 0 ) (Tit1,041 — k’i,t)}

+

U.c,. R Uyl
= Et{ (a1 — &) + =2 (lop1 — Iy)

Ue Ue

Uun M/ P
_|_ -

U (ftt41 — De+1 — for + Pr)
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+B(1 = ¢'(i))me

“ Fkk(i—f—l) Fkl(i‘i‘l) A
(i +1)Fe(i+1) {wt_y_l + ( Foli+ 1) — R+ > k(i) Ei +
w(i+1)  Fui+1)\ . s
(B H D )16 D
¢"(@)  =(i) . A
TTo g kG- 1) (Tit — ki—1,0-1)

+ (1= B = ¢'(0))me(i + 1) Fy(i + 1))

¢"(i+1) x(i+1) s
[1—¢'<z‘+1> ZORRSSES '”]

mc; ¢ = Wy —

(2.36)

Fra(i)k(i — 1)/ Fy(i)ki—1,0-1 — Fu(i)l(i)/Fy(i)l;, (2.37)
These are linearizations of (1.22), (1.23), (1.35), and (1.36). Note that in deriving (2.36)

we use the steady state Euler equation for capital to simplify terms

Finally we need the labor market clearing condition and the resource constraint

b= (1(1) I +12) o+ UN) Ing) /D10 (2.38)

o= (Y — [2(1) @10 + ... a(N) in ] /N) /e (2.39)

which are linearizations of (1.41) and (1.40).

2.1.4. Solving the Linearized System in the Benchmark Economy
The system of equations that we solve has 2N + 6 dynamic equations

e 4 pricing equations, (2.30)-(2.33);

e 2N Euler equations for capital ((2.36) for home and similar for foreign)

e 2 money demand equations ((2.21) for home and similar for foreign)

e and static equations and definitions that determine

© YH.is YF,is Yri» Yir,; from (2.10) and analogues
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o p, p* from (2.14)-(2.15);

o Py, Dp, Dps Dy from (2.16)-(2.19)

o w, w* from (2.20) and foreign analogue;

o i1 —p, p* — p* for money demands;

o q from (2.24);

o A\, A\, A}, 5\”}[ from (2.27) and analogues.

~

o I, I* from (2.34) and foreign analogue;
o Z;, &f from (2.35) and foreign analogue;

o 1, mef from (2.37) and foreign analogue;
o i, [* from (2.38) and foreign analogue;

o ¢, ¢* from (2.39) and foreign analogue;

We can write the system of equations in terms of a subset of our variables and back out

all variables via the static conditions listed above. We turn to this next.

We will use the following vectors in our computation:

ct = [ﬁH,t—l;ﬁF,t—l;ﬁ},t—laﬁE,t—la ]%1,15, s ]%N,ta ]%T,ta s ]%7\1,15; Ut Q;]/ (nz X 1)
Xt =[PHjt—25- s PHt—N,DFt—25 - DF N, D25+ s DF e N> DHt—21 - DH.t— N>
];1,75—17"'7]%N,t—17]%>1k,t—17'"Jk}k\ft—l] (nX X 1)
Zt = (24 N—15 Ze4 N—2 2ty Xty [ N1y -+ oy it N4 15 i N 15+ > b N1 1)
Zt = [Zt,Zt_l,...,Zt_N+2]/ (nZ X 1)
St = [futs o fu—N41 475 i) (ns x 1)

The vector z; contains the choice variables at time ¢. It has n, = 2N + 6 elements. The
vector X; are the state variables at time ¢. There are nx = 6N — 4 state variables. The
vector Z; contains all variables that appear in the residual equations. The vectors Z; and

S; are used when we characterize the solution since it will take the form
Zt - AZt—l + BSt (240)
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where Z has ny = (N — 1)n, elements and S has ng = 2N elements.

The residual equations can be written succinctly as follows:

E A Xit1 + Ao X4 + shock terms|Q;| =0
Zi+N-1 2t N—2

where £ implies that expectations are taken — but we will assume that different information
sets for the different residual equations. For our example, the residuals are denoted R(Z)

and the matrix A; is given by

[ InX X OnX Nz OnX Nz A OnX Mz ]
On. nx g—g(:,l iny) g—g(:,nz—l—l 12n,) ... g—g(:,(N—Q)nz—l—l :(N=1)n,)
Al = OnzanX Onz»nz Inzanz Onz»nz
- OnzanX Onz»nz Onz»nz Inzanz -
(2.41)
and matrix As is given by:
B —Il Onx,nz Ce Onx o _IQ T
%(:,an—i—l cNn+nx) Onpzne On. m. %(:,(N—l)nz—i—l :Nn,)
A2 = OnzynX MNzMNz Onz 3Tz Onzynz
- OnzynX Onzynz e Inzynz Onzynz =
(2.42)

The matrices Z; and Zs in Ay are given by

- 0 0 0
L@ 1 ... 0O 0
7 - 4,4 Do | Daveanw
0 1 0
L O2n aN—4 O2n 28
[ 1
Iya® {O } v Oun—s2N42
T, = N—21
Oan,4 [Ian,2n, 02 2]

Using the method laid out in Blanchard and Kahn (1980), we construct eigenvalues

of —Al_lAg if Ay is invertible and generalized eigenvalues otherwise. Then, ignoring shock
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terms, we have

Xit1 1 Xy
= VAV .
{Zt—i—N—l} {ZHN—J

We can sort eigenvalues inside and outside the unit circle. If there are nx stable eigenvalues
(which is the number of state variables in X'), then we have a locally determinate system.
Suppose that the eigenvectors in V and eigenvalues in A are sorted so that the upper left

partition of A contains the stable eigenvalues. Then,
Xit1 = V11A1V1I1 X
ZitN—2 = V21Vﬁ1 Xi.

The last n, elements of Z;, x_o are those of z;. Therefore, we have a relationship between
our decision variables z and the state variables X. If we want to write the system as
(2.40), then we can use this relationship between z and X to fill in the elements of A. In

particular, we set
A(l:n,1:n, —2) =A.x(;[1,N,2N — 1,3N — 2,4N — 3 : 6N —4])
A(l:nyn,+1:n,:ny) =A,x(,2: N—1)
Al:ngn.+2:n,:nz) =A.x(,N+1:2N —2)
Al:ny,n,+3:n,:nz) = A, x(:,2N : 3N — 3)
A(l:nyn, +4:n, :ny) =A,x(,3N —1:4N —4)
Any,+1:ng,1:ng—n,) =1Ly, n. ny—n.

where A, x comes from z; = A, x X;.

The next step is to compute B. In this case, we use undetermined coefficients. This
method boils down to solving a system of equations in the elements of B; where Bj is the

first partition of B which has dimension n, X ng, i.e.,

Bl Inzanz
Onzans On27nz

B = . = . Bl = SB1
Onzans On27nz
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We will use S below in order to reduce the problem of computing B to one of computing

B;.

The system of equations for B; turns out to be linear so it is a simple computational
problem. The only tricky part of the problem is getting the specification of the equations
correct since expectations of intermediate goods producers and the other agents in the

economy depend on different information sets.

To derive expressions for the elements of B, we first note that the residuals can be

written as follows:

ElaoZiyn—1+a1ZiyN—2+ ... +an_1Z +anZi_1

+b0Si4+N—1 +b1Si4N—2.... +ON_15]Q| =0

We didn’t originally write them this way because we wanted to avoid lots of redundancies
when computing the eigenvalues described above. However, here it is convenient to write

it this way to show how we derive B. Using the definitions of Z and Z, we can write:

ap =dR/dZ(:,1: (N —1)n,)

an—1(;,1:n,) =dR/dZ(:,(N —1)n, +1: Nn,)

bo(:,1: N)=dR/dZ(:;Nn,+nx +1: Nn,+nx + N)

bo(:y N+1:2N)=dR/dZ(:; Nn, +nx +2N : Nn, +nx + 3N — 1)

bnv_1(5,2: N)=dR/dZ(:;;Nn,+nx + N+1: Nn,+nx +2N — 1)

bny-1(:; N +2:2N)=dR/dZ(:;Nn, +nx +3N : Nn, +nx +4N —2) (2.43)

with all other coefficients but ay set equal to 0. The matrix ay is nonzero but it is not

used in computing B.
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Using the solution in (2.40) we get:
Elao (AN Zy—1 + BSiyn—1 + ABSyyn—2+ ...+ AN 'BS,)

+a1 (AN ' 21 + BSpyn—2+ ABSi N3+ ...+ ANT?BS,) + ...
+an-1(AZi—1 + BSy) + anZi—1
+ bpSt4N—1+ 1St N—2.... + bN_15¢|Q2| =0 (2.44)

We next derive expressions for E[M S| as a function of Sy, where M is assumed

to be one of the coefficients in (2.44). First, using the fact that Siy1 = PS; + €41 we have
E[MS,4 ;%] = MPIE[S,|Q].

For example, in our model,

FTou O 0 0 .
1 0 0 0
0 1 0 0 On N
Lo o ... 10
P = b 00 01 (2.45)
1 0 0 0
On N 0 1 0 0
! 0 0 ... 1 0].

Next, define M as follows:
E[MS, ] = MS;.

If Q = {fis, i }.Z4 (as is the case for the pricing equations in our model) and P is given

by (2.45) then

EMufis + ... + MNfl—nt1 + My fif + ...+ Monfiy_ 1|9
= [0, Mlpu + My, M3, ... My, 0, MN-HPM + Mnt2, Mpyis, ... M2N] St

If Q = {jis, 15 }._, (as is the case for the capital Euler equations and the money demand

equations), then M = M. For our example, we have

&

<(aOB +b0)PVN "t 4+ (apAB + a1 B+ b)PV 2+ L+
(aoAN_lB + alAN_QB + ... aN_lB + bN_l)P()) St’Qt:| = S[MSt|Qt] == MSt
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where M and M both have dimension n, x ng. Applying the method of undetermined
coefficients, we want to find B; such that every element of M is equal to 0. Because of
the timing of the pricing decisions, this will imply n, X ng — 8 equations in n, x ng — 8
unknowns. In other words, the coefficients on fi; and [ in the first four rows of B; will

be set equal to 0 because prices cannot respond immediately to the monetary shocks.

The following steps are taken to set up the system of equations. First, we stack the
nonzero elements of M in a vector. Second, we construct a matrix D that relates this

vector to vec(M'). In our case, this relation is:

Miipy+Mia 7]
M3
M N
Mi N1y + M1 Ni2
Mi N3
: [ My ]
M g Mo
: M3
My 1py+ My :
M4,3 _ . IS,S QW 08]\}—8,nzns—8N Ml,ns (246)
: | n,ns—8N,8N g ny,nsg—8N M271
. D M
Max .2,2
My N1y + My nt2 :
My N3 | Moy ns
vec(M’)
M4,ns
Ms 4
Ms o
- an:”S -
where
pp 10 0 0
0 1 0 ... 0
vp=(0 0 O 1 ... O (N —1x N).
0O 0 0 O 1
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Third, we set Dvec(M') equal to zero (which ensures that M = 0),

Dvec(M') = Dvec([aoSB1PY ] + [a0ASBi PN 2 + a1 SBiPN ) + ...+
[a()AN_lgBlpo + alAN_ngl'PO + ...+ aN_lgBﬂ?O]’)

+ Dvec ([boPY T+ b PY 2 + .+ by PY))

= Qvec(B]) + R.

To construct Q@ we need to use the fact that vec(ABC) is equal to [C’ @ A]vec(B). At this
point, we can write the equation explicitly in terms of B; — or more precisely, the nonzero

elements of Bj:
vec(B1')(nonzero elements) = — [Q(:, nonzero elements)] ' R.

For our example, the zero elements of B; are: (i,1) and (i,N+1) for i =1, 2, 3, and 4.
These are the coefficients on contemporaneous shocks in the pricing decision rules. All

other elements are assumed to be nonzero.

2.2. The Taylor-Rule Extension

We now consider our first extension to the benchmark economy: the Fed follows (1.46)
and money is determined residually from the money demand equation (1.15). The main

differences in the computation from the benchmark economy are these:

e we add outputs and interest rates to the state vector;

we add the Taylor Rules as residuals;

we add r and r* to our choice variables;
)

we define M /P via the money demand equation rather than as p;/py;

e ;i is constant.
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2.2.1. Normalization for the Taylor-Rule Extension

In the Taylor-Rule case, we assume that prices grow at the rate u. To keep everything

consistent with the equations derived above, we use the following normalization for prices:

p(s") = P(s")/p""

pr(s™h)  =Pr(sh/ut
where I = H or F. In the equations of the benchmark economy, we replace all state

dependent p’s with a constant .

2.2.2. Steady State for the Taylor-Rule Extension

The steady state is the same as in the benchmark economy.

2.2.3. Linearized Equations for the Taylor-Rule Extension

We add the following equation to the set of linearized equations derived above:

Tt—1
rt—2
rt—3
Eipiy1 — P
;| P — D1
Pt—1 — Di—2
Pt—2 — Di—3
gdp,
gOAipt_l
gdp;_o

’r‘t = Qa + Efr',t (2'47)

and its foreign analogue, where
gdp, = 90+ > yir(D) Ui — 9ri)/ (Ny).
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Again, note that the interest rate is in levels while all other variables are logged.

We back out money (also normalized by u') from the money demand equation (1.15):
Ucm Ucc ~ U m U, c ~
(G- ) eert (B - 52 ) i

_ g(” _ 7«)]/ KUUL: _ Z]m) M/P} (2.48)

my — Pt =

where m; = log(M (s*)/ut).

2.2.4. Solving the Linearized System for the Taylor-Rule Extension

The system of equations that we solve has 2N + 8 dynamic equations:
e 2 Taylor rules ((2.47) for home and similar for foreign)

e 4 pricing equations, (2.30)-(2.33)

2N Euler equations for capital ((2.36) for home and similar for foreign)

2 equations for interest rates ((2.22) for home and similar for foreign)

and static equations that are the same as the benchmark economy, except for real

balances which are now
o m—p, m* —p* from (2.48) and foreign analogue;

As before, we can write the system of equations in terms of a subset of our variables and

back out all variables via the static first-order conditions.

When computing the Taylor-rule extension, we use the following vectors:

~ ~ Ak Ak 7 7 7% 7 % A Ak *1/
2t = [pH,t—lapF,t—lapF,t—lapH,t—lakl,ta' . -kN,takl,ta"'kN,taytaytartaTt] (nz X ]-)

A~ A A~ A Ak Ak
X = [PHt—2,- - yPH,t—(N+3)) PF,t—25 -« s PFt—(N+3)s PFt—25 -+ - s PEt—(N+3)>
A~k sk 7 7 7% 7%
Poi—25--- 7pH7t_(N-|-3)7 kl,t—la SR kN,t—lv kl,t—l? RN th—l’
~ ~ A~k A~k * * * /
Vi1, V=2, Ui— 15 Ui Tt—1-Tt—2:Tt—3, T4 —15 T4 —2: 73] (nx x 1)

* /
Z = [Zt+N—1azt+N—2a ---Zt,Xt,Er,t,Em]
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Zt = [Ztazt—la"'azt—N—l]/ (nZ X ]-)

St = [Er,ta‘sr,t—l; ei’tye;‘:’t—l]/ (nS X 1)

The vector z; contains the choice variables at time t. It has n, = 2N + 8 elements. The
vector X; are the state variables at time t. There are nx = 6N + 18 state variables.
The vector Z; contains all variables that appear in the residual equations. The vectors
Z; and S; are used when we characterize the solution, Z; = AZ; 1 + BS; where Z has

nz = (N +2)n, elements and S has ng = 4 elements.

The residual equations can be written as follows:

Xiq1 Xy
Rt+N—1 Zt+N—2
E A . Ay . + shock terms|Q2; | = 0.
Zt+1 Zt

For our example, the residuals are denoted R(Z) and the matrix A; is given by

[ nx,nx OnX PP OnX PP OnX SNz
On. nx g—g(:,l iny) g—g(:,nz—l—l :2n,) g—g(:,(N—Q)nz—l—l :(N=1)n,)
Al = MNzNX Onz»nz Inzanz Onz»nz
- OnzanX Onz»nz Onz»nz MNz,MNz
and matrix Ay is given by:
[ _Il OnX7nz OnX Nz _I2
%(:7]\7”2—’_1 :an+nX) nz,nz Onmnz %(,(N—l)nz—i-l N?’I,z)
A2 = OnzanX Inz»nz Onz Mz Onzanz
- OnzanX Onzanz MNz,MNz Onzanz
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The matrices Z; and Z in A, are given by

i 0O ... 00 )
1 ... 0 O
Ina® S v O4nggon O4n+8,4 O4n+8,6
0O ... 1 0
7 O2n,4N+8 O2n,2n O2n,4 O2n,6
1 p—
0 0
04,4N+8 O4,2n Ir o ® 10 04,6
0 0 O
06,4N+8 O6,2n 06,4 Ioo® |1 0 O
] 01 0],
— 1 —
Iy4® {0 } y Oanvison  Osnvgs2 O4nv+g,2
N+1,1
O2n,4 Ionon O2n,2 O2n 2
_ 1
Iy = 044 04,28 I ® {0} O4,2
1
06,4 062N 06,2 Ioo® |0
| 0]

Again, using the method laid out in Blanchard and Kahn (1980), we construct eigen-
values of _Al_lAQ if Ay is invertible and generalized eigenvalues otherwise. Then, ignoring

shock terms, we have

Xt+1 Xy
z _ z _
t—|—].\f 1 _vAY-L t+].\f 2
Zt+1 2t

We can sort eigenvalues inside and outside the unit circle. If there are nx stable eigenvalues
(which is the number of state variables in X'), then we have a locally determinate system.
Suppose that the eigenvectors in V and eigenvalues in A are sorted so that the upper left

partition of A contains the stable eigenvalues. Then,

Xiq1 = V11A1V_ﬂ1 X

Zt+N—2
-1
=V Vi X4

Zt
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Now we have a relationship between our decision variables z and the state variables X. If
we want to write the system as (2.40), then we can use this relationship between z and X

to fill in the elements of A. In particular, we set
A(l:n,1:n,) = A.x([1,N+3,2N +53N+T7,4N +9:6N +9, ...
6N +11,6N + 13,6N + 16])
Al:nyn,+1:n,:nyz) = A x(,2: N +2)
A(l:nymn,+2:n,:ny) =A,x(,N+4:2N +4)
A(l:nyn, +3:n,:ngz) = A,x(5,2N +6: 3N +6)

A(l:nyn,+4:n, :nyz) = A, x(:,3N +8:4N +8)

A(l:ny2n, —3) = A.x(:,6N + 10)
A(l:nz,2n, —2) = A.x(;,6N +12)
A(l:ny2n, —1) = A, x(:,6N + 14)
A(l:n,,2n,) =A,x(:,6N +17)
A(l:n,,3n, —1) = A, x(:,6N + 15)
A(l:ny,3n,) = A,x(:,6N +18)

An,+1:ng,1:ng—n,) =1Ly, —n. ny—n.

where A, x comes from z; = A, x X;.

The next step is to compute B. In this case, we use undetermined coefficients. This
method boils down to solving a system of equations in the elements of B; where By is the

first partition of B which has dimension n, x ng, i.e.,

Bl Inzanz
Onz,ns Mz,MNz

B = = Bl = SB1
Onzans On27nz

We will use S below in order to reduce the problem of computing B to one of computing

B;.
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To derive expressions for the elements of B, we first note that the residuals can be

written as follows:
ElaoZiyNn-1+a1Ziyn—2+ ... +an_1Zt +anDi—1
+ boSt+N—1+ 015t N—2.... + ON_15|2| = 0.

Using the definitions of Z and Z, we can write:

aop(:,1: Nny) =dR/dZ(:,1: Nn,)
bN_l(I,l) :dR/dZ(,an+nx+1)
bN_1(1,3) :dR/dZ(:,an-l—nX-l—Q)

with all other coefficients but ay set equal to 0. The matrix ay is nonzero but it is not

used in computing B.
Again, using the solution in (2.40) we get:
E ag (ANZt_l + Bst+N_1 + ABSt+N_2 + ...+ AN_lBSt)
+a1 (AN ' 21 + BSpyn—2+ ABSi N3+ ...+ ANT?BS,) + ...

+an-1(AZi—1+ BS) +anZi 4

+ boSt4N—1+b1SiN—2.... + bN_15:Q| =0

We next derive expressions for £[MS; ;|| as a function of S;, where M is assumed

to be one of the coefficients in (2.44). First, using the fact that Siy1 = PS; + €41 we have
E[MS;4 ;%] = MPIE[S,|Q].

For example, if the policy shocks €.+ and €], are both serially correlated, then

pe 0 0 0
1 0 0 0

P=10 0 o o (2.49)
00 1 0
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Next, define M as follows:
E[MS, ] = MS;.

If Q = {ers, €5 Z;%) (as is the case for the pricing equations in our model) and P is given

by (2.49) then
g[M;[ET,t + /\/lgem_l + ./\/lge;it + M4€:,t—1 ’Qt]
= [07 Mlpe +M27 07 M3pe +M4] St~

If Q = {€,,s, €5 s }—o (as is the case for the capital Euler equations and the money demand

equations), then M = M. For our example, we have

&

<(aOB +b0)PV 7t 4 (apAB + a1 B+ b)PV 2+ L+

(aoAN_lB + alAN_QB +...an_1B+ bN_l)P()) St’Qt:| = S[MSt|Qt] = MSt

where M and M both have dimension n, x ng. Applying the method of undetermined
coefficients, we want to find By such that every element of M is equal to 0. Because of
the timing of the pricing decisions, this will imply n, X ng — 8 equations in n, X ng — 8
unknowns. In other words, the coefficients on p; and pf in the first four rows of B; will

be set equal to 0 because prices cannot respond immediately to the monetary shocks.

The following steps are taken to set up the system of equations. First, we stack the
nonzero elements of M in a vector. Second, we construct a matrix D that relates this

vector to vec(M’). In our case, this relation is:

[ Mi11pe + M2 ]
Mizpe + My,
M 1pe + Moo
M 3pe + May
: Mg ]
Ma1pe + M 2
4,1Pe 4,2 B IS,S ® [pe, 1] 08,8N+16 M173
Muagspe+ Maa | = |0 I Mi 4
M SN+16,16 SN+16,8N+16 ;
5,1 X _— .
M2 D :
Ms 3 LM, 4
M5,4 vec(M’)
| an74

44



Third, we set Dvec(M') equal to zero (which ensures that M = 0),

Dvec(M') = Dvec([aoSB1PY ] + [a0ASBi PN 2 + a1 SBiPN ) + ...+
[a()AN_lgBlpo + alAN_ngl'PO + ...+ aN_lgBﬂ?O]’)

+ Dvec ([boPY T+ b PY 2 + .+ by PY))

= Qvec(B]) + R.

To construct Q@ we need to use the fact that vec(ABC) is equal to [C’ @ A]vec(B). At this
point, we can write the equation explicitly in terms of B; — or more precisely, the nonzero

elements of Bj:
vec(B1')(nonzero elements) = — [Q(:, nonzero elements)] ' R.

For our example, the zero elements of By are: (i,1) and (4,3) for i =1, 2, 3, and 4. These
are the coefficients on contemporaneous shocks in the pricing decision rules. All other

elements are assumed to be nonzero.

2.3. The Incomplete-Markets Extension

We turn next to the second extension: asset markets are incomplete. The main differences

in the computation from the benchmark economy are these:

we add foreign bond holdings (D*,) as a state variable;

we add equation relating right hand sides of (1.49) and (1.50) to our residuals;

we add D* to our choice variables;

we use ¢ derived below rather than (2.24).
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2.3.1. Normalization for the I-M Extension

In the foreign budget constraint (1.48) impose T*(s') = M*(s') — M*(s'~1) and B(st) = 0.

If we normalize variables as follows:

P = g ) = g 6 =

then the foreign budget constraint is given by:

p (e (1) + Vs (s ) = pr (atyur (st ) + L)

Solving for normalized nominal exchange rate £(s'), we get

V(s')d*(s)pu(s') — d*(s")

H = . 2.50
) S e (O () — e ()] + 7 (&) (2:50)
Now substitute out for profits in (2.50). Profits for the ith producer are
Pr(i t—1
(6,5 = D25 ) g6ty 4 PrG, s ity s) — PP (89w (810 (G, ) + 2 (i, 51)].

e(st)
If we normalize these profits by the money supply we get

IT*(i,s")  Pp(i,s'™1) M*(s'™1)
MA(st=1) — M+(st1) g(st)M(St—l)yF

Pr(i, st

. t F 9 * . t

(Z7S )+ M*(St_l) yF(Zas )
P~ St * * [ * ([

T O ) )

or, using the definitions above,

7'('*(7, St) — PF(i78t_1) M(St_i)
’ M(s=1) e(s')M (s

—p"(s)[w"(s)0" (i, s") + 27 (i, s")]

yF(Z, St) + 1

_ . o 1 M(stTY .
= pr(i, s Dyp(i,s )5(st) M (sT) + pr(i,s

—p"(s)[w"(s)0" (i, s") + 27 (i, s")]

pF(Za st_l)yF(ivst) p*F(Zas y;‘(iast)
STl e () ()

= p (s [w (1" (i, s") + 27 (i, s)]

t—l)
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The last equation follows from the fact that M(s'=1) = pu(st=1) - pu(s' =M (st9). If

we integrate across firms, we get

*

DS B S T A CT IR (05" )y (i)
T TN L e ule ) N 2 e o)

=P ()W (s (s") + 27 (s")] (2.51)

since 7*(st) = SOV ¥ (i, ) /N, I* = SN 1*(d)/N, and 2* = S~ | 2*(i)/N.

Substitute for (2.51) in (2.50) to get our final equation for the normalized nominal

exchange rate:

o VD ($ps!) — d*(st1) — & 50 Rt et
6(8 ) - 1 P (3,5t~ )y (i,8Y) ol Nl ot . (252)
N Z (st D)o (st—iF1) — P (S )y (S )

The real exchange rate is then given by

q(s) = = : (2.53)

Finally, we normalize the equation for bond prices (1.50):

. st Pr(st)  e(st
Zﬁﬂ (s"1]s") U>(k(st)) p*(s(ﬂ-)l) e(iﬂ-)l)

St+1

L3 et BB P ()

Us(s') P(s) g(s'*1)

_ (st Tls Uz (s t+1) p(s") q(s")
= LI T S G e (259
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2.3.2. Steady State for the I-M Extension

The steady state is the same as in the benchmark economy. The additional variables are

equal to
e=1
d*=0
V =0/

in the steady state.

2.3.3. Linearized Equations for the I-M Extension

In addition to the equations for the benchmark economy, we have to linearize the nominal

exchange rate (2.52) and the bond price (2.54).

Let’s start with the exchange rate. Rewrite the equation as

N pr (i, St_l)y* (iast) VTRV TR
5(8 ) N ,U/*(Zt_l) . ',U/f(St_H_l) - 6(8 )p (S )y (S )

i,st1 i, st
= VO (u(s!) — () - 30 RS

Linearizing this yields

(&M

— —py> & —py(P; + ;)

N — 1
br * Ak A y* (2) A~k A~ A~k
+ N (yF(l)[pF,t—l +Urae) + FT[pF,t—2 + Yros — fi_1] + - )
* * A ~ 2 A A~ A~
= Bdf —di_| — % (yF(l)[pF,t—1 +Yra] + yr )[pF,t—z +Yrot — fle—1] + .. )

or

A 1 * * Ak Ak
N {ﬁdt —di_ + py(p; +9;)

N
p - ) ) )
— NI (Z yF(Z)[pF,t—i + Yrit — He—1 — - - Mt—i+1]>

i—1
) N
1 ) \ [ Ak Ak ~ sk ~
N (Z Yr(@)Pre—i + Ui — fi—1 — - ':ut—i+1]>:|
i=1
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where A = p; (% > i’ﬁ—@) — py, and py is the steady value for all of the intermediate

goods prices. Note that we have used the fact that the countries have the same steady

state values (e.g., p = p*) when writing these expressions. Given é;, we can compute the

real exchange rate,

Next, we linearize (2.54) to get
ﬁ UCCC Ak Ak UCll T T
—p(ﬁ —r)=E TC(CtH — i)+ 70( 1 — )
UcmM/P ~ Aok ] N
+ T(Ntﬂ — Diy1 — g +Df)

+ Dt + G — Pe1 — Qi1 — ﬂt) : (2.56)

where we have used the fact that V(s!) = 1/(1 + r(s")).

Given that V is the inverse of the gross real interest rate, we can also define it as

V(s') =1—U,(s")/U.(s") and therefore,

_ Um Uce Uem ~ Ua Uim ? Uem Umm A~ N
v<vt—v>—Uc{(Uc 7 Ve (gt - g i (S - T ) vaypG m}.

(2.57)

2.3.4. Solving the Linearized System for the I-M Extension
The system of equations that we solve has 2N + 7 dynamic equations:
e 4 pricing equations, (2.30)-(2.33)

e 2N Euler equations for capital ((2.36) for home and similar for foreign)

2 money demand equations ((2.21) for home and similar for foreign)

1 equation relating bond prices (set (2.22) equal to (2.56), eliminating r)

and static equations and definitions as in the benchmark economy except

o ¢ from (2.55);
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o V from (2.57).

We turn next to the computation. We will use the following vectors:

ct = [ﬁH,t—laﬁF,t—laﬁ*F,t—laﬁE,t—la ]%1,25, s ]%N,ta ]%ik,ta s ]%}k\f,ta ;ka Ut, Q,’f]/ (nz X 1)
Xt =[PHjt—2,- s PHt-N,DFt—25 - DF - N DFt—2s - s DF - N D t—25 - DH - N
]271,t—17 ey ]%N,t—la ];T,t—lv ey ];}k\[t_l, :_1] (nX X 1)
Zt = (24 N1y 204 N—25 -2ty Xty [l N 15 oo s it N1, iy N 15+ -5 B N 41
Zt: [Ztazt—la---;zt—N+2]/ (TLZ X 1)
St:[ﬂtv---aﬂt—N+17ﬂ:7"'7ﬂ;ﬁk—N+1]l (77,5'><1)

The vector z; contains the choice variables at time ¢. It has n, = 2N + 7 elements. The
vector X; are the state variables at time ¢. There are nx = 6/N — 3 state variables. The
vector Z; contains all variables that appear in the residual equations. As before, the vectors

Z; and S; are used when we characterize the solution. (See (2.40).)

As in the benchmark economy, the residual equations can be written succinctly as

follows:

E A Xit1 + Ag Xi + shock terms|Q;| = 0.
Zi1N-1 ZiiN—2

The A; and As matrices can again be written as in (2.41) and (2.42), respectively. However,

7, and Zs in the incomplete-markets example are given by

- 0 ... 0 O
1 ... 00
Lis® | . . - |y Oun—a2nt1
I, = I
|0 ... 1 0
L OoNt1,4N—4 OonN41,2N+1
[ 1
Iy4® 0 } ; O4n—42N+3
T, = | On—21
Oan+1,4 Ton+1,28+1,02n+1,2]

We now construct eigenvalues of —A1_1A2 if Ay is invertible and generalized eigenvalues

otherwise. Then, ignoring shock terms, we have

Xit1 1 Xy
= VAV .
[Zt—i—N—l] [ZHN—J
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We can sort eigenvalues inside and outside the unit circle. If there are nx stable eigenvalues
(which is the number of state variables in X'), then we have a locally determinate system.
Suppose that the eigenvectors in V and eigenvalues in A are sorted so that the upper left

partition of A contains the stable eigenvalues. Then,
X1 = Vi VT X,
Zin—2 = Var Vi1 Xy
The last n, elements of Z;, x_o are those of z;. Therefore, we have a relationship between
our decision variables z and the state variables X. If we want to write the system as

(2.40), then we can use this relationship between z and X to fill in the elements of A. In

particular, we set

A(l:n,,1:n, —2) = A,x(;,[1,N,2N — 1,3N — 2,4N — 3 : 6N — 3))
A(l:nyn,+1:n,:ny) =A.x(,2: N—1)

Al:nyn, +2:mn,:nyz) =A,x(,N+1:2N —2)
A(l:nyn,+3:n,:nyz) =A,x(,2N :3N — 3)

A(l:nyn, +4:n, :ny) =A,x(,3N —1:4N —4)
Any,+1:ngz,ling—n,) =1In,n. ny—n.

where A, x comes from z; = A, x X;.

The next step is to compute B. The computation is exactly the same as in the
benchmark case except that the values for the ag’s and by’s in (2.43) are different. In the

incomplete-markets case, they are:

ap =dR/dZ(:,1: (N —1)n,)
an—1(;,1:n,) =dR/dZ(:,(N —1)n, +1: Nn,)

bo(:,1: N)=dR/dZ(:;Nn,+nx +1: Nn,+nx + N)
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bo(:, N+1:2N)=dR/dZ(:;Nn, +nx +2N : Nn, +nx +3N — 1)
bn_1(:,2: N)=dR/dZ(:;;Nn, +nx + N+1: Nn, +nx +2N —1)

bny_1(:; N+2:2N)=dR/dZ(:,Nn, +nx +3N : Nn, +nx +4N —2)

with all other coefficients but ay set equal to 0. The matrix ay is nonzero but it is not
used in computing B. From here on, the steps of the computation of B are the same as in

the benchmark case and therefore, the codes look the same.

2.4. The Extension with Additional Shocks

It is easy to include additional shocks to the three models described above. We need to

make the following changes:

e Replace c =y — x by ¢ =y — xz — g in the steady state calculation.

e Replace (2.34) by
i (8) G, + Ui (1) Dige = Fe(D)h(i = 1) by eon + F@I() (e + Ay,
e Replace (2.37) by
rici s =y — Fr(i)k(i — 1)/ Fy(i)ki1 01 — Fu(@)1(0)/Fi(0) (G, + Ay) — Ay
e Replace (2.39) by
e =y — [w(V) @14 +...2(N)Zns]/N — gdi)/c.

Notice that we did not adjust the Euler equations for capital since the A term in mc cancels

with the A term in Fj leaving the linearization unchanged.
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2.4.1. New Code for the Benchmark Economy

When we rewrite the code with multiple shocks, we need to adjust the Z and S vectors as

follows:
~ ~ ~ % ~ %
Z = [Zt+N—1;Zt—|—N—2a o2ty Xy [ty N1, - - - yMt—N+1s et N—15 -+ -y M~ N+13
A~ N Ak Ak A A~ Ak Ax1/
gt—|—N—17"'7gt7.gt—|—N—1""7.gt?at+N—1?"'7at7at+N—17"'7at]
~ ~ ~ ~ %
St = [,uta'"hut—N—Fl?Mta"-hut—N—l—l?

~ ~ AX Ak ~ ~ Ak Ak /
gtagt—hgt7gt—17at7at—17at7at—1] :
The dimension of S is now 2NN + 8 x 1.

Although the elements of A in (2.40) will be different when we turn on the other
shocks, we will not have to change the code used to calculate it. The calculation of B on

the other hand will change. We need to use new code for the b;’s as follows:
bo(:,1: N)=dR/dZ(:;Nn,+nx +1: Nn,+nx + N)
bo(:;, N+1:2N)=dR/dZ(:,Nn, +nx +2N : Nn, +nx + 3N — 1)
bo(:,2N +1) =dR/dZ(:,Nn, +nx + 4N — 1)
bo(:,2N +3) =dR/dZ(:,Nn, +nx + 5N — 1)
bo(:,2N +5) =dR/dZ(:,Nn, + nx + 6N — 1)
bo(:,2N +7)=dR/dZ(:,Nn, +nx + TN — 1)
b1(:;,2N +1) =dR/dZ(:,Nn, + nx + 4N)
b1(:,2N +3) =dR/dZ(:,Nn, + nx + 5N)
b1(:,2N +5) =dR/dZ(:,Nn, + nx + 6N)

b1(:,2N +7) =dR/dZ(:,Nn, +nx + TN)
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bn_2(:,2N +1) =dR/dZ(:;,Nn, + nx + 5N — 3)

by_2(:,2N +3) = dR/dZ(:,Nn, +nx + 6N — 3)

by_2(:,2N +5) =dR/dZ(:,Nn, + nx + TN — 3)

by_2(:,2N +7) =dR/dZ(:,Nn, + nx + 8N — 3)

bny—1(5,2: N)=dR/dZ(:;;Nn,+nx + N+1: Nn,+nx +2N — 1)
bny_1(:; N+2:2N)=dR/dZ(:,Nn, +nx +3N : Nn, +nx + 4N —2)
bn_1(:,2N +1) =dR/dZ(:, Nn, + nx +5N — 2)

bn_1(:,2N +3) = dR/dZ(:,Nn, + nx + 6N — 2)

bn_1(:,2N +5) =dR/dZ(:,Nn, + nx + 7N — 2)

by_1(:,2N +7) = dR/dZ(:, Nn, + nx + 8N — 2)

The matrix P in Siy1 = PS; + €141 will also change. With multiple shocks we have

i pp 0 ... 00 7
1 0 ... 00
Lo |0 1 0 0 02,8
0 0 ... 10
pg 00 0 0 0 0 07
P = 1 00 00O 0 O
0 0 pp 00 0 0 0
0 001 0 0 0 0 0
8,2N 0 0 0 0 p, 0 0 0
00 001 0 0 0
0 00 0 0 0 p, O
i 0 0 0 0 0 0 1 0J]

(2.58)

To set up the matrix D needed to compute B in (2.40), we need to make assump-

tions about the timing of decisions.? Suppose that €2, is the information set of the mo-

nopolists when setting prices. Let’s start with the case: @ = {ws Z;%), where w; =

2 See (2.46) for the benchmark case.
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[fie, (1}, e, GF, a, ay])’. The interpretation in this case is that monopolists see none of the

period t shocks before choosing their period ¢ prices. In this case,

EMufiy + ... + MNfu—n+1 + M1 fif + ...+ Manfiy Ny
+ Mon+19t + Mant2Gi—1 + Man+3d] + Mantad; 4

+ Monisar + Manteai—1 + Many7a; + Maonisar_1|Q4]

= [0, Mipy + Mo, Ma, ... My, 0, Mnyipy + Mnyyo, Mygs, ... Man,
0, Mant1pg + Many2, 0, Mani3pg + Man 4,

0, Mants5pa + Manye, 0, Many7pa + Mans] Si.

In this case, D would be given by

D {O I4,4 ® P 04(ns—6),nzns—4ns

n,ns—4ngs,dngs Inzns—4ns
where
i v OnN—1,n 0 T
ON_1n i 2N—-2,8
& — pg 10 0 0 0 0 O
0 0 0 ppb 1 0 0 0 O
42N 0 0 0 0 p, 1 0 0
i 0 0 0O 0O 0 0 pg 11
fpp 1 0 0 0
0O 0 1 0 0
y—=1|0 0 0 1 0
0 0 0 0 ... 1

The matrix ® has dimensions 2N + 2 x 2N + 8 while ¥ has N — 1 x N.

t

=5, ar, a;} so that monopolists observe current

Now consider the case with ; = {{ws

technology shocks when choosing prices. In this case,

EMufiy + ... + MNfiy—ng1 + My fif +... + Monjiy_ N

+ Mon+1Gt + Maoni2Gi—1 + Manysgf + Mantad;_4
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+ Monysar + Maonieai—1 + Manira; + Manysar_1|Q4]

= [0, Mip, + Mo, M3, ... My, 0, Mny1py + Mpyio, Mnats, ... Man,
0, Monyi1pg + Mania2, 0, Mony3pg + Mana,
Monys, Manye, Manir, Manis] St
In this case, D would be given by

D {O I4,4 ® P 04(ns—4),nzns—4ns

n,ns—4ng,dngs Inzns—4ns
where
i [ v ON—l,N] 0 T
ON—l,N U 2N—-2,8
pg 1 0 0 0 0 0 07

P — 0 0 po 1 0 0 0 O

- 0O 0 0 01 0 0O

’ 0O 0 0 0 0 1 0 O

0O 0 0 00 0 10
L L0 0 0 0 0 0 0 144

and V is the same as above. The matrix ® has dimensions 2N + 4 x 2N + 8.

Finally, suppose that Q; = {{w,}'Z5, 3+, 45, @1, @} } so that monopolists observe current

real shocks when choosing prices. In this case,

EMufiy + ... + MNfiy—Nng1 + My fif +... + Monjiy_niq
+ Mon+1Gt + Maoni2Gi—1 + Manysgf + Mantad;_,

+ Monysar + Maonieai—1 + Manira; + Manysar_1|Q4]

= [0, Myipy + Mg, M3, ... My, 0, Mny1py + Mpt2, Mg, ... Man,
Moni1, Mani2, Mania, Monia,

Monys, Manye, Manir, Manis] St

In this case, D would be given by

D— I4,4 ® ® O4(ns—2),nzns—4ns

Onzns—4ns,4ns Inzns—4ns
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where
v ON—1,N 0
H — ON_1.n N IN—-28

Os,2n Ig s

The matrix ® has dimensions 2N + 6 x 2N + 8.

2.4.2. New Code for the Taylor-Rule Extension
The new Z and S vectors for the Taylor-Rule case are as follows:

_ * oA A Ak A~ %

Zt — [Zt+N—172t+N—27 ~~~Zt>Xt>€r,t>€r,t79t+N—1; s 7gtagt+N—17 <o Gt
~ A Ak Akl
AppN—1s- -0, N_qs---507]

_ * * ~ A~ Ak Ak ~ ~ Ak Ak /
St — [Er,taEr,t—laEr,taer’t—lagtagt—lagt 7gt—1;ataat—1aat7at—1]

The dimension of S is now 12x1.

To calculate the B matrix in (2.40) we need to update the b;’s to take into account

the real shocks. These are now:
bo(:,5) =dR/dZ(:,nz +nx + 3)
bo(:,7) =dR/dZ(:,nz +nx + N + 3)
bo(:,9) =dR/dZ(:,nz +nx + 2N + 3)
bo(:,11) =dR/dZ(:,nz +nx + 3N + 3)
b1(:,5) =dR/dZ(:;,nz +nx +4)
b1(:,7) =dR/dZ(:;,nz +nx + N +4)
b1(:,9) =dR/dZ(:;,nz + nx + 2N +4)

bi(:,11) =dR/dZ(:;,nz +nx + 3N +4)

bny-1(:;,1) =dR/dZ(:,nz +nx + 1)
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bn-1(:,3) =dR/dZ(:;,nyz +nx + 2)
bny_1(:,5) =dR/dZ(:;nz +nx + N +2)
by-1(:,7) =dR/dZ(:,nyz + nx + 2N + 2)
bny-1(:,9) =dR/dZ(:,nyz + nx + 3N + 2)

bN_l(i, 11) = dR/dZ(,nZ +nx +4N + 2)

with all of the other b coefficients equal to 0.

Next, we adjust the P matrix. For this case it is given by

e 00 0 :
1 0 0 0 .
0 0 pe O 4.8
00 1 0
o, 00 0 0 0 0 07
1 00000 0 0
P= 0 0 p, 00 0 0 0 (2.59)
o 001000 0 0
’ 0 0 0 0 p, 0 0 0
0000 1 0 0 0
00 00 0 0 pg 0
i 00000 0 1 0]

We next set up the matrix D. If Q; = {¢, s, €/ 5, gs, 95, as, a} Z;(l), then

EMuer i+ Maeri—1 + Maey, + Maer 4
+ Ms59: + MeGr—1 + Mazgp + Msgr_4
+ Mol + MioGi—1 + Mi1G; + Miga;_1|€]
= [0, Mipe + M, 0, Mspe + My, 0, Mspy + Mg, 0, Mzpy + Ms,
0, Mop, + Mg, 0, Mi1ps + Miz] S

For this case,

D— I4,4 ® ® O4(ns—6),nzns—4ns

Onzns—4ns,4ns Inzns—4ns
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where

pe 1 0 0 0 0 O O O O 0 07
0O 0 po. 1.0 0 0 O O O O O
& — 0 0 0 0 ppo 1.0 0 0 O O O
0 06 000 0 p,b 100 00
0 000 0 0 0 0 po T 0 0
L0 0 0 0 0 0 0 0 0 0 pg 1

: . _ t—1 * : _ * * *1/
Now consider the case with Q; = {{ws}.—¢, at,a; } with ws = [e, 5, €, s, 9%, s, a%].

Here, the monopolists observe the current technology shocks before changing prices. For

this case,
EMi€rs + Maeriq + M3€:i,t + M4€:,t—1
+ Msge + Megi—1 + Mzg; + Msg; 4
+ Moa; + Miols—1 + Mi1g; + Muaay 1|]
= [0, Mipe + Ma, 0, M3zpe + My, 0, Mspg + Mg, 0, M7pg + Ms,
Mg, Myg, M1, M12] S,

and
D= I4,4 ® P O4(ns—4),nzns—4ns
Onzns—4ns Ang Inzns—4ns
where
pe 1 0 0 0 O O O O O O 07
0O 0 p. 1. 0 0 0 O 0 O 0 O
0 0 0 0 pp 1 0 0 0O O OO
& — 0 0 06 00 0 p, 10000
o 0 0o 0o o0 0 01 o0o0wO0
O 0 0 0 00 0 0O0O1o00O0
O 0 0 0 00 0 0O0OO0OT1TFP0O0
0 0 0O 0O 00O 0 0 O0 0 0 1l

Finally, consider the case with Q; = {{ws}’;;é,dt,df, Jt, 07 }. Here, the monopolists

observe the current real shocks before changing prices. For this case,
EMuer i+ Maer i1+ Maey, + Maer
+ M5 + Megi—1 + Mzg; + Msgy_q
+ Moay + MioGy—1 + Mi1gy + Maga;_1|S]
= [0, M1pe + Mg, 0, M3pe + My, M5, Mg, Mz, Ms,
Mg, Mg, Mi1, Mi2] S,
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and

n,ns—4ng,dngs Inzns—4ns

D— |: I4,4 ® P O4(ns—2),nzns—4ns :|
0
where

/)61000
=[]0 0 p 1 2,8

0s,4 Ig g

2.4.3. New Code for the I-M Extension

The Z and S vectors and the b, and D matrices are the same in the benchmark economy
and the incomplete-markets economy. Therefore, the extension of the incomplete-markets

economy allowing for real shocks follows exactly as in the benchmark economy. (See above.)

2.4.4. Allowing for Accommodative Monetary Policy
Consider the following money growth rate processes:
it = pulit—1 + ”yflt + ou€ut + Opur €t (2.60)
fif = puili—1 + 7121: + O €t (2.61)
With the technology shocks given by
fé:lt _ Pa 0 f{lt—l + Oaq Oa,a* €a,t
ALT10 p) A ] TL0 oa | e
we can rewrite (2.60) as follows:
fit = ppfie—1 +YPaAi—1 + Opept + O €t + V0a€art + V0aax€an

and the foreign growth rate as

A~

fiy, = pufty_1 +VPaA{_1 + Opr€urt + Y0ar€ax ¢

The complete system (ignoring g) looks like

lat Pu 0 Y Pa 0 /:lt—l Ou Oupx YO0a VOaa* é,u,t
il _ [0 pu O vpa| | i 0 oup 0 ~Nog- €t
415 N 0 0 Pa 0 At—l + 0 0 Oq Oaa* éa,t (262)
Aj 0 0 0 pod[Ar, 0 0 0 og €ar 1
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or vy = Ax;_1 + Ce; where

— puI2 7pa12 _ Eu 7211
A_[OQ Pafz}’ C_[OQ Ya |’

Note that the matrices 3, and X, are the coefficient matrices on the disturbances in (2.62).

Let V be the variance-covariance matrix for this system. This 4x4 matrix solves
V =AVA +CC".
Doing the algebra, we have

Vit = p2 Vit + 29pupaViz + 2o Vor + £u30, + 7752,
Viz = pupaViz +y02Voz + 7502,
Vag = p2Vas + B X0

We want to set parameters so that we can govern the correlation between the growth
rates of money and the technology shocks across countries. To do this, we first introduce

parameters g, and g, which satisfy:

Oqa* = Qaaa/ V I Qg
Ogqx = Ua/\/ 1— Q?L
Oup* = @uau/\/ 1—of

Ops =0puf 1_93

and are used to define the elements of ¥, and X,.

It turns out that o, is simply the correlation between A, and fl;" To see this, solve

for Voo above,

o2 1 g}
V — a a
2T (1-p2)(1-2) [@a 1

and note that the correlation between A, and flf is equal to the (1,2) element of V55 divided

by the square roots of the (1,1) and (2,2) elements.
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Unfortunately, constructing the correlation of i and ji* is not so simple when there
is feedback from technology shocks. So, we will calculate this correlation in steps. First,

note that
Vi = V(L4 pupa) o2 ll Qa:| L% ll Qu]
L—p% [ (1= pupa)(1—p2) (1—02) [0a 1 (1—-02) [on 1

1 Qa k2 1 Ou
1{& 1] <1—Q,%>[@u 1]

after substituting in for V52 and then for Vio. We want to set g, so that the correlation

between i and fi* can be set (i.e., the (1,2) element of Vj; divided by either the (1,1)
element or the (2,2) element),

K10a + K20 /(1 — @,2)
K1+ R /(1 —0%)
Rewriting this, we have a quadratic equation in g,;:

cor(fi, i°) =

02 4 K2 R2
" L (cor (@, o ki1 (cor(f, fi*) — a)
If we choose cor(fi, i*), we can back out the value for g, that ensures this (assuming there

=0

= Qa)] O — {1 + cor(f1, 1)

is only one root inside the unit circle).
Next, we modify our definitions for P and D. Recall that S; is given by
Sp = [ty s fle—N11, 155 - N1
Gt: 9t-1, 91 Gr—1, ¢, Gr—1, a7, a5y

and P is the coefficient matrix in Sy4+1 = PSy + €41. With accommodative money, we

have
i Py 0O ... 00 0 0 0 O YPa 0 0 07 7
1 0 0 0 : : : :

Lo |0 1 0 0 0000 0 0 v O
00 ... 10 1g000 0 0 0 ol

B fpg 00 0 0 0 0 07
P = 1 00 00 0 0 O
0 0 p, O 0 0 0 0

. 001 0 0 0 0 0

) 0 0 0 0 p, 0 0 0

0O 0 001 0 0 0

0 00 0 0 0 p, O
i L0 0 0 0 0 0 1 0.

62



Now consider setting up the matrix D. Let’s start with the assumption that: €, =

{ws i;%), where w; = [fit, fiF, §t, §f , ar, a;]’. That is, we assume that monopolists see none

of the period t shocks before choosing their period ¢ prices. In this case,
EMufig + ... + MNfi—Ny1 + Mngrfiy + ...+ Moanjlf nig
+ Mon 119t + Mani2Gi—1 + Many3d; + Maniady

+ Mantsar + Manyeai—1 + Mani7a] + Manisa;_1|]

= [0, Mipy +Ma, Ma, ... My, 0, Mnyipy + Mnyyo, Mpygs, ... Man,
0, Mant1pg + Many2, 0, Mani3pg + Man 4,

0, M17vpa + Manyspa + Mante, 0, Mn117pa + Mangrpa + Manys] St

In this case, D would be given by

D |:0 I4,4 ® P 04(ns—6),nzns—4ns

n.ns—4ans,dng Inzns—4ns

where
i v On—1,n7 0 ]
On_1.3 N 2N —2,8
®— 0 0 pg 1 0 0 0 0 0 0
0 0 0 0 0 0 pp 1 0 0 0 0
YPa 4LN-1 0 4N -1 0 0 0 0 p, 1 0 0
L LLo YPa 00 0 0 0 0 p, 144
py 10 0 0
0 01 0 0
=0 0 0 1 0
[0 0 0 0 1

Now consider the case: Q; = {{ws}'Z§, as,a’} so that monopolists observe current

technology shocks when choosing prices. In this case,

EMufis + ... + MNfl—Nt1 + Myprfif +...+ Monfiy Ny

+ Mon+1Gt + Maoni2Gi—1 + Manysgf + Mantad;_4
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+ Monysar + Maonieai—1 + Manira; + Manysar_1|Q4]

= [0, Mip, + Mo, M3, ... My, 0, Mny1py + Mpyio, Myis, ... Man,
0, Monyi1pg + Mania, 0, Mony3pg + Mana,

M1y + Manis, Mant6, Myi1v + Manir, Mangs] Se.

In this case, D would be given by

D |:O I4,4 ® P 04(ns—4),nzns—4ns

n,ns—4ng,dngs Inzns—4ns
where
i v On—1.n O2n—238 ]
On—1,n v o

107 07 7] [pg 1 0 0 0 0 0 07

P — 0 0 0O 0 pb 1.0 0 0 O

v 0 0 0 0O 0 0 01 0 0O

0 6N=1 10 6,N-1 00 000100

0 ol O 0 0 0 0 0 1 0
L L LO [ 0 i L0 0 0 O 0O 0 0 144

and V¥ is the same as above.

Finally, suppose that Q; = {{ws}’;;}), ag, a;, gt, g7 } so that monopolists observe current

real shocks when choosing prices. In this case,

EMufiy + ... + MNfu—n+1 + Myprfif + ...+ Monfiy Ny
+ Mon+19t + Mant2Gi—1 + Man+3d] + Mantad; 4

+ Monisar + Manteai—1 + Many7a; + Manisar_|Q4]

= [0, Mip, + Mo, M3, ... My, 0, Mny1py + Mpyio, Mnais, ... Man,
Mony1, Manto, Monys, Mana,

My + Monys, Manye, M1y + Manir, Manss] Si.

In this case, D would be given by

D— I4,4 ® ® O4(ns—2),nzns—4ns

Onzns—4ns,4ns Inzns—4ns
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where

i v On-1n O2n 28_
On—1,N v oo
0 0
e=1 1] 0
- Os,N—1 0 08, nv—1 Ig g
0 0
0 g
L L LO [ 0 i i

2.5. The Extension with Sticky Wages

We now consider extending the benchmark economy to include sticky wages. For com-
pleteness, we will allow for both monetary and real shocks. The main differences in the

computation from the benchmark economy with additional shocks are these:

e we add W(s'=2),...,W(s*~") and foreign analogues as state variables;

e we add equation (1.54) and one for W* to our residuals;

o we add W(s'~!) and W*(s'~1) as choice variables;

e we drop w = —U,;/U,;

e we add N — 1 static equations U.(j) = U.(k) to determine c(j, s')’s and do the same
for c¢*;

e we add N — 1 static equations U,,(j) = U, (k) to determine M(j, s*)’s and do the
same for M d*;

e we add NV static equations L*(j) = (I/T//W(j))ﬁ [ L4(i) di to determine the L*(j, s')’s,

and we do the same for the foreign country.

65



2.5.1. Normalization in the Sticky-Wage Economy

In addition to normalizing prices as we had in (2.1), we need to normalize the wages of

the j consumer-types. Let
w(j,s' ™) = W(j, s /M (s )
w(s™h) =W (s'™h)/M (s
O(s') = W(s")/M*(s'™)
W, s = WL s /M (s
wH(s' ) =W (s /M (s

W (s1) = W () /M2 (51

MG, sY)\ (M0, s~ u(s")
)( )

m?(j,s') = M?(j,s")/P(s") = ( Ms(st) P(s)

d* /- St Sk [+ St—l * St
md*(j, St) :Md*(j, St)/P*(St) — (]\]4\455?;75))> <M (jap*(stilu’ ( ))

As in the case of prices, we assume that cohort 1 is the group changing wages. There-

fore, when we normalize the wage equation, we have

w(st—l)Ms(st—l)
= S B (s @ (sT) T L) Un (r—t 41, sT) M3 (s ) T
03, Y BT (7] )@ (sT) T LA(sT) U (Tt 41, 57) /p(sT) M5 (s71) T

or
w(s'™h (2.63)
1
= e BT (s s )@ (sT) T LA (sT) Un(r =t 1, 87) (st - p(sTY) T
v, Y B (s st )@ (s™) T LA(sT) Ul (141, 57) /p(s7) (ulst) ... pu(s71) T
Notice that the indices for the marginal utilities are 7 — ¢+ 1 which is 1,2, ..., N when we

write out the sums.
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The relationship between the aggregate and individual wages is normalized as follows:

S = flv (3 )

[ e, L w(st—%)ﬁ
= |wets) +N<u(st‘1) *

3 (mst—l;d.(fg ;?;LNH)) } v

v—1

2.5.2. Steady State in the Sticky-Wage Economy

Let’s follow the same strategy as in the benchmark and change what we need to. First,
guess the capital stocks, k(i), ¢ = 1,... N, output y, the consumption levels c¢(j), j =
2,...N, and the money demands m?(j), j = 1,...N. Next get the x(7)’s, the yg(i)’s, the
y37(1)’s, and the F'(7)’s as in the benchmark case. Using F'()’s and k(4)’s, we can back out

the labor demands for each firm i, i.e., L¢(i), using the production technology.

Having the L¢(i)’s we can determine the F}(7)’s and then back out marginal costs via
the usual capital Euler equations. The marginal cost of i is the real wage (w/p) divided by
the marginal product Fj(i). We have everything needed to construct the marginal product
but the real wage is a function of all of the U;(j)’s and U.(j)’s — which we don’t yet have.
But to get these marginal utilities, we need the c(1), the L*(j)’s and the M?(j)’s.

The first consumption level is derived with the resource constraint

<
I
N

We can back out L*(j)’s from the labor demand functions:

Lol = </ﬂwl ) ZLd (m g > = 4

Note that L*(j) is a function of the p’s and the total labor demand which we know. We

can back out the aggregate price from the definition of m<(j) as follows:
1
p =/l S m )
J
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With all of the consumptions, labor supplies, and money demands we can compute

marginal utilities and, in turn, the steady state wage:

v (N—1)v

Ue(1) + Up(2)BuT7 + Ue(3)B2u77 + .+ U (N)BN -1

_g(munﬂme%+m@mw%+m+mwwmﬂﬁ%)

With w, we can derive the steady state aggregate wage as follows:

v—1

_ 1 (1 = (J\{—l)v) v
= - -v .. -v
w w N + v’ + M

We can use the following equations to check that we have a fixed point:

me(i) = @/(pFi(i), i=1,...,N

(N—1)0

1+ Bu™e + B2pT 4 .+ BN-1y T

p (mc(l) +me(2)BuT7 + me(3) BT + . +mc(N)ﬁN—1M%>
0

Upn(1) =Ue(1)(1 - B/1)
Uj)=U(1), j=2,....N
Un(j) = Un(1), j=2,...,N.

Finally, our assumption about common preferences implies that ¢ = 1 in a steady state.

2.5.3. Linearized Equations in the Sticky-Wage Economy

Most of the first-order conditions look the same in the benchmark and sticky-wage economies.
The utility functions must be indexed but the form of the linearized equations remain the
same. In this section, we derive formulas for the additional equations needed in the sticky-

wage economy.

Let’s start with the deterministic wage equation:

— Y BT a(sT) T LSO (T —t+1, 57) (") . p(sT)) T
v, BT 1w(s7) T LA(sT)Uo(r—t+1,57) /p(s7) ((st) ... p(s71)) T
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First, rewrite this as:

Uw(st_l) [ o+ ﬁiUc(i + 1’ st—!—i)/p(st—ki)u—)(st—ki)ﬁLd(st+i) (M(St) . -,u(SH_i_l))ﬁ 4. }

= ... B'U(i+1, SHZ‘)@(SH")ﬁLd(sH’i) (u(s") -+ (s 1) = _ (2.64)

and then do the linearization of (2.64) in pieces:

v

Uc(i+1, st+i)/p(st+i)®(st+i)ﬁLd(st“) (u(s) - p(stH1)) ™7

Uee(i 4 1)e(i +1) . Uag(i +1D)L%G+1) .,
U. Cit1,t+i t U. Liyvyi
Uemn (i + )M +1)/P _, . 1 . s g

Ui+ 1) My t4i — Pe4i T T Wi + Ly,

vi

~ Uc/pu_)ﬁ[/dul—v

_|_

(%
+

(fut + .o flpgio1)

1—w

Uyl + 1, s (st ™55 L) (1(s") - - p(sH1)) ™F

Ui+ 1)e(i +1) . Un(i+1)L%(i+1) -,
Ul(i T 1) i+1,t+1 Ul(i T 1) i+1,t+i

i

Ld/J/ 1—v

~ Ui+ D)ot

Upn M9 (i + 1)/Pmd n 1
Ui(i+1) LTy

- ?d
Wi + Ly

b+ i)
1—v'ut oo Mt4i—1

Therefore, the full equation is:

vw/p@lTledUc(l + BuT 4. )@

Uee(i 4+ 1)e(i +1) .
U Cit+1,t+i

+ vw/p@ﬁLd{. 4 (BuT) U,

Ua(i+ 1L +1) -, Uen (i + 1)M4 i +1)/P _,
+ U Li+1,t+i U Myt t+4

‘. }
Ue (i + 1)e(i + 1)6 |
Ul(Z i 1) 1,1+

— Pty +

A A v . .
U‘I’tﬂ' + Lf+i + (e + o fleyio1)

1-— 1—w

1

:(Dl—de{...— (Bu™)U,(i + 1)
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Un(i+ DL+ D) sy Um(i+ DM+ 1)/P 4
Ui(i +1) o Ui(i+1) s

. } (2.65)

Crossing out common coefficients in (2.65) and dividing by the coefficient on w, we

1 . - 1
Wi Ld- — ([ L G—
Y + t+z+1_v(:ut+ flt+i-1)

1

get

Wi—1 =

P i Ua(i+ De(i +1) .
v e e e 1-v ZU —|— 1 - 7 i
vwUc (1 + But=> +...) { (Bpr==)i(i+1) Ui +1)

Un(i+1)L%(i+1) -, N Ui (i + 1) M0 + D/P.a
U(i+1) e Ui+ 1) s

_}

Ucc(i + 1)6(2 + 1) "
U Ci+1,t+i

_|_

2~ - 1 A A
Witi + Lfﬂ' + —(Mt + ... ,ut—|—i—1)

1—w 1—w

v

! {...+<m~—v>i

- 1+ But" +...
L Uali+ DI +1) ;

Uen (i + DM@ +1)/P _,

U. Lf+1,t+z' U. M1 44
A~ S - v ~ ~
— D+ Wi L, + ﬂ(“t + . fgio) | } (2.66)
Finally, we use the steady state equation for p in (2.66) to get
W1 =
L B UG+ 1) [Uali+ De(i+1)
e , - i+1,t4i
S@uT Ui+ Gl
Up(i+1)L%(i + 1)14/S N Upn (i + 1) M7 + WPmd
U(i+1) b Ui+ 1) L

1 . - 1 . .
+ mwtﬂ + Lf+i + E(Mt + oo fligio1)

_}

. Uy (i + 1) M4 (i +1)/P
+ U Litq v+ U, mg+1,t+i

+}

Ucc(i + l)C(Z + 1) "
Ci+1,t+i

&

A ~ v
Wi Ld- — ([ L i—
W + Ly + 1_U(Mt+ flt+i-1)

— Piti + 1
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Putting expectations back in, we get the following linearized wage equation:

UlH—lt—H 1 a 2d 1 ~ ~
=F i i+ LY 4+ — i
W1 t— 12001 (Ulz+1)+1 th++ t+z+1_v(:ut+ fitt+i-1)

c,i+1,t+1 A 1 ~ *d
—Ei Z w2 z( T Peri t T Wi Ly

(%

—l—l_

" (fug =+ - .. ﬂt+i—1)) (2.67)

where

_ BuT) UG+ ) (BT

SGu=)iti+1) O (BT

and ﬁl,i,t, Ue,i+ is shorthand for the log-linearized marginal utilities. Note that in the case

1,8

with zero-inflation, the linearized pricing equation simplifies to:

N—-1 2 2 N—-1

R P U - -~ _— A ;
wi—1 = Fp1 Z B (Dr4i + l’zz}t’tﬂ — C’Z;}LH—Z + g+ figpio1)/ Z I}
i=0 ¢ i=0

From the first-order conditions of consumer j, we also get a relationship for labor

supply which when linearized is

- ]- 2~ ~ A~ A~
L%, =L{+ m(wt —Wpj g1+ 1) (2.68)

This equation depends on the individual wages, which will be in the state vector, and the

aggregate given by

~ v [ENESTTE Rl v, N
GOy = |14 pT 4+ ... .p 1= ] (W11 4+ ™7 (D=2 — fle—1) + ...
W=Dy X .
+p v (wt_/\/—,ut—l_---_,ut—N—H)]' (2.69)

Note that the labor demands are going to be derived by the same equation as in the

benchmark, except that we use the notation L¢ here:
yi (1) i + Y3 (0 Gz e = Fe(Dk( = D ki + FOLYE) (LY, + Ay, (2.70)
Similarly, with marginal costs, we use L%:

mic; = Wy — Fiy(i)k(i — 1)/ Fy(i)ki—1,0-1 — Fu(i) L) /By (i) (LY, + A) — A, (2.71)
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where w; is now:

ZI)t - @t - ﬁt. (272)
From the first-order conditions (1.57) and (1.58), we get

Uee(§)e(f)éje + Ua(§) L () L5y + Uer (5) M4 () / P,
= Uce(k)e(k)éns + Ua (k)L (k)L ; + Uen (k)M (k) / P, (2.73)

Uem (5)(3)¢1,t + Ut () L (5) L34 + Upn () M (5) / PP,
= Uemn(k)e(k)en, + U (K)L* (k) L3, + Upun (k) M (k) P1ing. (2.74)

for all j,k e {1,...,N}.

Finally, we need the labor market clearing condition, the money market clearing con-

dition, and the resource constraint:

L= (L' () LY, + LP(2) L3, + ... LYN) L)/ > L) (2.75)
N T R - d
fir = Pr = 37 (M, +mg, +...+m%,) (2.76)

ge=([c(M) éry+ ... cN) en o] /N + [2(1) Z1e + ... 2(N) Enal /N + 9 90) /42.77)

2.5.4. Solving the Linearized System in the Sticky-Wage Economy
The system of equations that we solve has 2N 4+ 7 dynamic equations:
e 4 pricing equations, (2.30)-(2.33);

e 2N FEuler equations for capital ((2.36) for home and similar for foreign);

2 money demand equations ((1.55) for home and similar for foreign);

2 wage-setting equations, ((2.67) for home and similar for foreign);

and static equations and definitions that determine:
© YH,is YF,is Yri» Yir,; from (2.10) and analogues;
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o p, p* from (2.14)-(2.15);

o Py, Dp, Dps Dy from (2.16)-(2.19)

o q from (2.24);

o A\, \r, 5\}, 5\”}[ from (2.27) and analogues.

o LY, LAd: from (2.70) and foreign analogue;

o Z;, &f from (2.35) and foreign analogue;

o 1, mef from (2.71) and foreign analogue;

o ﬁ;’, ES; from (2.68) and foreign analogue;

o w, w* from (2.72) and foreign analogue;

o ¢, fn;i, 7, ﬂ’;d; from (2.73), (2.74), (2.76), (2.77) and the foreign analogues.

We can write the system of equations in terms of a subset of our variables and back out

all variables via the static conditions listed above. We turn to this next.

We introduce a new index X = max(N, ) because we will need to record sufficient

lags and leads of the variables. We will use the following vectors in our computation:

2t = |-]3H,t—1JaF,t—laﬁ}‘,t—l?ﬁ?-I,t—la ]%1,25, e ]%N,t, ]%it’ s ]%}kv,t, Ut Q:, W1, L?J;gk_l]/ (nz X 1)
Xt =[PH -2, s PHt—N DFt—25 - DFt—N,DF 25+ Drt N> DH -2 DH.t— N
[SRRTUURNY SN TR SR
(,Dt_g,...,th_N,ch_z,...,ch_N] (TLX X 1)
Zp = (200015 202y - - 2ty Xty R 15+ o5 bR 15 w15+ > bRt 1
L P T/ AT T | T (S PR I WIS T 1
Zy =24y 2t—1, - -y Zt—nt2) (ny x 1)

St - [lat? SR lat—?‘H-la II:\L;’;’ s 7&?—?‘24—17
Gty Gt—1, 07 97— 1, Qg Gp—1, 0F a7 ] (ns x 1)
The vector z; contains the choice variables at time ¢. It has n, = 2N + 8 elements. The

vector X; are the state variables at time ¢. There are nx = 6N + 2N — 6 state variables.

73



The vector Z; contains all variables that appear in the residual equations. The vectors
Z; and S; are used when we characterize the solution, Z; = AZ;_1 + BS;, where Z has

nz = (N — 1)n, elements and S has ng = 2X + 8 elements.

The residual equations can be written succinctly as follows:

E A Xi41 + As Xi + shock terms|Q; | =0
Ziyn-1 Ziyn—2

where £ implies that expectations are taken — but we will assume that different information
sets for the different residual equations. For our example, the residuals are denoted R(Z)

and the matrix A; is given by

_’[nX7nX OnX7nz OnX7nz A O”X7nz ]
On. nx g—g(:, 1:n,) g—g(:,nz—l—l 12n,) ... g—g(:, (N=2)n,+1: (R=1)n,)
Al = Onz7nX Onzvnz Inz/nz e Onzvnz
- Onz7nX Onzvnz Onzvnz st Inz/nz ( = )
2.78
and matrix Ay is given by:
B —Il Onx,nz Ce Onx,nz —IQ ]
g—g(:, Nn,+1:R8n,4+nx) Onzne na s g—g(:, (R=1)n,+1:Nn,)
A2 = Onz»nX Inzanz Onzanz R Onzﬂlz
- Onz7nX On27nz M Inzﬂlz On27nz (2'79)
The matrices Z; and Z, in A, are given by
B O ... 00 7
1 ... 0 O
Lia | . . . . ;o Oun—aon Oun—a,28—2
0 ... 1 0]y,
1, = Oan,aN—4 O2n,2n Oan,20 —2
0 0 0
0 0
Oon—2,4N—4 Oon—22n I22® P
- 0 PR ]_ 0 N_l -
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_ 1 ;
Iy4® [0 } s Oanv—sa2n Osn_ap Osan—4,2
N—2,1
I, = O2n,4 Iy oan O2n,2 02,2
1
Oonr—2,4 Oon—22n Oon—22 I22® {0 ]
L N—-2,1 |

Using the method laid out in Blanchard and Kahn (1980), we construct eigenvalues

of —A1_1A2 if Ay is invertible and generalized eigenvalues otherwise. Then, ignoring shock

Xit1 1 X
= VAV .
[Zt—&-bt—l] [Zt+z~t—2:|

terms, we have

We can sort eigenvalues inside and outside the unit circle. If there are nx stable eigenvalues
(which is the number of state variables in X'), then we have a locally determinate system.
Suppose that the eigenvectors in V and eigenvalues in A are sorted so that the upper left

partition of A contains the stable eigenvalues. Then,
Xip1 = V11A1V1_11 X
Zignoa =V Vi1 Xi.

The last n, elements of Z; . x_o are those of z;. Therefore, we have a relationship between
our decision variables z and the state variables X. If we want to write the system as
(2.40), then we can use this relationship between z and X to fill in the elements of A. In

particular, we set
AL :nu,1:ns —4) = A,x(;,[1,N,2N —1,3N — 2,4N — 3 : 6N — 4))
Al:ngn,+1:n, : (N—=1n,) =A.x(;,2: N —1)
A(l:nyn, +2:n,: (N—=1)n,) = A, x(:,N+1:2N —2)
Al:nyn,+3:n,: (N—=1)n,) = A, x(:,2N : 3N — 3)
Al:nyn,+4:n,: (N—1)n,) =A,x(5,3N —1:4N —4)
Al:ngmn, —1:n,: (N —=1)n,) = A, x(:;,6N —3:6N + N —5)
A(l:nyn, in, : (N —1)n,) = A, x(:,6N+N —4:6N + 2N —6)
Any+1:nz,1:nz —n,) =ln,—n.my—n.

75



where A, x comes from z; = A, x X;.

The next step is to compute B:

Bl Inzanz
O’I’Lz,’ns Onzvnz

B = . == . Bl = SBl
O’I’Lz,’ns Onzvnz

We will use S below in order to reduce the problem of computing B to one of computing

B;.

To derive expressions for the elements of B, we first note that the residuals can be

written as follows:
ElapZisn_1 +a1Ziin_o+ ... +an_1Z; + anZi—1
+ boSipn—1+b1Sn—2+ ...+ bn_15/%| =0
Using the definitions of Z and Z, we can write:

apg =dR/dZ(:,1: (X —1)n,)

aw—1(:,1:n,) =dR/dZ(:;(RN—1)n, +1: Rn,)

bo(:,1:R) =dR/dZ(:,Xn, +nx +1:Rn, +nx +N)

bo(5, R +1:28) =dR/dZ(:,Xn, + nx + 2N : Rn, +nx + 3N — 1)
bo(:, 28 +1) = dR/dZ(:, Rn, +nx + 4R — 1)

bo(:, 28 4+ 3) = dR/dZ(:,R¥n, + nx + 58 — 1)

bo(:, 28 +5) = dR/dZ(:,R¥n, + nx + 68 — 1)

bo(:, 2R+ 7) = dR/dZ(:,Rn, +nx + TR — 1)

bi(:, 28 +1) = dR/dZ(:, R, + nx + 4R)

b1(:, 28 4+ 3) = dR/dZ(:,Rn, + nx + 5X)

76



b1(:,28 +5) = dR/dZ(:,¥n, + nx + 6R)

bi1(5, 28 +7) = dR/dZ(:,Rn, + nx + TX)

br_2(:,28+ 1) =dR/dZ(:,Xn, + nx + 5X — 3)

bi_2(:, 28 + 3) = dR/AZ(:, Rn, + nx + 6 — 3)

br—2(:, 28+ 5) = dR/dZ(:,8n, + nx + TR — 3)

br_o(:, 284+ 7) =dR/dZ(:,Xn, + nx + 8\ — 3)

bro1(5,2:N) =dR/dZ(:,Nn, +nx + N+ 1:Rn, +nx + 28— 1)
br—1(:;, N 4+2:28) =dR/dZ(:,Xn, + nx + 3N : Xn, + nx + 4R — 2)
br—1(:, 28+ 1) =dR/dZ(:,RXn, + nx + 5\ — 2)

bu_i1 (28 + 3) = dR/dZ(:, Rn, + nx + 68 — 2)

br—1(:, 28+ 5) = dR/dZ(:,8n, + nx + TR — 2)

br_1(5, 284+ 7) =dR/dZ(:,Xn, + nx + 8\ — 2)

with all other coefficients but ax set equal to 0. The matrix ay is nonzero but it is not

used in computing B.

Using the solution in (2.40) we get:

Elao (A" Z_1 4+ BSyyn-1+ ABSiin_2+ ...+ AN 'BS,)
+ay (AN Z21 + BSpyn_2 + ABSiin_3+ ...+ AN2BS,) + ...
+an—1(AZi_1 + BS;) + anZi—1

+ bpStan—1 +01St4n—2+ ... +br_15Q| =0 (2.80)

The matrix P in S;y1 = PS; + €41 is the same as in the benchmark case except that

we use N in place of N. (See equation (2.58).)
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If we assume that the timing of the household /union wages are the same as that for the
monopolist, then we have to do a little more work to get D. Suppose first that households
and firms see Q; = {/is, i1, §s, 9%, s, Q% }’;;}) when making their pricing decisions. Taking
expectations is the same as in the benchmark economy with multiple shocks except here

we have 2 additional equations to restrict — those related to the wage rates. The matrix

D in this case is

I4,4 ® P 04(n5—6),nzn5—6n5 04(n5—6),2n5
D= Onzns—6n5,4ns Inzns—ﬁns Onzns—6n5,2ns
02(715—6),4715 02(n5—6),nzn5—6n5 12,2 ® P

If agents can see technology shocks, then

Is®® Os(ns—4),n.ns—6ns  O4(ns—4),2ns
D= Onzns—6n5,4ns Inzns—ﬁns Onzns—6n5,2ns
02(715—4),4715 02(n5—4),nzn5—6n5 12,2 ® P

Finally, if agents can see both technology and government spending shocks, then

Ijs @@ Os(ns—2),n.ns—6ns  O4(ns—2),2ns
D = Onzns—6n5,4ns Inzns—ﬁns Onzns—6n5,2ns
02(715—2),4715 02(n5—2),nzn5—6n5 12,2 ® P

3. Formulas for Preferences

We will consider three alternative functional forms for the utility function. In these notes,
I refer to them as ‘separable preferences,” ‘nonseparable preferences I’ and ‘nonseparable

preferences IT’.
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3.1. Separable Preferences

The separable preferences are given by
l1—0o

{(wc%—l—(l—w)m"T)ﬁ} Fy(1=D)"C/(1—¢) (3.1)

Ule,l,m) =

-0
1 . -
= E‘I’(Ca m)' 7+ (1 =1)'"5 /(1 -¢)
where ®(c,m) = P71, The first and second partials of this function are as follows

U, =3 U Twe s

U =—p(1-10)7¢

Up =@ 707 (1 —w)m ™7

Uee = —U@‘U_l(\lln%lwc_%f
—i—tID_U\IM%l_luﬂ/nc_%
— CID_U\I/ﬁw/nc_%_l

Uy =0

U = 0

Un=—¢&(1—1)""

Upn = —0® 71 (W7 T we™ 7)) (U7 (1 — w)m ™)

1

+ @‘U\I/ﬁ_lw(l — w)/nc_%m_n
Upim = —o® 1 (U71 (1 — w)m ™~ 7)?

—l-(I)_U\IJﬁ_luﬂ/nm_%

— T (1— w)/nm_%_l.

Again, ignoring m, consider calculating the labor supply elasticity. In this case, the
elasticity holding U, fixed will be the same as that holding ¢ fixed since U, is not a function

of I. With w = 9(1 —1)"%c?, we get
dnl U 1-1

dnw Uy €l
Ifl=1/4 and £ = 1.5 then dln [/dIn w = 2.
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2. Nonseparable Preferences I

For the nonseparable preferences, type I, we assume

1 n—1 n=1 77_7—1_1 ’l/J 1=o
U(c,l,m)zl_a (wcn +(1—w)m™ ) (1-1) (3.2)
= ®(c,l,m)'°
l1-0

where

®(c,l,m) = U(c,m)71(1—1)¥

where m denotes real balances (M/P). The first and second partial derivatives of this

function are as follows

U. = @‘U\I/ﬁwc_%(l — )Y =(1- a)ch_%/\I/

U=-00migp(l—0¢"t=—(1- a)w%

Up =& 077 (1 — w)m 7 (1 — 1)

Ue = —0® (U Twe™ 7 (1 — 1)¥)?
+(I>_”\Ilﬁ_1w2/nc_%(l — )Y
e Tw/ne” e )Y

_UU:. 1—no _

'1-
10U
U nl-0) nec

U = 0® 7 W01 — )V 7 Twe n (1= 1)¥

—d U T Twe wep(1 — 1)V

U
U

Uiy = 0® 10w T95(1 — )Y 1077 (1 — wym ™7 (1 — 1)
— U (1 — wym (1 — )Y

Uy = —0® (1 — )07 1)2 4 @0 To(yp — 1)(1 — 1)V 2
L uU U

U +1—l
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Uem = —0® 7 N (Ui Twe (1 — 1)) (T (1 — w)m ™7 (1 —1)¥)

+ @‘U\Pﬁ_lw(l = w)/nc_%m_% (1—1)¥

_UUp 1—no
U n(l— o)

Umm = _Uq)_g_l(\ljn%(l - w)m_%(l - l)lb)Q
+ @‘U\Pﬁ_luﬂ/nm_% (1—-1)¥

— U (1—w)/pm (1 — )Y

where the arguments of the utility function and its derivatives have been dropped for

convenience.

Ignoring m, consider two calculations of the labor supply elasticity. First, hold U,
fixed. If A = U,, then
A=c7(1 =¥,

Inverting this we have

. {(1 - l))\w(l—a)} v .

The equilibrium equation is w = —U;/U. = 1¢/(1 —1). With ¢ substituted in, we get

_ Y
w—)\%(l l)

Y(1—o) —1

Totally differentiating, we get

dw =~ {M - 1} 1- "2 2aq

o

_ {1_ Mlg‘ U)} llfldl.

Rearranging this equation we get the following elasticity:

dlnl o 11
dinw |o—yv(1—0)| I

If I =1/4 and o = 1, the elasticity is 3. Suppose that we set ¢ = 2. As o increases from
1 to 10, the elasticity falls from 3 to roughly 1.
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The labor elasticity holding ¢ fixed is simpler. Again, ignoring m, we have w =

Ye/(1 — 1) and, therefore,

dln [ :d(l—wé/w)gzl—l

dln w dw l
c fixed

If [ = 1/4, the elasticity is 3.

3.3. Nonseparable Preferences 11

The nonseparable preferences, type II, are given by

c m
l—o |1—k 1—-1/n
1
= ——®(c,m, )7,

1—0

U(e,l,m) =

The first and second partials of this function are as follows

U.=d %"

U =& 715(—y)

U,, = O Tm "y

Uee = =U(0/Pc™" + K/c)
Ue = U0 /D15
Ui, = Upo /@15y

Un = Up(o /@15 + ¢/1)

= —U.o/Pm '/ "w

l

l1—0o
w l1+£

"7—1+£

Ucm
Upim = —Upn(0/®m™Yw +1/(nm))

Again, ignoring m, consider calculating the labor supply elasticity.

The elasticity

holding U, fixed is complicated when o is greater than 0. For now, let’s do the simpler

case of holding ¢ fixed. Since w = ¥l¢c”,

dlnl 1

dlnw €
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If € =1, then the elasticity is 1. If £ = .5, the elasticity is 2. Note that this is the elasticity

for the o = 0 (i.e., completely separable preferences) case.

4. Are Real Exchange Rates Volatile and Persistent?
When we log-linearize the real exchange rate in the benchmark economy, we get

. Uccc
gt = —

T A

(e — 1) (4.1)

where m; = iy — p;. Suppose that we chose preferences in such a way as to guarantee that
increases in money would not have a large effect on utility or marginal utility; that is, we
assume that quantitatively the third term in (4.1) is small. In that case we could think of
preferences defined over consumption ¢ and labor [. In this case, the variance of ¢; is given
by

var § = (—Ueec/Ue)? 0. + (—=Ual/Uc)? 04 + 2 (UecUacl /U?) 04 ar (4.2)

where 0%, = var(é — ¢*), 0, = var(l — [*), and ORenl = COV(E— &, [—1%).

If we construct variances of the real exchange rate, the difference in logged and de-
trended consumption, and the difference in logged and detrended employment for U.S. and
European data, we find that the variance of ¢ is relatively large. Therefore, to get the model
to generate sufficiently volatile real exchange rates, we require that the coefficient on ¢ —¢*

or | —[* in (4.1) is large in absolute value with U either positive or not too negative.

Consider the signs of partial derivatives with respect to ¢ and I. We know that U, > 0
and U.. < 0 so that the first coefficient in (4.1) is positive. The cross-product U, can be
negative or positive as long as U..U; > Ufl (for concavity). That implies that the second
coefficient in (4.1) is either positive or negative. If it is too negative, then we cannot
generate much volatility in exchange rates since the covariance term in (4.2) would be
negative (with U.. < 0 and U, > 0). So, for now, we will assume that —U..c/U. is a
large positive number and —Ul/U. is either positive or not very negative. This ensures

volatility.
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What about persistence? As we show in our earlier work, it is crucial that prices don’t
jump in response to changes in marginal costs. Otherwise, the effects of monetary shocks
are short-lived. If the production function is Cobb-Douglas with a capital share equal to

a, then the linearized expression for firm i’s marginal cost is:
mcm = w; — aki_lyt_l + Ofliﬂg. (43)

This expression depends on the wage w; which, when linearized, is given by

A Ucl Ucc A Ull Ucl 2 Ulm Ucm ~
= — — — Ll _— — M/P my. 4.4
Wy (Ul UC>CCt+<Ul Uc) t+< Ul Uc ) / iy ( )

Again, let’s assume that the coefficients on money are quantitatively small so that we can
ignore the last term in (4.4). What can we say about the other two given the restrictions
above. Since preferences are concave in consumption and leisure (—[), we know that
—U.cc/U. and Uyl/U; are both positive. And, above, we assume that —U..c/U. was
large. If U, < 0, then the first coefficient in (4.4) is large and positive and the second
coefficient is positive. This follows from the fact that U. > 0 and U; < 0. With at least
one large coefficient on ¢ or [, the theory won’t generate persistent responses to positive
monetary shocks because marginal costs will jump up immediately and firms will respond
by immediately increasing their prices. What if U, > 07 If this cross-product is large
enough, then we can get small coefficients in (4.4). However, having U.; > 0 leads to less

volatility in ;. (Recall that above we wanted —Ul/U. positive.)

The arguments make clear the tension: there is no obvious way to ensure both volatil-
ity and persistence of real exchange rates — unless we choose parameters to get volatility

and then assume that prices are stuck for long periods.

Let’s consider the specific preferences of the last section to see this tension more

clearly. For the separable utility function in (3.1), we have

84



In this case U, = 0. If we choose a value of w near 1, then all that we have to do to

guarantee a lot of volatility is to choose a large value for o.

Now consider the wage rate for the separable-utility case:

a . Ja—-wmyp)ys 1\ .

wch < 1>+1
o — — 2
v n n

with U defined in (3.1). With w near 1 and o large, we will find that wages, and in turn

UA)t:

marginal costs, will jump when there is an increase in the growth rate of money. This is
because the coefficient (what we called v in our earlier) on output in the price equation

will be large if the coefficients on ¢ and [ in (4.5) are large.

What about nonseparable preferences of type Iin (3.2)? In this case, the real exchange

rate is

(@ —ep)+ D, i

. [(1 —w)(M/P) <U . %>] (e — )

where [ appears because U is not equal to 0. Notice though that a large o implies a
very negative value for U.;. Thus, we can’t generate volatile real exchange rates by simply
increasing o. And, if money is not playing an important role, there is really no way to get
volatile real exchange rates. (To see this, note that we(=1/7 ~ W so that the coefficient

on ¢; — ¢; is approximately equal to o.)

In summary, we see that standard choices for preferences lead to a negative result: it
is not easy to generate both volatile and persistent real exchange rates in the benchmark

economy.

What happens when we assume that markets are incomplete?” When markets are

incomplete, we replace ¢, = U}, /U, with the following condition

o Uels TP Uz(sH)P(s)a(s)
"UL(sHP(stth) — TTUL(st) P (st g(stH1)
When we linearize this, we get
. . U..cc,. " Ugl - - Uern M /P . ok
Eiqiy1— ¢ = By |— U. (Ct41 — Cyr) — TC(lH—l — 1) — T/(mt+1 — i)
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U..c
U

Ual » -, UmnM/P , . s

+ Uc (lt—lt)+ Uc (mt—mt)

(¢ — &)+

This is only a slight modification of what we had before — it is simply an expectational
difference of (4.1). As before, we see that the sign of U, will matter. If it is positive,
then the model will generate persistence. If it is negative, then the model will generate

volatility. But, again, it will be hard to generate both.

What happens when we allow for sticky wages? Consider the simplest case with = 1,

B~ 1, and N = 2. In that case, the normalized nominal wage set by household type 1 is

equal to
Grr = SEoa | pot oo+ (22— Y2 ey 4 )
t—1 = 5 t—1 (Pt T Pt+1 T Mt U, U. 1,t 2,t+1
Ull Ucl 7 7 Ulm Ucm M ~ ~
— — Il l —_— — — .
( U, Uc> (Lt +l2441) + < U, U. ) J2 (M, + m2,t—|—1)]

Note that the p; term appears because of our choice of normalizing by M. The linearized

real wage in the sticky-wage case is given by

A

. 1, . . .
t— Dt = i(wt—l + Wi—g — fly—1) — Py

&b

12)75:

Thus, we have lags and leads of the terms in (4.4). But, to get persistence of real exchange
rates, we still require that firms do not raise prices too quickly. The sticky wages will
slow the response down somewhat — but not entirely. Unless U,; is sufficiently negative
(to offset —U../U. or U;/U,;), we will have the same problem as before: in response to
an increase in u, wages will rise quickly, marginal costs will rise quickly, and firms will
increase prices. This in turn will imply no persistence in consumption and, therefore, no

persistence in real exchange rates.
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5. Some Analytics for Special Cases

5.1. Labor-Only Case with Nonseparable U, Exogenous Money, and N = 2

Let’s first consider the case that we studied in our earlier work. Assume that preferences
are given by (3.2) and that F'(k,l) = [. In the labor-only case, we have ¢(s') = y(s') and
therefore ¢; = ;. Assume that prices and monies are not growing over time so that P and
M are stationary variables. In this case p = 1. Finally, assume that there are two cohorts

of firms (N = 2). With N = 2, aggregate labor is

I(s") = (I(1, ") + 1(2, 5")) /2

( t
= (yu(L,s") +yn(Ls") +yn(2,s") +yp(2,5"))/2

1 1 o
3 Lo P(s)] ™7 Pry(s'1) T=00D (") (Puls'™1)7T + Pu(s'=2)77) +

1 1 _
5 [P (O] 77 Py (8 T () (Piy(s' )7 4 Pig(st )T ).

If we linearize this, we get

~

] - p—0 4 1 .
ll: P P _ A~ —P . P ~ 2
t yH(l—p t+(1_p)(0_1) H,t 1+yt+0_1( w11+ Pry 2)/)

p—0
1—p)(0—1)

% ~x 1 % %
Ppi,+9 + j(PH,t—l + PH,t—Q)/2>

1 ~
* P

1 ~ & ~ * 1 % =y ~k
= al <1—p(Pt —Pri-1) +yt) +a”l (Tp(Pt —PH,t—l) +yt)

Of* o o R % (e ok ok o
= al < [PF,t—l - PH,t—l] + yt) +a”l <— [PF,t—l - PH,t—1:| + yt)

L—p 1—0p
OZOZ*Z > o % a Ak ) .
- 1—p [PF»t—1+PF,t—1 _PH,t—l _PH,t—l] +aly +« lyt

where the parameter « corresponds to the ratio yg/(ym + y3). (In the paper we chose
this to be 0.984 because imports from Europe are roughly 1-.984 or 1.6% of GDP.) The
parameter a* is 1 — a. We will need the above expression for the labor input when we

write out the pricing equations.
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We will also need the wage rate which is given by —U;(s')/U.(s") and therefore depends

on consumption, the labor input, and real balances. The linearized wage equation is given

n—1

) we'T 1\ 1] I . 1—w)(M/P)5 [n—1 .
Wy = 7 (77 )-i-; Ct+—1_llt+[( )(\I// ) (7777 )] (M — F)

we T (77—1)+1 R
= —| Yt
v U )

l aa* o ~ %k ~ ~ % . .
i <1—l) {l—p [PF’t_1+PF»t—1_PHyt—l_PH,t—l +ag +a yt}

(EETVE Y FE P

v n

where we have used the formulas above for partial derivatives of the nonseparable (type I)

utility function.

The nominal exchange rate appears in two of the pricing equations. We can write this
in terms of the real exchange rate since e = ¢P/P*. The real exchange rate is a ratio of
the marginal utilities. Using the nonseparable (type I) preferences, we get the following

expression for the real exchange rate:

n=1
. |we' 1 1,. . Q=0 . -
qs = T (0' 77)‘1‘77 (Ct Ct)+ 11— (lt lt)
1 —w)(M/P)"5 N s
+ [( ”)(qj/ ) <a— ;>] (M, — B, — M} + ).

We can substitute in ¢ = y and the formula for the labor input derived above to get ¢ in

terms of outputs, prices, and money.

The money demand equation is given by
M; — P, =gt —nB(re/r —1).

If n = 0 then money demand is interest-inelastic and output and real balances are equal

in equilibrium. Suppose this is true. Then wages are equal to:

. l N - *1 NN
Wy = (1—1—%) (Mt—Pt)—f-(la—_l) (M; — PY)
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aa*l - ok N .
——— | | Py P — Py, 14— P
+<(1—l>(1— >)[ Rt F Py = Pricy = Prgs

and the real exchange rate is equal to

~ —a”)l 9 » Ok 5%
g, = (a—i—(l—a)%) (M, — B, — NI + Pr)

2¢(1 — o)aa*l
+((1—1)( ~))

We will now derive the pricing equation for Py assuming that money demand is

)[PFt 1+Ppt 1 PH,t—l_PH,t_1

interest-inelastic. The intermediate goods price is a function of nominal marginal costs.

In this example, the linearized marginal nominal cost is given by

S al \ - afl\ -,
Pt+wt—<1+m>Mt+(1 l>M
al - L2 a*l
- (737) [P +orProa] = (757 ) [oPrus + 0 P

aa™l A ok N .
+ <(—> |:PF,t—1 + PF,t—l - PH,t—l - PH,t—1:|

1-0(1-p)

If we substitute this expression into the pricing equation we get

R 1 al N ol .
fiee = mE”{(” ) e (75
aa’*l 1 Q A .

B (1—1) <(1—,0 +E) <PH’t‘1 +PH¢‘2> /2

]- OZ* ok p o Ak
+ (Tp + E) Pypi1— -, <PF,t—1 + PF,t—l))




Thus, we get finally,

A 1 1 [ aa™l 1 «a -1
P =5 5 (759) (5 )

al ~ ~ a*l Vi Vi
X Et—l{ (1 + I——Z) (M + BMi11) + <m) (M + M)

() (e

1 a*\ ¥ o %
+ <— + E) (Pgi1+BPg,)

- Tpp (PF,t—l +Pp,q + 08P+ ﬁpF,t)> }

If we drive o and [ both to 1 and let v = 1/(1 — ), then we get the following difference
equation:

- 1+~ - A 2 N N
Ei 1Py — 2ﬁPH,t—l + PH 2= _ﬁEt—l(Mt + Miiq)

which is exactly what we found for our closed economy example. Recall that the solution

to this is:
Pyt 1 =aPys o+ (1—a)M;_,

where a = (1 —/7)/(1 4+ /7).

To derive the equations for Pj; and Pp we need to linearize Pw/e and P*w*e, re-
spectively. When money demand is interest-insensitive, the linearization of Pw/e is given

by
Py + by — & = Pf + 1y — Gy
l N

+ (a + (0" +9(1 — o) (e — a*)) %—z) M
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l

~(1-o @ vt-a-a) 15 ) [aPui+aPre]

(10— @ vl - a0 757 ) [oPhes +a P

a1 =2¢(1—0)]\ 13 o % . ok
(Gt ) et P~ Pracs =P

The linearization of P*w*e is given by
Pt*-l-wf—i-ét :pt-l—d)f—l—cjt

_ <1 —o+(a—v(1 —a)(a—a*))%) My

l

l-o— (" +9Y(1l—-0)(la—a” ))ﬁ

(7
(1-otia- (1_(;)(@_@*))L) [0Pp 0" Py, ]
“(

) [OéPH,t—l + a*PF,t—l]

(S b

which looks the same as the first except that we swap domestic and foreign variables.

Notice that these formulas simplify considerably in the case of ¢ = 1, for example:

A L al - o*l .
Pt—i—wt—et:th-l-(l—f—l_l)M

al
_E[O‘P“” 1+a” PFt 1}

a*l & % N
- _l[aPFt 1T PHt 1}

1
aal o o N s
———— | |PFrt—1 + P — Py, —P
(=) [Pe + P = P = P

because in this case é = M — M*. Therefore, when o = 1 the expressions for Py and Py
differ only in the money terms.

91



What if we set n =0, 3 =1, a = a* =1/2 and p = 1/37 Then the equation for Py

is given by

- 1

1
Pri 1=
1 2+ 5(y

~ ~ 1 A* A*
- 1)/8Et_1{§(1 + ) (M + M) + 5(7 — (M + M)

1 5 A ~ 5 2~k Ak
— Z(’Y - 1) [5 (PH,t—Q —l-PH,t) /2 4+ B (PH,t—l + PH,t)

]_ s 2~k o ok
3 (PF,t—l +Ppy 1+ Pri+ PF,t)} }
Notice that this can be rewritten as
E, 1Pyi+ ¢Pyi—1 + Pry—2 = r.h.s. terms

where ¢ = [2 4+ 5(y — 1)/8]/[5/16(y — 1)] which is greater than 2. (This follows because
v = 1/(1 —1) > 1.) The root satisfying A\* + ¢\ + 1 that is inside the unit circle lies
somewhere between -1 and 0. Therefore, to generate persistence, we need that the other
prices have a quantitatively important affect on Pr. The equation with the right hand

side terms written out is

16
Ei 1Py +2 (1 + 5(

7) Pr i1+ P2
v=1)

8 - N 8 N N
= Et—1{g(1 + ) (M + Myyq) + 3(’7 — 1)(M; + M)

o] b

+2(Pyy1+Pyy) — <PF,t—1 + PF,t—l + Ppy + PF,t)}
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5.2. Labor-Only Case with Separable U, Exogenous Money, and N = 2

We need to rederive the equation for the wage rate and the real exchange rate. The

linearized wage equation with separable preferences is given by

n—1

o Jwe T 1\ 1], g s [a-wyp)s N .
Wy = T <0’ 77)+77 ct-l—l_llt-l—[ T o » (M, — Py)

n—1
we < 1)+1 .
= oc——]+—|h
v n)  n|

l O[O[* o ~ Kk ~ ~ K R .
+ <1€—l> {1—/) [PF,t—1+PF,t—1 _PH,t—l _PH,t—l +ay+a yt}

o= mf/P)% (o- 1)] (1, - B,

U]
The real exchange rate is now

wcﬂ:i_l( 1)+1
0'__ —_
v n n

¥ [“‘“’)(f/” ’ (a_1>] (W1, — By — NI} + )

qe = (¢t —¢)

Ui

which is the same as before except that now there is no term with the labor inputs.

If we assume that money demand is interest-inelastic, then the wage and real exchange

rate simplify to:

l ~ . *[ ~ .
= (o 225 ) (- P+ (£255) Gl - )

Caatl [a o N ok
2 ) |Ppy1+Ppy,  —Ppy1—P
T <(1 — (1 —p) Fi-1t Ppp H,t—1 Hit—1
(jt :U(Mt_Pt_Mt*+Pt*)-

If we drive o and 8 both to 1 and let v = 1/(1 — ), then we get the following difference
equation for Py:

1+4

N A N 2
Ei 1Py — 21 ,VPH,t—l + P9 =—

ﬂ/ N ~
FE,_ (M, + M,
-4 t—1 (M + Myyq)
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where

Y=o+s(y—1)

Therefore, if 0 = 1 and £ = 1, we have the same equation as in the nonseparabe utility
case. If 0 and £ are both small then we can get persistence — changes in outputs and other
firms prices do not imply that a producer adjusts his price immediately. However, we lose

volatility of exchange rates since o must be large in order to amplify q.
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