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ABSTRACT

We explore the welfare consequences of different taxation schemes in an economy where
agents are debt-constrained. If agents default on their debt, they are banned from future
credit markets, but retain their private endowments which are subject to income taxation.
A change in the tax system changes the severity of punishment from default and, hence,
leads to a limitation of possible risk sharing via private contracts. The welfare consequences
of a change in the tax system depend on the relative magnitudes of increased risk sharing
forced by the new tax system and the reduced risk sharing in private insurance markets. We
quantitatively address this issue by calibrating an artificial economy to US income and tax
data. We show that for a plausible selection of the structural parameters of our model, the
change to a more redistributive tax system leads to less risk sharing among individuals and
lower ex-ante welfare.
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1. Introduction

A long standing discussion in macroeconomics and public finance evolves around the
desirability of redistributive income taxes as a risk sharing device against idiosyncratic income
uncertainty.’ The insights that economic theory provides depend on the assumptions about
the structure of private insurance markets. On one hand, if these markets are complete, in the
sense that agents can insure against any contingency and thus achieve perfect risk sharing,
then redistributive income taxes provide no additional insurance. On the other hand, if
private insurance markets are nonexistent or incomplete, redistributive taxes might provide
additional insurance not available otherwise and therefore increase ex-ante welfare.

Recent empirical studies (see Hayashi et al. (1996), Attanasio and Davis (1996) )
have seriously challenged the complete markets assumption mostly on the ground that risk
sharing among individuals is not perfect?. As Hayashi et al. conclude: “Our result there is
no full insurance even among related households should serve as a final blow to the complete
markets paradigm”. Attempting to reconcile the theory with the empirical observation of
incomplete risk sharing, there is a large body of literature that introduces some form of
market incompleteness into the economic environment. One fraction of this literature (see
Bewley (1986), Kimball and Mankiw (1989), Huggett (1993), Aiyagari (1994), among others)
exogenously assumes that some insurance markets are nonexistent (usually it is assumed
that agents can only self-insure through a single uncontingent bond and they are borrowing
constrained). Another fraction derives market incompleteness from informational frictions
underlying the phenomena of adverse selection and moral hazard (see Cole and Kocherlakota
(1998) and their review of this extensive literature).

Both approaches do not explicitly capture what we believe is a crucial aspect of redis-
tributive taxation as a risk sharing device: the fact that a particular tax regime is in place
might affect the incentives private agents have to enter into private insurance contracts and

thus the form and extent of market incompleteness. It is obvious that the first approach

1See Varian (1980) and his review of the related literature. The insurance effect of redistributive income
taxes may also invalidate the Ricardian Equivalence theorem, see Chan (1983), Barsky et al. (1986) and
Kimball and Mankiw (1989).

2 As first highlighted by Mehra and Prescott (1985), another empirical dimension along which the complete
markets model does not perform well is the explanation of the main stylized facts regarding asset prices.



is silent about this connection since market incompleteness is not derived from underlying
primitives but rather exogenously assumed. In the second approach fiscal policy can affect
the degree of market incompleteness, but only under the assumption of informational asym-
metry between the government and private agents. However, every policy that leads to the
same revelation of information to private agents has the same effect on the degree of market
incompleteness. In this sense this approach does not provide a natural link between market
incompleteness and redistributive income taxation in particular. Also, recent empirical work
by Attanasio and Davis (1996) seems to indicate that “evidence against the consumption
insurance hypothesis involves publicly observed shocks, hence cannot be rationalized as a
consequence of unobserved shocks in environments with informationally constrained insur-
ance” (p. 1259).

We therefore explore an alternative way of deriving endogenous market incompleteness
that relies on limited enforceability of private contracts. We follow the approach of Kehoe and
Levine (1993, 1998) and assume that private contracts can be enforced only by the threat
of exclusion from future credit markets. Tax liabilities, however, are not subject to this
enforcement problem as we assume that the penalty for defaulting on tax payments can be
made prohibitively large by the government. If agents default on their private debt, they are
banned from future intertemporal trade, but retain their private (labor) endowments which
are still subject to income taxation. We impose individual rationality constraints on agents
guaranteeing no default in equilibrium and we solve for the efficient consumption distribution
across agents. A change in the tax system changes the severity of punishment from default by
altering the utility an agent can attain without access to credit markets. We demonstrate that
a change to a more redistributive tax system leads to a restriction of the set of contracts that
are individually rational. In an economy that is characterized by uncertainty with respect
to individual endowments, this restriction leads to a limitation of possible risk sharing via
private contracts. The welfare consequences of a change in the tax system depend on the
relative magnitudes of increased risk sharing forced by the new tax system and the reduced
risk sharing in private insurance markets. We quantitatively address this issue by designing
an artificial economy calibrated to US income and tax data. We find that for a reasonable

selection of the structural parameters of our model, the change to a more redistributive tax



system leads to less risk sharing among individuals and, hence, lower ex-ante welfare.

Other authors have studied economies with debt constraints to analyze a variety of
issues (See Kocherlakota (1996) and Alvarez and Jermann (1998a,b) among others). These
authors consider economies with two (types of) agents in which heterogeneity is somehow
limited. The main methodological contribution of this work is the analysis of a debt con-
strained economy with a continuum of agents facing idiosyncratic uncertainty. Therefore a
steady state of our economy is characterized by a non-degenerate consumption distribution.
We believe that this feature of the model is necessary to analyze issues of income distribution
and risk sharing in a quantitatively meaningful way, especially as the quantitative implica-
tions for the economy with a continuum of agents turn out to be quite different from the
economy with only two agents. But it is also this feature of the model that leads to consider-
able theoretical and computational complications in solving the model. To this end we draw
heavily on the work of Atkeson and Lucas (1992, 1995) who study efficient allocations in an
economy with a continuum of agents and private information. We will describe their dual
approach to characterize efficient allocations in more detail in the next section.

The paper is organized as follows. In section 2 we lay out the model environment. In
section 3 we define an efficient allocation with debt constraints and we show how to make the
problem of solving for efficient allocations recursive. We then prove the existence of a station-
ary solution to the recursive problem. Section 4 contains a discussion of the parameterization
we chose for our quantitative exercises. In section 5 we present our quantitative results and
in section 6 we compare our results with those from a model with exogenous incomplete mar-
kets. Section 7 concludes and figures, proofs and details about the computational procedure

are contained in the appendix.

2. The Environment
A. Consumers
There is a continuum of consumers of measure 1. The consumers have preferences over

consumption streams given by

(1) U(fetiZo) = (1= B)Ey

Zﬁtu(ct)]



The period utility function u : R, — D C R is assumed to be strictly increasing, strictly
concave, twice differentiable and satisfies the Inada conditions. Its inverse is denoted by
C : D — R,. Hence C(u) is the amount of the consumption good necessary to yield period
utility u. Let D = sup(D), where it is understood that D could be infinity. An individual has
a stochastic endowment process e € F, a finite set with cardinality IV, that follows a Markov
process with transition probabilities 7(e’|e). For each consumer the transition probabilities
are assumed to be the same. We assume a law of large numbers, so that the fraction of
agents facing shock €' tomorrow with shock e today in the population is equal to 7(e'le).
We assume that 7(€’|e) has a unique invariant measure II(.). We denote by e, the current
period endowment and by e’ = (e, ..,e;) the history of realizations of endowment shocks;
also m(etleg) = w(ege, 1) - - m(er]eg). We use the notation e®|e’ to mean that e® is a possible
continuation of endowment shock realization e'. We also assume that at date 0 (and hence at
every date), the measure over current endowment is given by I1(.), so aggregate endowment is
constant over time. At date 0 agents are distinguished by their initial asset holdings, ag, and
by the their initial shock ey. Let @y be the joint measure of initial assets and shocks. Most
of the theoretical results presented here depend on the assumption that endowment shocks
are uncorrelated across time for each agent. In our numerical exercises we will relax this
assumption, although some theoretical results cannot be proved for the more general case in

which individual endowment processes are Markov over time.

B. Government

The government uses taxes to finance a constant amount of public spending g in every
period that yields no utility to consumers. The government specifies a tax policy 7(e;) that
is constant over time. We take the government policies g, 7(.) as exogenously given. For an
individual we let y; = e,(1 — 7(e;)) be the after-tax income. Since the function 7(.) does
not depend on time, for a given 7(.) there is a one to one mapping between pre-tax and
after-tax endowments. So from now on we let y € Y, a finite set with cardinality /N, denote
an individual’s generic after-tax endowment, following the Markov process 7 with invariant

distribution IT and denote by y* = (yo, ... ;) a history of after-tax endowment shocks. We



restrict the government policies g, 7(.) to satisfy period-by-period budget balance

2) g= / err(e0)dIL.

With this assumption resource feasibility (as defined below) for this economy simply states
that the sum of all agents’ consumption has to be less or equal than the sum over all individu-
als’ after-tax endowment. Therefore, once g, 7(.) are fixed and hence the after-tax endowment
process is specified, we can carry out the subsequent analysis without explicit consideration

of the government.

C. Continuing Participation Constraints

Consumers can trade a full set of state-contingent commodities.® A consumption
allocation {c(ag,y")} specifies how much an agent of type (ag, 39) consumes who experienced
a history of endowment shocks (net of taxes) 3. Individuals, at any point in time, have the
option to renege on existing contracts. The only punishment for doing so, and hence the only
enforcement mechanism for contracts, is that agents that choose to default on their contracts
are banned from future credit markets but are allowed to self-insure by saving at an interest

rate r . In particular the expected utility for an agent who defaults after history y* is given

by:

UM (yhr) = max (1= 5) DO Iy u (e (y7)

c T),a T
{er(ym)aria(y =t a7t

s.t.

W) +arn(y’) = yr+1+r)a(y™")  Vr>tyly

ary1(y7) = 0 with a,(y"") = 0 given

Given the Markov structure of the endowment process it is clear that UA% (yt; r) = UA% (yy; 7).
Standard dynamic programming techniques can be used to show that for 1+r < %, UAY (y; 1) =

U(0,y;), where U is the solution to the functional equation (for details see Huggett (1993),

3Trade occurs with financial intermediaries. See the decentralization section for details.



theorem 1)

c,a’>0

Ula,y) = max(1—Bulc)+8) =/ |y)U(d,y)
s.t.

c+d = y+(1+r)a

It is obvious that UA%(y;r) is strictly increasing in 1; (as long as the income shocks are
uncorrelated or positively correlated over time). An important fact is that UA“(y,;r) is
continuous and strictly increasing in r. This is due to the fact that the constraint set in the
functional equation is continuous and strictly increasing in r, since a > 0.

Individuals have no incentive to default, at any point in time and any contingency, if

and only if an allocation satisfies following continuing participation or debt constraints

3) (1=8){u(clao ")+ D > 7wy v ulclar, v*) | = UM (wir) VY
s> ys|yt

Since there is no private information and markets are complete, default will not happen in
equilibrium as nobody would offer a contract with an individual for a contingency at which
this individual would later default with certainty.

Notice that our specification of the debt constraint is more general than the one
introduced by Kehoe and Levine(1993) in which agents who default are not allowed to save.
If » = —1 our model is equivalent to theirs and the right hand side of the debt constraint

reduces to

UM (s —1) = (1= 8) | u(y) + > > B “w(y’ly)ulys)
s>t ys|yt
In the next sections, whenever there is no danger of ambiguity, we omit the depen-
dence of U/A% on r. We now first discuss how to compute efficient allocations, then how to

decentralize them.



3. Characterization of Efficient Allocations

In order to characterize efficient allocations (for given policies g, 7(.)) we proceed in
four steps: we first define what we mean by an efficient allocation. We go on to show that one
can find efficient allocations by solving a number of appropriate social planner problems. We
then show that solving the social planner problems is equivalent to solving a specific functional
equation and finally we discuss how to solve the functional equation. This discussion uses
ideas and results developed by Atkeson and Lucas (1992, 1995) extensively. Proofs, however,
might differ substantially since these authors analyze a private information economy, and are

therefore included in the appendix even when the proof strategy resembles theirs closely.

A. Definition of Efficient Allocations

The key insight of Atkeson and Lucas is to analyze the problem of finding efficient allo-
cation in terms of state contingent utility promises rather than state contingent consumption.
Since the continuing participation constraints are in utility space this approach is particularly
useful for our problem. Instead of being indexed by initial assets and endowment shock, now
individuals are indexed by initial entitlements to expected discounted utility at period 0, wy
and initial endowment shocks, yo. Let @y be the period 0 joint measure over (wg,yo). An
allocation is then a sequence {h;(wq, y*)}:2, that maps initial entitlements wy and sequences
of shocks y' into levels of current utility’ in period ¢. Here hy(wp, ") is the current period
utility that an agent of type (wo, o) receives if she experienced a history of endowment shocks
y'. Note that c(ag,y") = C(hi(wo,y")) for an agent whose utility entitlement wy corresponds
to initial asset holdings ag, where C' is the inverse of the period utility function as defined
in Section 2. We will now define the concepts of constrained feasibility and efficiency in this
environment.

For any allocation h = {h;(wo,y")}:2, define

(4) Ut<w0,yﬂh)=<1—ﬁ)(htwo, +ZZﬁ” htwo,yﬂ)

s>t ys

4The relation between h; and the period utility derived from consuming ¢; is given by hy(wo,yt) =

u(c(ag,y?)).



Equation 4 defines the continuation utility from an allocation h of agent of type (wy, yo) from

date t and shock history y* onwards.

DEFINITION 1. An allocation {h(wo,y")}32, is constrained feasible with respect to a joint dis-

tribution over utility entitlements and initial endowments, @, if for each (wy,yo) €supp(Pg)

(5) Wy = Uo(wmym h)
(6)  Ulwo,y',h) = U™ (y) VY

(7) lim 3 sup Uy(un, o, h) = 0
—00 yt

® 3 [ (Clutuny)) - u) 7/ w)ado <0. v

We call equation (5) the promise keeping constraint: the allocation delivers utility wq to
agents entitled to wy. Equations (6) are the continuing participation constraints, just posed
in utility space.” Equation (7) is a boundedness condition that assures that continuation
utility goes to zero in the time limit. Finally equation (8) is the resource feasibility condition,
requiring aggregate consumption in every period to be less or equal than aggregate endowment
in that period. Now we can define the concept of efficiency in this environment, due to Atkeson

and Lucas (1995).
DEFINITION 2. An allocation {hy(wo, y')}2, is efficient with respect to ®q if

e It is constrained feasible with respect to ®.

e There does not exist another allocation {hs(wo, y*)}2°, that is constrained-feasible with

’Note that a @ that puts positive mass on (wg, yo) that satisfies

wo < ulyo) + Y Y By’ lyo)ulys)

>0 ys|yo

does not permit a constraint feasible allocation as promise keeping and debt constraints are mutually exclusive
in this case. I restrict attention to ®y with the property that only initial utility entitlements at least as big
as the utilty from autarky have positive mass.



respect to @y and such that

Z/C(ﬁt(wo,yt))w(yt]yo)dq)o < Z/C’(ht(wo,yt))ﬂ'(yt\yo)d@o for some ¢

The definition basically says that a utility allocation is efficient if it attains the utility
promises made by ®; in an individually rational and resource feasible way and there is no

other allocation that does so with less resources.

B. A Component Social Planner’s Problem (CPP)

Is there an operational way to solve for efficient allocations? Consider now the problem
of a social planner faced with a sequence of intertemporal shadow prices {R;}°, to minimize
the value of resources needed to deliver expected discounted utility of wy to an individual

with initial endowment given by 3. The planner chooses {h;(wq, ") }52, to solve the problem

W(w07 yo)

(10) = min (1 - E) C(ho(wo, yo)) + Z (1 - —) ﬁ( ) > Clhu(wo, )7 (y'1%o)

yt|yo

subject to (5), (6), and (7). One obtains the following

THEOREM 1. (Atkeson and Lucas (1995)) If there exist allocations {hi(wo,y")}, shadow
prices {R;} and distribution ®g such that:

1. Given {R;}, , for each (wp, yo) €supp(Po), {ht(wo,y")} solves CPP
2. Feasibility (Equation 6 ) holds with equality for every ¢

3.
o B D)

then the allocation is efficient with respect to ®.

Proof. See Appendix B
This theorem gives an operational method for solving for efficient allocations. Given

a set of shadow prices satisfying 11 one has to solve a minimization problem for allocations

9



{h¢(wo,y")}. Then one has to check whether the resource constraints are satisfied, and if not,
pick different shadow prices. In order to make C'PP recursive, however, we have to restrict
ourselves to stationary allocations. Define ®; to be the joint measure over endowment shocks
y; and continuation utilities Uy(wo, y*, h) for a given allocation. An allocation is stationary if
®, = &y = . Stationarity also suggests the sequence of shadow prices {R;} to be constant
at some R. We want to find such R, a corresponding allocation {h*(wg,y')} and an initial
distribution over utility entitlements and endowment shocks , ® that satisfies the hypothesis
of Theorem 1. and is stationary. Once we restrict ourselves to these types of allocations we

can solve for them recursively. This assertion is demonstrated in the next subsections.

C. Recursive Formulation of the Problem

For constant R € (1, %), consider the following functional equation (F'E) problem.
We will show in Theorem 3. that the optimal policies of the functional equation induce an
allocation that solves C'PP. Individual state variables are the promise to expected discounted
utility that an agent enters the period with, w, and the current income shock y. The planner
chooses how much current period utility to give to the individual, h, and how much to
promise her for the future, g,/, conditional on her next periods endowment realization y'. The

functional equation associated with the planner’s problem is:

1 Vi) = of {(1 ~ S)Ch(w, ) + %%ﬂywy)wg@,«w,y),y')}
s.t
(13) w = (1= Bh(w,y)+ B> 7y y)gy (w,y)

y'ey

(14) gy(w,y) = UM™(y) W ey

where V' (w, y) is the resource cost for the planner to provide an individual with expected util-

ity w when the individual’s endowment is y and the intertemporal shadow price of resources

10



for the planner is +. The cost consists of the cost for utility delivered today, (1 — £)C(h),
and expected cost from tomorrow on, 37, 7(y'|y)V (gy,y'), discounted to today.®

Equation (13) is the promise-keeping constraint: an individual that is entitled to
w in fact receives utility w through the allocation rules {A(.,.), gy (.,.)}yey. The continuing
participation constraints in equation (14) state that the social planner for each state tomorrow
has to guarantee individuals an expected utility promise at least as high as obtained with the
autarkic allocation. The utility in autarky is given as the solution to the following functional

equation:

(15) UM (y) = (1= Buly) + 8> _ =/ ly)U* ().
y'ey
We now make the following assumptions on the individual endowment process for the

rest of this section:

1. 7(y'|ly) = 7(y') forevery v,y € Y , i.e. endowment shocks are independently distributed
across time.

2. m(y)>0,forally e Y

REMARK 1. The fact that 7 is a stochastic matrix implies that the functional equation (15)

has a unique solution {U A“t(y)}y cy- Assumption 1 immediately implies that if § > y, then
Ue() > UA(y)

6The prices for resources in sequential component planner problem were
t—1
1 1
=(1—— —.
by ( Rt> H R.
s=0
Note that this implies that
> p=1
t
With R; = R for all t we have

")

Po =

—
|
av]

Pr+1
b

S

11



REMARK 2. Assumption 1 implies that one can write the functional equation as

(16) V) = jnf {(1 ~ 2)C(h(w)) + %%ﬂy')wgy/ <w>>}
8.t

(17) w=(1=B)h(w)+8> 7(y)gy(w)

y'ey

(18) gy(w)>U™(y) Yy eY

eliminating the dependence of V' on y.

Existence of optimal allocation rules for a given intertemporal price R.

We will first prove existence of optimal allocation rules in a problem with additional
constraints. We will then characterize the solution of this problem and we will show that the
additional constraints will not be binding so that the solution to the problem with additional
constraints is also solution to the original problem.

The modified Bellman equation will be defined on C'(A), that is the space of continuous
and bounded functions on A where A = {w € Rlw < w < w} C D is a compact subset of R

and w := min, U4 (y). Consider the operator Tx defined as:

(19) TwV(w) = min { (1-5)ct+ g X w(y'w(gw}
s.t

(20) w = (L=RAh+8Y 7y )gy

y'ey

(21) U™(y) < gy <@ VY ev

Notice that the inequalities g,, < w in (21) are what distinguish this modified problem

12



from the original problem. Also note that (21) and (20) imply that for every w in A

w=pB _ w— B 7y ) U (y)

=9 - W

This in turn implies that @ must be chosen such that h(w) and h(w) are in D for every w.
We will show below that we can choose @ = max, U4“(y) + ¢, for ¢ > 0 arbitrarily small.

Then under the following assumption 3, (22) is always satisfied.

w—F max, UA"

Assumption 3: Define h =
assume that (h,h) C D.

(v) and B _ maxyUAut(y)IfBEﬂ(y)UAm(y). We

Note that this is an assumption purely on the fundamentals of the economy. With
the additional constraint we obtain a bounded dynamic programming problem. We can then
go on to characterize the operator T as a contraction mapping, using Blackwell’s sufficient

conditions.

LEMMA 1. Tk maps C(A) into itself and is a contraction.

Proof. See Appendix B

COROLLARY 1. For R > 1, the operator T has a unique fixed point Vi € C(A) (i.e. Vg is
continuous and bounded) and for all vy € C(A), ||Trvo — Vi|| < 7= ||vo — Vi||, with the norm

being the sup-norm.

Characterization of Value and Policy Functions We now proceed to characterize the
unique fixed point of Tx, Vi. The fixed point to the functional equation basically inherits all
properties of the period cost function C' in that it is strictly increasing and has increasing

marginal costs.

LEMMA 2. Vy is strictly increasing and strictly convex.

Proof. See Appendix B
In the next lemma we characterize the properties of the operator Tx further. This will

be useful in deducing further properties of the fixed point V5.

13



LemMMA 3. For any strictly increasing and strictly convex function V' € C(A), TRV is contin-
uous, strictly increasing and strictly convex. The optimal policies h(w), g, (w) are continuous,

single-valued functions.

Proof. See Appendix B

We will use the first order conditions heavily to characterize optimal policies. For
this we first have to establish that the value function is differentiable. For any convex and
differentiable function V' € C(A) and fixed w € A the first order conditions characterizing

the optimal choices of h = h(w) and g, = g,s(w) for the problem (19) are:

! 1— ﬂ /
C'(h) < mv (9y)
I— ﬁ ! . ut(, !
(23) mv (9y) if gy >UM(Y)
w = (L=RAh+8Y 7y )gy
The envelope condition is:
Rys\’ w) = (R — 1) /
(24) (T V) (w) = —R(l—ﬁ)c(h)

We now prove that we in fact can use these conditions to characterize the optimal policies

by showing that the solution to the functional equation is differentiable.

LEMMA 4. The unique fixed point of Tk is continuously differentiable.

Proof. See Appendix B

We now turn to the characterization of the optimal policies. First we characterize the
behavior of i and g,, with respect to w. It turns out that the social planner reacts to a higher
utility promise by increasing current and expected future utility, i.e.. by smoothing the cost
as much as possible over time and across states. The only constraint that prevents complete
cost smoothing over different states is the continuing participation constraint: certain agents
have to be promised more than otherwise optimal in certain states to be prevented from
reverting to the autarkic allocation in that state. This is exactly the reason why complete

risk sharing may not be constrained feasible in this environment.

14



LEMMA 5. Suppose V' € C(A) is strictly convex and differentiable. Then the optimal policy

h, associated with the minimization problem in (19) is strictly increasing in w.

Proof. See Appendix B

LEMMA 6. Suppose V' € C(A) is strictly convex and differentiable. Then the optimal policies
gy, associated with the minimization problem in 11 are constant in w and equal to U4%(y/)

or strictly increasing in w, for all ¢y € Y.

Proof. See Appendix B

LEMMA 7. Suppose V' € C(A) is strictly convex and differentiable.

If g, (w) > UA(y) and gg(w) > UA(7), then g, (w) = gy (w).

If g, (w) > UM (y') and gy (w) = UM (7'), then gy (w) < gy (w) and y < 7
Proof. Follows directly from the first order condition B

The last lemma states that future promises are equalized across states whenever the
continuing participation constraints permit it. Promises are increased in those states in which
the constraints bind.

Now we state a result that is central for the existence of an upper bound w of utility
promises. For promises that are sufficiently high it is optimal to deliver most of it in terms
of current period utility, and promise less for the future than the current promises. This, in
effect, puts an upper bound on optimal promises in the long run. This is the content of the

main result in this section, stated in Theorem 2.

LEMMA 8. Let {g,} be the optimal policies associated with the unique fixed point of

y'eYy
Tr, Vg. For every w € A and every y/ € Y, if g, (w) > UA%(y/), then g, (w) < w. Furthermore,

for each 3/, there exists a unique w, such that g, (w,) = w, and w, = U4 (y/).

Proof. See Appendix B

THEOREM 2. There exists a w such that g, (w) < w for every w > w and every y' €Y.

Proof. See Appendix B

15



Note that the preceding theorem implies that whenever w € [w, @], then for all ¢ € Y,
the constraint g,,(w) < w is never binding and assumption 3 guarantees that h(w) € D. We
will analyze the Markov process on A xY induced by the exogenous 7 and the endogenous g, .
Before this, however, we discuss the relationship between the component planning problem

and the solution to the functional equation.

Equivalence between the CPP in sequential and recursive formulation

In this section we show that the allocation & = {/,(wo, y')}32, induced by the optimal
policies from the recursive formulation, h(w), g,»(w) solve the C'PP in sequential formulation,
i.e. solve the program CPP for interest rates {R;};°, constant at R. So for given (wy,yo)
let /Azo(wo,yo) = h(wy), w1(wo,yo) = gy, (wo) and in general w;(wo,y") = gy, (W1 (wo, y"™))
and hy(wo,y') = h(iy(wo,y')) be the allocation induced by the recursive policy rules. In the
appendix we invoke the principle of optimality to argue that the allocation so derived solves

CPP for constant interest rates.

THEOREM 3. Suppose that the sequence {R.}:2 is constant at R € (1, %) Then the alloca-
tion 6 constructed from the optimal policies of the functional equation solves the component

planning problem, for every (wo,yo) € W x Y with wy > U4 (yy).

Proof. See Appendix W

Existence and uniqueness of an invariant probability measure
Let W = [w,w] and B(W), P(Y) the set of Borel sets of W and the power set of
Y. The function g, (w), together with the transition function 7 for the endowment process,

defines a Markov transition function on income shock realizations and utility promises () :

(W xY)x (B(W)xP(Y))—[0,1] as follows:

(25) Qw,y W, Y)=> m(y) if  gy(w)EW

gev | O else
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Given this transition function, we define the operator 7™ on the space of probability measures

A((W x Y), (B(W) x P(Y)) as

26) ENW.Y) = [ @y ir =Y =) [ I\
yey {weWlg, (w)ew}

for all (W, )) € B(W) x P(Y). Note that T* maps A into itself (see Stokey et. al. (1989),
Theorem 8.2). An invariant probability measure associated with @) is defined to be a fixed
point of T%. In this section we address the question of whether such a probability measure
exists and is unique. Intuitively, this invariant measure describes the long-run implications
of the planners cost minimizing policies.

We first add a property of g,, that will be useful in proving the existence of a unique

invariant probability measure associated with the transition function ().

LEMMA 9. There exists w* € A such that w* > U (y,..) and g, (w*) = U2 (Y0

Proof. See Appendix B

COROLLARY 2. g, (w*) = UM (y) for all w < w*.

With this result and the characterization of the functions g,/ from previous sections we
can prove the main result of this section, namely that for a given R € (1, %), there is a unique
invariant measure over utility promises and endowment shocks associated with transition

function Q.

THEOREM 4. There exists a unique invariant probability measure ® associated with the tran-
sition function Q defined above and for all 5 € A(W x Y), (B(W) x P(Y)), (T*®¢)" con-

verges to ® in total variation norm.

Proof. See Appendix B

REMARK 3. The argument above also shows that any ergodic set of the Markov process
associated with @ must lie within [U4“ (ymin), U4 (ymax)] ¥ ¥ and that the support of the

unique invariant probability measure is a subset of this set. For any initial measure over
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shocks and utility entitlements, in the long run the planners’ actions result in the invariant

cross-sectional measure.

This concludes the discussion of the Markov process on utility promises for a fixed
interest rate R € (1, %) In our subsequent analysis we will index policy functions (h, g,),
cost functions V' and unique invariant probability measures ® by R to make clear that these
functions and measures were derived for a fixed R. So far we have not imposed any resource
feasibility condition. It may be the case that for a fixed R, in order to deliver a distribution

over utility entitlements ® g, more resources than available have to be used up. In the next

section we will analyze how the resource requirements imposed by ®x vary with R.

D. Determination of the “market clearing” shadow price R
In the previous section we showed that for a fixed R € (1, %) there exists a unique

stationary joint distribution over (w, y). Define the “excess demand function” associated with

R as

@) d(R) = [ Vaw)adr— [ yioy

In this section we analyze the qualitative features of the function d(.). Since by assumption
[ yd®p does not vary with R, the behavior of d depends on how Vi and ®p vary with R.
The behavior of ®r with respect to R in turn depends on the behavior of gi} with respect
to R as gé? determines the Markov process to which ®p is the invariant probability measure.
We start by proving that the function V# varies continuously with R, then show that the
optimal policies gfy vary continuously in R. These results, in turn, imply continuity of d, as

shown in Theorem 5.

LEMMA 10. (Atkeson and Lucas (1995)) Let R € (1, %) and {R,,} ~, be a sequence satisfying
R, € (1, %) and lim,, ., R, = R. Then the sequence {Vg, },~, converges uniformly to Vx on

[w, w].

Proof. See Appendix B
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LEMMA 11. (Atkeson and Lucas (1995)) Let a sequence {R,,,w,} -, with R,, € (1, %) and
w, € [w,w] converge to (R,w) € (1,%) X [w,w]. Then for each y' € Y, the sequence

{g," (wn)}:jzo converges to glf(w).
Proof. See Appendix B

The previous two lemmas can be used to prove our first main result about the excess

demand function d(.), namely continuity on (1, %)

THEOREM 5. (Atkeson and Lucas (1995), Lemma 12): d(R) is continuous on (1,

).

@I

Proof. See Appendix B

The previous result establishes that the excess demand function varies continuously
with R. Now we want to establish a result about the slope of the excess demand function.
Intuitively, a higher interest rate R makes resources tomorrow cheaper compared to resources
today. This should lead, for given utility entitlement w, to a decrease in utility received
today and an increased promised utility from tomorrow onwards. Since the invariant measure
over utility is determined by future utility promises, for higher R one expects higher utility
promises on average, and hence higher resource costs. In other words, one expects the excess
demand function to be increasing in R.

In order to prove this we first establish that future utility promises are indeed increasing

in the interest rate R.

LEMMA 12. The optimal policies g(w) are increasing in R and the optimal policy ~"(w) is

decreasing in R.

Proof. See Appendix B

This result enables us to draw conclusions about how the invariant measure over
utilities and endowment shocks, ® varies with R. The next result shows that for larger
interest rates the invariant measure puts more mass on higher utility entitlements. For every
® define the probability measures ®¥ on (W, B(W)) by ®¥(B) = %, for every B € B(W).
Note that every such measure is well-defined as 7(y) > 0 by assumption, and that ®¥(W) = 1.
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LEMMA 13. (Atkeson and Lucas (1995)) Let R > R. Then for every y € Y, ®Y, stochastically

dominates ®%. i.e.. for every increasing and continuous function f on W,
R? )

@) [ fwasy > [ e,

Proof. See Appendix B
The previous results can be combined to show that the excess demand function is

increasing in the interest rate.

THEOREM 6. (Atkeson and Lucas (1995), Lemma 14) Let R > R. Then d(R) > d(R).

Proof. See Appendix B
The previous results show that the excess demand function is continuous and increasing

on (1, %) The behavior of the excess resource function at R = - (the complete markets

1

8

shadow price) is easily determined. For such R, g, (w) = w or g, (w) = U4 (y') from the
first order conditions. There is a continuum of invariant measures. No w < gy (U (ypax))
is in the support of any of these measures, though, as the probability of leaving such a w
is at least 7(ymax) and the probability of coming back (into a neighborhood) is 0. Therefore
gy (w) = w for all points in the support of the invariant measure, and there is complete risk
sharing as from the promise-keeping constraint h(w) = w. Each individuals’ consumption is
constant over time. The invariant measure with lowest cost is the one that puts mass 7(y)
on (U4 (ymax),y). Hence each individual receives the same current utility, hence the same

current consumption, which is equal to the average after-tax endowment . For this allocation

to be incentive feasible one needs

U (ymaX) < u(g)

Since we are interested in efficient allocations that don’t feature perfect risk sharing we
assume that the above inequality is violated.” Then complete risk sharing is not possible

with resources y. By arguments similar to the proof of continuity one can show that for

"The inequality will be violated for 8 sufficiently small and/or the income process sufficiently variable.
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R — %, the cost of the associated allocation converges to the cheapest complete risk sharing
allocation. Hence under the assumption made lim_, 1 d(R) > 0.

On the other hand, for R close to 1, there are two possible situations. If

Ul(ymin)
(29) ﬁiul (o) <1

then the autarkic allocation satisfies the first order conditions for some R > 1. Since autarky
is constrained feasible, it is efficient. If the inequality in (29) is reversed, we conjecture that
a) autarky is not efficient and b) d(R) < 0 for R sufficiently close to, but bigger than 1.8
We assume that 29 does not hold.? Then under the last two assumptions, there exists
an efficient stationary allocation different from complete risk sharing and different from the

autarkic solution.!?

REMARK 4. The previous discussion is valid for any ezogenously given interest rate on one
period bonds, 7. If one requires this interest rate to be equal to the implicit interest rate for
risk sharing contracts, i.e. 1+r = R, as we do in our quantitative analysis, then U4 (y; r) =
UA“(y; R — 1) varies in R. All theoretical results apart from those in section Dgo through
unchanged. Lemma 10 and 11 go through as the operator Tk is still continuous in R. Therefore
theorem 5 is still valid and the excess demand function is still continuous. However it need
not be monotonically increasing and hence the set of equilibrium R's need not be convex.

The discussion about the behavior of d(R) at R = % and close to 1 also remain valid.

4. Qualitative Features of the Efficient Allocation

In figure 1 (see the appendix) we show the typical shape of the policy functions g, (w).
The policies shown here are computed a specific parameterization of the model, in which the
endowment process can take on two values, y; < y, and a specific interest rate R € (1, %)

We observe the following properties: as shown above g, (w) is greater or equal to U4%(y/),

8For the case that the endowment process can take only two values and utility is of CRRA-form we were
able to prove this conjecture, but not for the general case considered here.

9 As is well known, for sufficiently low 3 only the autarkic allocation satisfies the continuing participation
constraints. See Alvarez and Jermann (1998a) for a discussion of the two-agent case.

10No claim of uniqueness can be made at this point. The set of efficient shadow prices R is convex. In our
computational exercises, however, uniqueness always arises.
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constant at U4 (y') for w < UA*(y') and intersects the 45%line at w = UA%(y/). For
w > UA(y) is either constant at UA%(y') or strictly increasing in w, and lies below the
45%line. Furthermore g, (w) < g, (w).

The support of the invariant measure ® with respect to w is, as shown above, equal to
[UA4 (), U2 (y)]. The features of the policy functions just described imply that an agent
with 3/ =y, has g, (w) = U4 (y;) and hence the highest possible future utility entitlements
in the support of ®, regardless of her w. Hence, when an agent receives a high income shock,
history is erased in that present utility entitlements w, which summarize the history of past
endowment shocks, do not matter for future utility entitlements. For agents with 3’ = v,
history matters. An agent with w = U4¥(y,,) that receives v = y; drops to g, (U4*(yy))
< U4 (y,,), and, upon further bad shocks, works herself downwards through the entitlement
distribution. In finite (if g, (w) = U (y;) for some w > U4%(y;)) or infinite number of
steps an agent with a string of bad shocks arrives at w = U4%(y;), with any good shock
putting her immediately back to U4%(y;,). Note from the theoretical results that the features
of immediate jumping up upon receiving the highest shock as well as gradual working down
upon receiving lower shocks hold for an arbitrary (finite) number of states for the endowment
process.

The properties of the entitlement distribution immediately translate into properties of

the stationary consumption measure as the latter is given as

T(A) = / 4o
{wlC(h(w))eA)

Since h(.) and C(.) are strictly increasing functions, consumption reacts to endowment shocks
in exactly the same qualitative fashion as utility entitlements. This can be seen from figure
2. All agents with a high endowment shock consume the same, regardless of their history and
consume the maximum amount in the support of the consumption distribution. Hence the
consumption distribution has a mass point at this consumption level equal to II(y). Another
mass point occurs at the minimum of the support of the consumption distribution, provided
that g, (w) = UA“(y,) for some w > UA(y;) (which is true in the present example, but

need not be true in general). All agents that have a sufficiently long string of bad income
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realizations will consume the minimum consumption level in the support. In between these
two mass points there is a finite number of other mass points consisting of individuals with
currently bad shock who are in the process of either falling to the bottom (with additional
bad shocks) or jumping again to the top (with a single good shock), but who haven’t hit rock
bottom yet.

What is the economic intuition for these results? One observes that those individuals
that experience an increase in income from today to tomorrow are constrained. This can
be interpreted as follows. These agents have borrowed against the chance of being lucky in
the next period (in utility terms, as they receive more utility today than in autarky) and
if the contingency of being lucky tomorrow materializes they are called upon to repay their
debt and transfer resources to other agents. Unconstrained agents tend to be those with
a drop in income. These agents are unconstrained tomorrow as they will receive transfers
(from agents with favorable income shock tomorrow) at that date, which makes defaulting
unreasonable. This feature of the model justifies the term “debt constrained” as agents are
constrained to borrow today because of their possible incentive to default if called upon to
pay back tomorrow (in the contingency of a high income realization).

These results are only suggestive for an economy with more than 2 shocks. However,
the phenomena of jumping to the top in one step upon receiving the high endowment shocks
and stepwise working through the distribution with consistently low endowment shocks is an
inherent property of the model. For higher numbers of exogenous states, of course, a richer
consumption distribution “in the middle” arises.

Finally, in figure 3 we show the excess demand function d(R) for a fixed parameteriza-
tion of the model. As proved in the theoretical part, this function is continuous and increasing

in R on (1, %) In the specific example it has a unique R* € (1, %) such that d(R) equals to 0.

5. Decentralization

In this section we turn to the question of decentralizing the efficient consumption
allocation through a market mechanism. In doing so we will follow the approach of Kehoe
and Levine (1993). Consider an agent with period zero endowment of y, and initial wealth

of ag. Wealth is measured as entitlement to the period 0 consumption good. Let © be the
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joint distribution over (ag, yo)-

Let denote by p;(y') the date zero price of a contract that specifies delivery of one
unit of the consumption good at period ¢ to/from a person who has experienced endowment
shock history 4. For each contingency ¢;(ag, y*) — y; is the net trade of individual (ag, yo) for
that contingency. In period 0 there is no idiosyncratic uncertainty, so normalize the price of
the consumption good at period 0 to 1!,

A household of type (ag, yo) chooses an allocation {¢;(ag, y*)} to solve

(30) max(1 - f) | u(c(ao; %o) +ZZﬁt (¥'lyo)u (ce(ao, y"))

t=1 yt|yo

(31) s.t. colao, yo) + Z Zpt )e(ao, ') < agp + yo + Z Zpt(yt)yt

t=1 yt|yo t=1 yt|yo

(32) (1=5) [ u(elaoy’) + Y Y 87wy ly")u(es(ao, ) | = U (ye)

s>t yolyt

Note that, as in Kehoe and Levine(1993), the continuing participation constraints enter the

individual consumption sets directly.'?

Note that in standard Arrow Debreu equilibrium theory with finitely many consumers, a complete de-
scription of the state of the economy would be everybody’s endowment shock history, and all prices would
be contingent on this complete state. With atomistic individuals, the assumed law of large number and the
focus on decentralizing stationary allocations, attention can be restricted to equilibria in which prices (and
quantities) depend only on own personal histories.

12The physical environment that underlies this discusion is the following: There is a central market place
and a Walrasian auctioneer (or financial intermediary) that, at period 0, calls out prices for the consumption
good, contingent on (perfectly observable) endowment shock histories. Based on prices individuals, at date
0, purchase contingent consumption contracts ¢;(ag,%*). In each period ¢, then, individuals return to the
central market place to claim their net consumption at period ¢, ¢;(ag,y") — yi, which may be negative. The
auctioneer acts as a clearinghouse for net claims and deliveries and enforces that agents that did not act
according to the contract signed at period 0 at some past date will be excluded from the market place.
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DEFINITION 3. An equilibrium consists of prices {p:(y')},—q and allocations {ci(ag, y")}iey

such that

e given prices, the allocation solves household’s problem for almost all (ag, o)

e markets clear, i.e. for all ¢,

(33) /thao, 7(y'|yo)dO© = /Zyt (¥'[yo)d

Equilibrium Prices

Let 3'7(y|yo)u(ao, y') > 0 be the Lagrange multiplier associated with the continuing
participation constraint at history y* and A(ag, yo) > 0 be the Lagrange multiplier associated
with the time 0 budget constraint. Let P(y*) = {y"|7(y*|y™) > 0} be the set of all endowment

shock histories that can have y* as its continuation. The first order necessary conditions are
(34) (1=P)8'7(y'lyo)u’ (ci(ao, y)) |1+ Z p1(ao,y™) | = Mao, 0)p(y")
yTeP(y')

Combining these conditions for two consecutive time periods and histories 3, y' ™! € P(y")we

obtain

ul (Ct(QOu yt+1)) 7-‘-(ytJrlk‘/O) _ Pt+1 (y”l) 1 + nygp(yt) N(a07 yT)
' (ce(ao, y*)) ™ (Y |yo) p(y) 1+ Zy'rep(ytJrl) m(ao,y")

Obviously, an agent whose participation constraint does not bind at contingency y***, follow-
ing history y', faces the standard complete markets Euler equation (as p(ag,y'™) = 0).
Now consider the efficient allocation of utilities {h(wq,y")}as found in the previous

section. Combining the first order condition and the envelope condition from the component

25



planning problem we have for an agent that is unconstrained'® (see (A7)):

1, Clu(uny)
R Cl(htﬂ (woa ytH))

(35)

By definition h(wo, y") = u(ci(wo, y')) and since C' = u™! it follows that

1 ﬁul(cm(woa y)
R ' (ce(wo, y'))

(36)

This suggests that the equilibrium prices satisfy

vy W)y o)
(37) pea(y'™) = Ry lo)

and from the normalization

59) pu(s) = "L gyl
with p; = R™'. That is, the price for a commodity delivered contingent on personal histories
is composed of two components, an aggregate intertemporal price p; = R~* and an individual
specific, history dependent component, equal to the probability that the personal history
occurs.

Given prices, the initial wealth level that makes the efficient consumption allocation

affordable for an agent of type (wy, yo) is given by
_ - 7T(yt|y0) t B
(39) ag = co(wo, yo) — yo + Z Z TRt (Ct(w07y ) = yt) = ag(wo, Yo) < 00
t=1 y'|yo

where the last inequality follows from the fact that the efficient consumption allocation is

bounded from above (as utility promises are bounded from above). Finally, the equilibrium

131f no agent is unconstrained we are in autarky and can take

l o u/(ymin)
B ()
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consumption allocation corresponding to the efficient allocation is given by'?

(40) Ct(a()a yt) = Ct(aal(wm yO)v yt)
The preceding discussion can be summarized in the following theorem

THEOREM 7. Suppose that {c;(wo,y")}ooq is a stationary efficient allocation (with associated
shadow interest rate R > %) Then prices {p:(y")} and allocations {ci(ao,y")}, as defined in

38 and 40 are an equilibrium for initial distribution Oq derived from ®q and 39.

Proof. See Appendix B

6. Calibration

First we will describe how we set the parameters governing the individual endowment
process, together with the government policies (spending and taxes). We will then discuss
preference parameters 3, the subjective time discount factor, and o, the coefficient of relative

risk aversion, as we will assume that the period utility function is of CRRA-form.

Endowment process

To characterize the Markov chain governing the individual endowment process in the
model we need to set the N possible values the endowment e; can take and estimate the
transition matrix m(e;11]e;). In order to do so we use household level data from the Consumer
Expenditure Survey (CEX) for the years 1986-1994. The main reason why we use CEX income
data, whose quality is supposedly inferior to PSID data, is because CEX reports also taxes
paid by the household members and transfers received, such as welfare and unemployment
insurance payments. We try to reduce measurement error by excluding from our sample

households'” classified as incomplete income respondents, as suggested by Nelson (1994) and

1 Given that the optimal recursive policy function h(.,y) is a strictly increasing function in w, the h(., y?)
and hence the ¢,(.,y") are strictly increasing in wy. Therefore ag(.,yo) is strictly increasing and thus invertible.
We denote its inverse by ag 1

15The CEX uses as its basic unit of investigation the Consumer Unit, which comprises either a) all members
of a particular household related by blood, marriage, adoption or other legal arrangements, b) a person living
alone or sharing a household with others, but is financially independent, ¢) two or more persons living together
who use their incomes to make joint expenditure decisions. For details see Consumer Expenditure Survey
(1997), p.249. We will refer to a CU as “household”.
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Lusardi (1996). For the same reason we exclude households with zero total income (including
wages, business capital income or government transfers). Finally, since we interpret our pre-
tax endowment concept from the model as labor income we exclude households which are
solely composed of members older than 64 years old. We view this as justified since our model
is a model of labor income uncertainty which is completely revealed upon retirement.

The CEX quantity we will interpret as e;, household endowment before taxes, is labor
earnings. In the data we measure this entity by the sum of labor earnings, plus a fraction'¢
of business and farm income earned by all the members of the household, all divided by the
number of adult equivalents!” in the household.

We first pick N to be equal to 5 . The transition matrix m(e;11]e;) is computed as
follows. For any quarter ¢ in the CEX sample we group households into 5 relative endow-
ment classes delimited by 4 equally spaced quintiles g2, g4, 6., st We then search for all
households for which we have endowment observations at ¢t and t +4 ( ¢; and e;;4 ) and com-
pute in which relative class they belong in period ¢ + 4. Notice that here the class delimiters
depend upon time to take account of aggregate growth. We repeat this for every quarter in
the sample. Then the probability of transiting from class ¢ to class j is given by the number
of households transiting from i to j, divided by the total number of households starting in
class ¢ for the entire sample 1986-1994.

Once m(e;t1]e;) is computed we set e ..,ey to be equal to the median income for
each endowment class in 1994.'% Table 1 and 2 show the results of this exercise. Note
that the stationary distribution associated with the transition matrix is given by II =
[0.18,0.21,0.21,0.2,0.2]. For our quantitative exercises we normalize the endowment values

e1,..,en so that the aggregate pre-tax endowment Z?Zl I(ej)e; = 1.

16The fraction of business and farm income we impute to labor income is .864 as reported in Diaz Jimenez,
Quadrini, Rios Rull (1997).

1"The number of adult equivalent is defined as in Deaton and Paxon (1994) as the number of households
mebres over age 16 plus .5 times the number of members below age 16.

18We take the average of the medians of the four quarters in 1994.
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Table 1. Endowment values (Ratio to 1994 median)

€1 €2 €3 | €4 €5

211.62 (1 | 149 2.53

Table 2. Transition Matrix (1986.1-1994.4), (26747 obs.)

Quintile at ¢ + 4
Quintile at ¢ || 1 2 3 4 5

68 .21 .06 .03 .02
A8 .56 .19 .05 .02
05 18 55 19 .04
03 .05 .19 .60 .14
02 .02 .03 .15 .78

Tt = W N =

Fiscal policy

To characterize the fiscal policy we need to measure the values of 7(e;),j =1,... ,N.
In CEX households are asked to report federal state and local taxes deducted from their
last paycheck separately from any additional (not deducted form paycheck) federal state and
local taxes paid. Since we want a measure of taxes on labor earnings the first measure
seems more appropriate for our purposes. We add to taxes social security contributions and
subtract transfers (welfare, unemployment compensation and food stamps). We then set
7(e;) equal to the ratio between the total sum of federal state and local taxes and social
security deducted from paycheck, net of transfers, in the j-th earnings class and the total
labor income as measured above in the same class. Once the tax policy is set we can compute
the implied level of government spending (net of transfers) such that the budget is balanced
in every period. The tax policy we will use in our experiments is the average of the tax

policies measured in the four quarters of 1994 and is reported below.
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Table 3. Tax Rates, 1994, ( 8679 obs.)

Quintiles

1 2 3 4 3

Average Tax Rates (%) || -35.8 8.1 150 17.3 20.9

The government spending (net of transfers) implied by these tax rates is equal to

g = 15.8% of total endowment.

Preference parameters

We calibrate the preference parameters (o, 3) so that the solution for the benchmark
model delivers an interest rate of 2.5% per year. This was the average real return on AAA-
grade municipal bonds (with 10 year maturity) over the period 1986-1994. We use the
interest rate on municipal bonds since returns on these bonds are usually tax-exempt and
hence marginal tax rates for interest income need not be specified.

In particular we set o equal to 2 and then choose 3 so to match the interest rate.
The non-standard part of this exercise is that in a debt constrained economy for a given o
there might be multiple § that deliver the same interest rate. In figures 4 and 5 we show the
relation between the time discount factor and the interest rate in our economy and in two
other economies. To understand the nonmonotonic behavior of the relation in the economy
with debt constraints remember that the real interest rate is given by the marginal rate of

substitution of an unconstrained agent, that is

t+1)

1 U (ery1(wo, y
R =D i e (wo, )

There are two critical values of the time discount factor §. If § > M = .99 then the

efficient allocation involves complete risk sharing of idiosyncratic risk, individual consumption

o/ (copa (wo,y' 1)

is constant, ETYa)

is always equal to 1 and the gross interest rate R equals %, hence
is decreasing in 3. If 3 < %" = .0207 then autarky is an efficient allocation, % = ﬁ%
(as argued is section J.and again the interest rate is decreasing in 3. For 3 € (g%, 39M)
there is some, but not complete risk sharing. As 3 moves from 3°Y to 4 there are two

effects on the interest rate: there is a direct effect due to the decrease of 3 that raises
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the interest rate and there is an indirect effect: lower 3 reduces possible risk sharing!® and

%W tends to increase with a reduction in 3, and the interest rate
t(wo,y"))

therefore max,,, ,t+1
is reduced. As we can see from figures 4-5, when £ is close to S%M the first effect dominates
and when 3 is close to 44 the second effect dominates. From figure 4 we see that for a fixed
value of o = 2 there are three possible values of 5 (8 = .0202, 3 = .0212, 5 = .972) consistent
with an interest rate of 2.5% . We will discuss the arising allocations for all three cases in

the next section.

We summarize the parameter values for our benchmark economy in the table 4

Table 4. Preference Parameters.

Parameter Value

£ | Time Discount Factors | { .972, .0212,.0202}

o | Risk Aversion 2

7. Measures of Intermediation of Risk

In this economy there are two ways in which individual consumption can be isolated
from random fluctuations in pre-tax income. Via the tax system the government can reduce
the variance in after-tax income. Private markets then serve to isolate private consumption
from fluctuations in after-tax income. We measure the strength of both risk sharing means in
the following way. We define as Total Intermediation (T1) of risk the ratio of cross-sectional
consumption variability to pre-tax income variability, or more precisely, as one minus the

ratio between the standard deviations of log-consumption to log-pre-tax income?"

std(log(c))

Tr=1- std(log(e))’

Note that when std(log(c)) = 0, T'I = 1; consumption does not vary at all across individuals
and the economy exhibits complete risk sharing. If std(log(c)) = std(log(e)), T1 = 0 and

consumption varies as strongly as pre-tax endowments. This is the case if individuals live in

9Households with high income realizations discount the future possibility of having low income very heavily
and therefore large transfers from these agents to low-income agents violate the continuing participation
constraints for these agents.

20We take logs to make the standard deviations independent of the units of measurement.
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complete autarky, without access even to publicly administered risk sharing. For 0 < T < 1

there is some, but not complete risk sharing, with higher 7' indicating higher risk sharing.
We can decompose T'I into two components reflecting risk intermediation enforced

by the government (GI) via the tax system and risk intermediation achieved in addition by

private insurance contracts, (PI). In particular we define

_,_ std(log(y))
Gl =1 = S ilog(e))

and

std(log(c))

PE= 1 Sdos(y))

When std(log(y)) = std(log(e)), GI = 0. After-tax income is as variable as pre-tax income,
which is the case if the tax system is proportional. If std(log(y)) < std(log(e)), GI > 0
and the tax system is progressive, with the extreme of complete redistribution via the tax
system, std(log(y)) = 0 and GI = 1. On the other hand, if std(log(y)) > std(log(e)), GI <0
and the tax system is regressive. The interpretation of GI is similar: if std(log(c)) = 0,
PI = 0 and there is complete risk sharing achieved through private markets. If, on the
hand std(log(c)) = std(log(y)), PI = 0 and private markets do not achieve any risk sharing
over and above that achieved by the tax system. We call this situation financial autarky
(individuals may still benefit from publicly provided risk sharing).

Now T'I can be rewritten as

B std(log(c))
= 1= ileg(e)
_ _ stdlog(y))  std(log(y)) _ std(log(c))
std(log(e)) std(log(e)) std(log(e))
gy tdllogy)) — stillog()

std(log(e))
= GI+(1-GI)*PI

Hence total intermediation of risk equals government intermediation of risk plus private in-

termediation of that part of risk that is not already removed by the tax system. In particular,

32



under a proportional tax system GI = 0 and T'I = PI. We will report the measures T'I, GI

and PI for all our policy simulations.

8. Results for Policy Experiments

We consider the following policy experiment: Change the tax system from the pro-
gressive system found in the calibration section to a proportional system (constant average
tax rates), keeping the level of government spending constant. We compare the steady states
arising under the two tax systems.

In tables 5-7 we summarize the results from our numerical experiments with the base-
line parameterization. The concept of the interest rate for the economy has been discussed in
section H.the concepts of private, government and total intermediation of risk in the previous
section. We measure welfare as follows: we first determine which of the tax regimes yields
higher ex-ante welfare (where ex-ante welfare is measured as [ h(w,y)d® = [ wd®). We then
increase the pre-tax endowment of every agent by % in the tax regime with lower welfare
and report that = (in the column of the preferred tax regime) for which ex-ante welfare in
the dominating tax regime coincides with that in the dominated tax regime in which 2% of
resources have been added.

For the high value of 3 = 0.972 the result of our policy experiment is summarized in

Table 5.

Table 5. 3 = .972 (High Risk Sharing)

Tax System
Variable Progressive | Proportional
Interest rate R — 1 2.5% 2.7%
Govt. Intermediation GI || 0.211 0
Private Intermediation PI || 0.930 0.958
Total Intermediation 7'/ 0.944 0.958
Ex Ante Welfare +0.2%

A switch from a progressive to a proportional tax system leads to a reduction of
publicly enforced risk sharing from 0.211 to 0 (by normalization). But risk sharing achieved

via private arrangements increases with the proportional system since the value of autarky

33



falls and hence the debt constraints are relaxed. This effect is sufficiently strong to raise total
risk sharing with proportional taxes over the level achieved with progressive taxes. Therefore
ex-ante welfare increases by 0.2% with such a tax reform in our simple model. Put differently,
the government, in trying to help households to share risk by making the tax system more
progressive, achieves exactly the opposite -lower risk sharing and welfare. We want to stress
that this result is obtained in a model in which progressive taxes do not distort any margin
for the labor-leisure decision. Also note that the interest rate rises with the switch to the
proportional system. This is due to the fact that proportional taxes lower the value of default,
hence relax the debt constraints. Households can borrow more and the interest rate has to
rise to bring borrowing and lending back into equilibrium.

The results from our policy experiment are drastically different for the case of low time

discount factors?!', as can be seen from Tables 6 and 7.

Table 6. § = .0212 (Low Risk Sharing)

Tax System
Variable Progressive | Proportional
Interest rate R — 1 2.5% 219%
Govt. Intermediation GI || 0.211 0
Private Intermediation P || 0.0 0.008
Total Intermediation 7'/ 0.211 0.008
Ex Ante Welfare +36%

210ne may argue that such low discount factors are a priori unreasonable. Even if we agree it is still
instructive to do our policy experiment for an economy where very little private risk sharing is enforceable.
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Table 7. = .0202 (Autarky)

Tax System
Variable Progressive | Proportional
Interest rate R — 1 2.5% 214%
Govt. Intermediation GI || 0.211 0
Private Intermediation PI || 0 0.008
Total Intermediation 7'/ 0.211 0.008
Ex Ante Welfare +37%

If agents discount the future very heavily, the extent of risk sharing achievable with
self-enforceable private contracts is very limited, as the threat of future exclusion from credit
markets is not severe for very impatient agents. We see from the tables that the low risk
sharing allocation is very similar (in terms of private risk sharing) to the autarkic allocation
and it is significantly different from the high risk sharing allocation. The effect of the tax
reform on government intermediated risk sharing is similar to the case with high discount
factor (by construction). Now, however, private markets are almost completely ineffective
in providing risk sharing for both tax systems. Hence total intermediation of risk consists
(almost) exclusively of GI. This explains the large welfare losses going from a progressive
to a proportional system. Again the interest rate rises (this time very sharply) with the
proportional system. Comparing the high risk sharing with the low risk sharing case we
conclude that when private markets are very effective in providing risk sharing contracts,
then the attempt of the government to do even more may be counterproductive. If, on the
other hand, private markets do not work because of it is difficult to enforce private contracts
then public risk sharing provided by redistributive taxation leads to potentially large welfare

gains.??

9. Risk Sharing as a Function of the Tax System
So far we have focused on two particular tax systems, a progressive system derived

from CEX data and a hypothetical proportional tax system. In this section we show how

22This suggests that evaluating the level of risk sharing in an economy can be relevant for policy purposes.
This, in fact, motivates the analysis in Krueger (1999).
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total risk sharing ( and hence aggregate welfare) evolves with (marginal) changes in the
progressivity of the tax system in our model. Our parameterization is the same as in section

8, with 8 = 0.972. We restrict our discussion to a tax system of the form

b
T(ej) =a— — j=1,...5

€;

i.e. to a system with constant marginal tax rate a and a fixed deduction b. We estimate a
and b by running a regression on our five data points for taxes derived from CEX data. We
find & = 0.27,b = 0.11 The centered R? of this regression equals a surprisingly high 0.996, so
that the progressive tax system used in the last section is almost perfectly approximated by

(see figure 6)%3

0.11

€;

T(e;) = 0.27 — j=1,...5

i.e. by a constant marginal tax rate of 27% and a fixed deduction of 11% of mean income
(which we normalized to one in our economy). The implied level of government spending
equals g = 0.1622, which is approximately the same level as the one used in the previous
section. We can now vary the degree of progressivity marginally by marginal changes in the
fixed deduction b, with varying a correspondingly to assure that all tax systems generate the
same revenue.?* Note that for b = 0 we are back in our hypothetical proportional tax system
from the last section. In figure 8 we plot total risk sharing against the deduction b, where
total risk sharing is measured as T'I. We see that complete risk sharing in this economy can

be achieved with two rather extreme policies. One policy that obviously achieves first best is

230ne should note that we only have to fit five data points. Also, remember that our concept of taxes was
rather broad, including (the negative of) transfer payments such as welfare and UT benefits.
24Note that

g = > T(ej)r(e))

Jj=1

b
23:1 I(ej)e;

= a—0»>

= a —

for all tax systems generating the same revenue. We used the fact that 25:1 II(ej)e; = 1 by normalization
of mean income to 1.
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to tax all income differences away, i.e. making the system extremely progressive and equalize
after-tax income of all agents. This is achieved by b = (1—¢g) = §,a = 1. One the other hand,
making the tax system sufficiently regressive makes the punishment from default sufficiently
harsh to enforce perfect risk sharing. This occurs for b < 0.08, i.e. for a poll tax of at least
8% of mean pre-tax income.

In between these extreme cases the effect on total risk sharing (and hence ex-ante
welfare) of a marginal increase in tax progressivity depends on the relative magnitudes of
the two effects at work: the direct effect of reducing the variability of after-tax income and
the indirect crowding-out effect. For a fixed deduction of b < 0.44 the crowding-out effect
dominates and more progressivity reduces total risk sharing and, therefore, ex-ante welfare.
The experiment considered in section 8 falls into this class. For b > 0.44 the direct effect
dominates and more progressive taxes lead to more total risk sharing among individuals
and a welfare improvement. Note that the welfare difference between the worst tax regime

(b= 0.44) and first best amounts to about 1% of average income.

10. Exogenous Incomplete Markets

In this section we want to contrast our finding with the welfare effects of the same
reform in a standard exogenous incomplete markets model. In this economy agents are only
allowed to trade a single uncontingent bond and they face an exogenously specified constant
borrowing limit. There are no enforcement problems of payments in this economy. This type
of economies has been widely studied (see Huggett (1993) and Aiyagari (1994) among others)
and we consider an economy similar to the one studied by Huggett. The household problem

in recursive formulation for this model is (see Huggett (1993) for details):

via,y) = max (1—Bu(c)+ 8> v, y)ryy)

c>0,a'>—b
s.t.
c+d = y+(1+r)a

where a are holdings of the one-period bond and r is the interest rate on these bonds.

To enable comparison with the endogenous incomplete markets economy we calibrate
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this economy to the same observations. In particular, the endowment and tax processes
are kept the same. The coefficient of relative risk aversion is again chosen to equal o =
2. We then identify pairs of borrowing limits b and time discount factors 3 such that the
equilibrium interest rate in this economy equals 2.5%. Table 8 presents the results for our

policy experiments for a selection® of (b, 3).

Table 8 Results for Exogenous Incomplete Markets

b=1,0=286 |b=2,3=.9 |b=5p8=.94 |b=83=0.95

Variable Progr.  Prop. | Progr. Prop. | Progr. Prop. | Progr. Prop.
Interest rate 2.5% —1.5% | 25% —03 | 25% 1.5% |25% 1.8%
Govt. Interm. GI | 0.211 0 0211 O 0211 0 0211 O

Private Interm. PI || 0.161 0.250 | 0.237 0.335 | 0.330 0.429 | 0.344  0.442
Total Interm.T'1 0.338 0.250 | 0.398 0.335 | 0..471 0.429 | 0.483  0.442
Ex Ante Welfare +10.9% +7.9% +5.0% +4.5%

In this economy a switch from a progressive to a proportional tax system induces
(large) welfare losses. Redistributive taxes act as a partial substitute for private insurance
markets that are exogenously assumed to be missing. Removing this partial substitute for
private markets leads to negative welfare consequences. This is true regardless of how high
the borrowing limit is specified. In contrast to the endogenous incomplete markets model a
tax reform does not (by assumption) change the assets that can be traded nor the extent to
which they can be traded. Therefore the crowding-out effect that was crucial in the previous
section cannot occur in this economy.

Another important difference between this economy and the one analyzed previously
is the impact that the change in tax system has on the interest rate. In the debt-constrained
economy a shift from progressive to proportional taxes causes an increase in the interest

rate while in the economy with exogenous incomplete markets interest falls in response to

25There is a limit as to how negative one can chose b. This limit is given by the constraint that agents with
Y = Ymin and a = —b can attain nonnegative consumption by setting a’ = —b at the equilibrium interest rate
(for both tax systems). This limit on b turns out be approximately equal to 8.
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the change in the tax system. The intuition for this result is as follows: the change in taxes
increases the volatility of the income process. This, by making autarky less attractive, relaxes
the borrowing constraints faced by the agents in the debt-constraint economy. Since agents
borrow more, the interest rate has to rise to clear the credit markets. In the exogenous
incomplete markets, on the other hand, agents, facing higher volatility of output, increase
their precautionary saving. Since their borrowing limit is unaffected now a decline in the

equilibrium interest rate is needed to clear the credit market.

11. Conclusions

We have presented a model that highlights a new channel through which different
taxation schemes can affect private financial markets. Although in our model taxes do not
directly affect labor-leisure and wealth accumulation decisions they affect the functioning
of private financial markets by changing the incentives to default on private contracts. We
have shown that when private insurance markets are active, risk sharing provided through
taxes crowds out private risk sharing. In order to gain some insights into the magnitude of
this effect we calibrate our very simple model to US income and tax data so that we can
quantify the effects of changes in the progressivity of taxation. Our experiments indicate
that the magnitude of the crowding out can vary a great deal. In particular, we find that this
magnitude depends on the level of risk sharing that is achieved via private contracts. When
risk sharing provided by private markets is low, crowding out is small and redistribution
through taxes is welfare improving, while in high risk sharing regimes redistribution through
taxes crowds out private financial markets more than one to one, and therefore is welfare
reducing.

In contrast, if private insurance markets are assumed to be missing for reasons exoge-
nous from the model, as in a standard exogenous incomplete markets model, a tax reform
that reduces the variance of after-tax income serves as a partial substitute for private insur-
ance markets and leads to unambiguous welfare gains. This, to us, demonstrates that when
analyzing a tax policy reform it is important to take into account the interaction between
the tax policy and the functioning of private insurance markets.

Finally, we would like to stress that our analysis focuses only on a particular, so far
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largely ignored, channel through which the tax system affects welfare. By trying to isolate this
channel we necessarily have to abstract from many features that a more complete discussion

of potential tax reforms should incorporate.
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A2. Proofs

Proof of Theorem 1.:

To show efficiency we first need to show that {h;(wo,y")} is constrained feasible with
respect to ®¢. By assumption the allocation satisfies feasibility (equation 6) and since it solves
C PP also satisfies 5, 6, and 7. It is therefore constrained feasible. Now we need to show that
there does not exist another allocation {h (wo, y*) 152, that is constrained feasible with respect

to ¢ and such that

(A1)

Z/C(ilt(woayt))ﬂ(yt\yo)dq’o < Z/C(ﬁt(wo,yt))ﬂ(yt’yo)d% for some ¢

Suppose this is the case. Since {h;(wy,y*)} solves CPP for all wy,yo we have

(A2) (1 - E) C(ho(wo, yo)) + Z (1 — —) ﬁ ( ) > Clhu(wo, )7 (Y |yo)

ytlyo

(1—§O>C’h0w0,yo +Z(1——>H( )Z(Jhtwo, )7 (Y lyo)

yt|yo

where the left hand side of equation A2 is finite®. Integrating both sides of A2 with respect
to @5 One has

t—1

(AS)/ (1 -~ n%) C'(ho(wo, yo)) Z (1 -~ —) 1:[ ( ) > C(hewo, y")w(y'lyo) ¢ dPo

t=1 s=0

'l
g/ (1—§O>0h0w0,y0 +Z<1——)ﬁ< )yzlyjc*htwo, )7 (4t o) ¢ dPyo

From the fact that for {h;(wo, y")} feasibility holds with equality for all ¢, that {ﬁt(wo, yt)}

26This is guaranteed since we can always pick a constant h; (wg,y?) = max(wg, max, V4% (y)). Such a policy
satisfies all the constraints of C PP and since max(wp, max, VA% (y)) € D and condition 3. in Theorem 1 is
satisfied the value of the minimization problem is finite.
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is constrained feasible and from A1l one obtains:

(Ad)
Z/C(ﬁt(wo,yt))ﬂ(yt!yo)d% < Z/ym(yt!yo)d@o = Z/C(ht(wo,yt))ﬂ(yt\yo)d%

y*|yo y*lyo y*lyo
for all ¢ with the inequality being strict for some t. Multiplying each inequality by the
appropriate term (1 — R%) HZ;E (Ri) > 0 and summing over all ¢ we obtain A3, but with
the inequality reversed and strict, a contradiction B

Proof of Lemma 1.:

For every (w,y) € A the objective function in 19 is continuous in h, g, and the
constraint set is compact and non-empty; therefore the minimum exists. V' is bounded and
since h(w,y) < h < h(w,y) , C(h) is bounded as well. It follows that TRV is a bounded
function. The fact that TRV is continuous follows from the Theorem of the maximum (note
that the constraint set is continuous in w). It is also easy to show that since R > 1 the
operator Tg satisfies the hypotheses of Blackwell’s theorem and thus is a contraction with
modulus % [

Proof of Lemma 2.:

For the first part we note that C(A) (together with the sup-norm) is a complete metric
space and that the set of bounded continuous nondecreasing (in its first argument) functions
on A, C'(4;), is a closed subset of C(A) and that the set of bounded continuous strictly
increasing functions, C”(A), satisfies C"(A) C C’(A). By Lemma 1. Ty is a contraction
mapping. Hence by Corollary 1 of Stokey et al., p. 52, it is sufficient to show that, whenever
Vi € C'(A), then TrVg € C"(A). Fix w,w with w < w < w < w. We need to show that
(TrVg) (w) < (TgVg) (). Let h,j, be the optimal choices for . The choices g, = g, and

h=h—+w < h are feasible for w and therefore

(TaVi) (0) = (T3 €+ X () Vala)

y'eYy

> (F) €+ f X w6 Valay)

y'ey

(A5) > (TrVg) (w)
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To prove that Vi is convex we note that the set of bounded continuous convex
functions, C"(A) is a closed subset of C'(4). Again by Corollary 1 of Stokey et al., p.
52, it is sufficient to show that if Vx € C""(A), then (TxVg) is convex in its first ar-
gument. So we have to show that for all w,w € A with w # w, and all A € (0,1),
(TeV)(AMw 4 (1 = N)b) < MTRV)(w) + (1 — X)(TgV)(). Let h, §, be the optimal choices for
w and h, g, be the optimal choices for w and define h* = Ah+ (1 — \)h, gy = Agy+ (1=X)gy.
Since h?, g, are feasible for (Aw 4 (1 — A\)u, y), and

(TrVR) (Aw + (1 — X))

< (F77) e+ g S rvis)
< (F77) (em+ a=nem) + g Xm0 (Vo) + (1= W)
(A6) = A(TwrVr) (w)+ (1= A) (TrVE) (0)

by convexity of V' in its first argument and strict convexity of C.

We want to show that the fixed point of Tk, V, is strictly convex on A. We know that
V' is convex, continuous and strictly increasing. These facts imply that V' is differentiable
almost everywhere on A and that for the countable number of points at which V' is not
differentiable, right hand derivatives V. and left hand derivatives V’ exist (although need
not coincide).

Now suppose that V is not strictly convex on A. Then there exists an interval I C A

such that V is linear on I. Take w,w’ € I with w < w’. From the envelope theorem for any

solution {gy (w)}, {gy (w')}

L s s
R-1 _, (w~— y,ﬂy’gy:w
>C< )

R1-5 1-3
_ R-1 (w8, 7(y)gy(w)
- Ru—ﬁf7< - )

for some a > 0. Hence there exists 4 such that U4%(y) < gy(w) < gz(w'). From the first order
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conditions, combining with the envelope condition

afR < Vi(gy(w))
Vigg(w')) < afR < Vi(gy(w'))

By convexity of V' and the fact that g;(w) < g;(w’) it follows that

afR < Vi(gy(w)) < V'(gz(w)) < afR

Hence V is linear on I' = (gy(w),gy(w')) € A with slope ag < a. Repeating the above
argument one shows that there exists interval 1™ such that V'is linear on I™ with slope
ag”, for all n > 1.

Now let d = Rﬁ’_lﬁ) C’(h(w)) > 0 and pick n such that ag® < d. Then for all w € I™),
using the envelope condition

R—-1 ’ - R—1 !
mc (h(w)) <d= 5——=C"(h(w))

W= Vi) = Ri-p° &

Therefore h(w) < h(w), which is impossible. Hence V' cannot contain a linear segment on
Al

Proof of Lemma 3.:

The fact that TRV is strictly increasing and strictly convex follows from the properties
of V. The choice variables h and g, are constrained to lie in compact and convex intervals,
and by assumption the objective function is strictly convex. Hence the minimizers are unique.
Since the constraint set is continuous in w, the theorem of the maximum applies and TRV is
continuous and h(w), g, (w) are upper hemicontinuous correspondences. Since h(w), g, (w)

are functions, they are continuous B
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Proof of Lemma 4.:

Consider the following sequence of functions {V"}52, defined recursively as:

Viw) = C(w) Vw e A
Viti(w) = (T"V") (w) VYwe A

From corollary 1. we know that this sequence converges uniformly to the unique fixed point
Vg of T. Also Lemma 3. assures that each V" is continuous, strictly increasing and strictly
convex (as by assumption C possesses these properties) and that the associated policies A" (w)
and gy, (w) are continuous functions. From 24 we have (as C' is continuously differentiable by
assumption) that each V" is differentiable and that this derivative is continuous, since A" ! (w)
is a continuous function. Now we will establish that Vg is continuously differentiable.

From Lemmas 3., 2. and corollary 1. we know that each V™ as well as Vg are strictly
convex and continuous and that the sequence {V"}22  converges to Vi uniformly. Also A

o0

is compact. Then by theorem 3.8 of Stokey et al., p. 64, the sequences {h"(w), g (w)}

n=1
converge uniformly to the optimal policies associated with Vg, h(w) and gﬁ(w), respectively.

(-1
R(1-p)

to Vg uniformly, we have that Vj is differentiable, with

Therefore from 24 (TrV™)' converges to C'(h®(w)) uniformly. Since {V"}°° , converges

(R—1)

mcl(hR(w))

(Ve)' (w) =

Proof of Lemma 5.:
We want to show that for all w < w < w < w, h(w) < h(w). Suppose, to the contrary,

h(w) > h(w). Then from 23

V' (gy (w)) = V' (gy (@)

for all 3 such that g, () > U4 (y'), and hence U2%(y') < g, (1) < g, (w) for all those y/ by
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strict convexity of V. But then from the promise keeping constraint there must exist 3’ such
that gy (w) < gy (w) = U4 (i), a violation of the debt constraint. We obtain a contradiction
to the assumption that h(w,y) > h(w,y) W

Proof of Lemma 6.:

Again let w < w < w < w. Under the assumptions made h is strictly increasing in w.

Therefore C'(h(w)) < C'(h(w)). First suppose that g, (w) > U4*(y'). Then from 23 we have

V' (gy (w)) < V'(gy (@)

and from the strict convexity of V' it follows that g, (w) > g, (w). Obviously, if g, (w) =
U (y') then gy () > gy (w), Le. either g, () > gy (w) or gy (w) = gy (@) = U (y) W
Proof of Lemma 8.:
From Lemmas 2. and 4.V}, is strictly convex and differentiable. By assumption g, (w) >

UA%(y). Then combining 23 and 24 we obtain

(A7)
BR (Vi) (w) = (Vi)' (gy (w))

Since R < % we have V'(w) > V’(g, (w)), and by strict convexity of Vi the first result follows.
Hence g, (.) are always strictly below the 45° line in their strictly increasing part. On the
other hand g, (w) > U (y') for all w. Hence for w < UA(y), g, (w) = UA(y') > w.
By continuity of g,(.), g, (U (y')) = UM (y') and from the first result g, (w) < w for all
w > UA(y') M

Proof of Theorem 2.:

Take w = max, U4 (y) + ¢, for ¢ > 0 arbitrarily small. If g, (w) > U4 (y’), then
the previous Lemma yields the result. If g, (w) = UA%(y/), then g, (w) = U2 (y) <

max, U4% (y) < ©
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Proof of Theorem 3.:

For any allocation o = {h;(wg, y*)}22, define

(A8) Uilwo,y',0) = (1—5)( (o) + 33 # wo,y>)

s>t ys

(A9) Ui (y) = (1-7) (U(yt) + ZZﬁStW(yS)U(ys)>

s>t ys

By theorem 4.3 in Stokey et al. (the assumption of which are satisfied as C(w) > 0,

all w), for all wg € W and all yy € Y, the solution to the functional equation, Vjx satisfies

o

il = et (0 ) et + 2 (1 ) g 2 Clto v )

{he(wo,y*),we(wo,y*)}

(A10)
st wy(wo,y') = (1= B)hu(wo,y") + B m(yer1)wia (wo,y'™')  allt
ytJrl
(AL12) UM () < wi(wo,y') < @ all t > 1

(Al1b) wo > U™ (yo) given

By theorem 4.4 and 4.5 (which are applicable as Vi is bounded on W and the sequence
{0, (wo, ") }i2, defined above never leaves W), the allocation {hy(wo, ")}, together with
{w(wo, y") }4, defined above uniquely attains the minimum of the above problem. In order to
argue that {h(wo,y")}3°, solves CPP we have to show that any allocation {hs(wp, y*)}22, to-
gether with some {w;(wq, y*)}52, satisfies A10 and Alla if and only if {hy(wo, ")}, satisfies

37



5,6 and 7, i.e. if

(Al?a) Wy = UO(w07y070-)
(A12b) UM (y) < Uilwo,y'o) <o allt

(AlQC)tlirglo B sup Uy (wo, y',0) = 0
yt

Step 1: Pick any allocation o = {hy(wq,y")}2, that satisfies Al2a to Al2c. De-
fine we(wg,y') = Up(wo,y", o). It is immediate from A12b that Alla is satisfied. From the
definition of Uy(wy,y*, o) it follows that A10 is satisfied as well.

Step 2: Pick any allocation o = {h;(wo, y")}32, and {w;(wo, y*)}52, that satisfies A10
and Alla. Since for all ¢, w;(wg, y*) < @ from Alla, by using A10 we see that the allocation
satisfies A12c. Now for all allocations satisfying A12c, and for all ¢

|wiwo,y') — Up(wo, y',0)| = B> w(yeyr) (wira(wo, y) = Uplwo, v, o))

yt+1

S ﬁSl_li_l? ‘thrl (/LUO’ yt+1) - Ut(w()v yt’ U)‘
ot

< p Slip }thrs(wOa Y +°) = Upys(wo, y', 0)}
yt s

(A13) < ﬂs Slip (‘wt—&—s(wOu yt+s) ‘ + }Ut—i—s (w07 yt+s7 U) })
ytts

This inequality is valid for all ¢ and all s. Taking limit with respect to s yields (by Al2c¢ and
Alla) that we(wg,y") = Ur(wo, y", o) for all t. Hence A10 implies that

wo = (1 —B)ho(wo,yo) + ﬁZw(yl)wl(wo, y')

Y

= (1= B)ho(wo, yo) + ﬁzﬂ(yl)Ul(wo,ylﬂ)

(A14) = Us(wo, Yo, 0)

and hence A12a is satisfied. For ¢ > 1 A12b is obviously satisfied, and it is satisfied for ¢ =0
by the assumption that wy > U/ (y,).
This proves that the allocation constructed from the policies of the functional equation

solves the component planning problem with the additional constraint U;(wg, 3", o) < w. By

38



Theorem 2. w;(wq,y") < @ and hence, as W (wo,y") = Uy(wo,y',5), the constraint is never
binding. Since the constraint set associated with the CPP is convex, this implies that the
allocation & indeed solves the original component planning problem for constant interest
rates.

Proof of Lemma 9.:

Suppose gy,...(w) > U (ymay) for all w € A;w > U (yy,,). Then by Lemma 7.
gy (w) = g, (w), for all ¥ € Y and w > U (yp.y). By continuity of g, and Lemma 8.,
Gy (U (Ymax)) = UA (Ymax ), for all ¢/ € Y. But since U4 (ypay) > UA% () for all ¥ # Ymax,
by Lemma 8. g, (U4 (Ymax)) < U (Ymax) for all ¥ # Yumax, a contradiction M

Proof of Theorem 4.:

The proof is an application of Stokey et al., theorem 11.12. We have to prove that
there exists an ¢ > 0 and an N > 1 such that for all sets (B,)) € B(W) x P(Y), either
QN (w,y,B,Y) > ¢ or QN ((w,y, (B,V)°) > ¢, for all (w,y) € (W,Y). For this it is suffi-
cient to prove that there exists an ¢ > 0 and an N > 1 such that for all (w,y) € (W,Y),
QN (0, Y, UM (Ymax)s Ymax) > €. If w* > w this is immediate, as for all (w,y) € (W,Y),
Q(w,y, U (Ymax ), Ymax) > T(Ymax), SINCE Gy (W) = UA (Yinay) for all w € W.

Suppose w* < w. Define

d= min w — w
we[w* 7@] gymax( )

Note that d is well-defined as g, is a continuous function and that d > 0 from Lemma 8..

Define

N =min{n € N|lw —nd < w*}

and € = T(Ymax)” . We will show that for N and e so defined the result follows. Suppose an
individual receives y.x for N times in a row, an event that occurs with probability . For
(w,y) such that w < w* the result is immediate as for those w, g, . (w) = UA(yp..)

and g, (U2 (Ynax)) = UA(Yiax). For any w € (w*,w] we have g, (w) < w — d,
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Gy (Tymax (W)) < w — 2d, and so on. Then the result follows by construction of N and
el
Proof of Lemma 10.:

we have to show that

lim ||VRn - VRH =0
where ||Vg, — Vg|| = supjy 4 |Vr, — V&|- By the triangle inequality

(A15)
Vi, = V|| < ||Vr, =T, Vall + ||Tk, Vi — V&l

Now the operator T, is a contraction mapping on [w,w| with unique fixed point Vy_ (see

corollary 1). Hence

lim ||V, —Tf, Vill = 0

For the second term in the sum we note that

(A16)

n

T3 Vie — Vil | < 3" ITh, Vie = T Vil < 3

k
k=1 k=1 ( n

[T, Ve — V&l

Here the first inequality again follows from the triangle inequality and the second from the

fact that Tg, is a contraction mapping on [w, w] with modulus ( Rl)k. Hence
. . o |
lim ||T Vi — Vil < lim Y ——||Tk, Ve — Val|
n—00 n—00 — (Rn)
< lim =T Vi — Vil
i _
= R, VR R
R
(Al?) = R 1 lim ||TRnVR — TRVRH
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where we used the fact that V7 is the unique fixed point of Tr. Hence lim,, .o [[TF Vi —Va|| =
0 if and only if lim,, . ||Tg, Ve — TrVz|| = 0, i.e. if the operator Tg, is continuous in R,.
To see that T, is in fact continuous in R, consider the following argument: for arbitrary

W € [w,w] by the theorem of the maximum
lim |TRHVR(ID) - TRVR(QI})| =0

Since [w, w] is a compact set and Ty, Vi, TrVg are continuous functions in w, we have
lim m[ax |TRnVR( ) TRVR(QZ})| = lim ||TRnVR — TRVRH =0
n—o0 we|w w n—00

Hence both terms on the right hand side of A15 converge to 0, which proves the result B
Proof of Lemma 11.:

We have to show that for each £ > 0 there exists N(¢) such that for all n > N(e),

g, (wn) — g (w)] < &

We note that by the triangle inequality

19, (wn) = g7 (w)] < |gy" (wn) — g, (wn)| + |9, (wn) — g (w)|

Since the function gJ; is continuous, for each £, > 0 there exists N(e;) such that |g/(w,) —

gii(w)| < ey for all n > N(e1). By Lemma 2. Vi as well Vg, are strictly convex, for each
n € N. Also {Vg, },., converges uniformly to Vz by Lemma 10. on the compact set [w, w].
Then by theorem 3.8, Stokey et al. (1989), for each 5 > 0 there exists N(e2) such that

g, (w) — gl (w)] < &g for all m > N(ez) and all w € [w,w]. So fix £ > 0 and choose
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e1 = g3 = 5 and N(e) = max{N(e1), N(e2)}. Then for all n > N

|9, (wn) — gy (w)] < lgy (wn) = gy (wn)| + lgyf (wn) — gyi(w)| <ex+e1=e

Proof of Theorem 5.:

Consider a sequence {R,} -, with R, € (1, %) converging to R € (1, %) With each
R, and with R there is associated an operator T} and 77, respectively. By Theorem 4.
there exist a unique sequence of probability measures {®g, } -~ such that ®p, = T} Ppg,
and a unique ®p such that ®p = T/ P . we will argue that the sequence {Pp, }ZOZO converges
weakly to ®g.

First, the state space [w,w] X Y is compact. Now consider the sequence of transition
functions {Qr, }._, associated with {R,,} . For any sequence {w,} _, in [w, @] converging
tow € [w,w], for ally €Y, gﬁ" (wy,) converges to g, (w) by Lemma 11.. Now consider the se-
quence of probability measures {Qg, ((wn,y), .) },—, and the probability measure Qr((w, y), .).
If we can show that for each set B € B(W) x P(Y') for which Qg((w,y),0B) =0,

(A18)
lim Qg, ((wn,y), B) = Qr((w,y), B)

then the sequence Qg, ((wy,y),.) converges weakly to Qr((w,y),.) by theorem 12.3, Stokey
et al. Here OB denote the boundary of B, i.e.. the set of points that are limit points of B as
well as BY. Take an arbitrary such set B. By definition of Q z, for all w' such that gﬁ(w) =w
for some y' € Y, we have that w' is in the interior of B (otherwise Qr((w,y),0B) > 0). But
then, since g;ﬁ"(wn) converges to g, (w), Qr, ((wn,y), B) = Qr((w,y), B) for n sufficiently
big. Hence A18 is satisfied and the sequence Qg, ((wy,, y),.) converges weakly to Qr((w,y),.).

This result enables us to apply theorem 12.13 of Stokey et al. to conclude that the

sequence {®g, }° , converges weakly to ®p. By Lemma 10. {Vg, },-, converges uniformly to
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Vg. To show continuity of d(.) we note that

A(R,) — d(R)| = ' [Vitwyivn,  [Viwav,

; ' [ Vitwider, - [ Va(w)de

by the triangle inequality. The first term converges to zero (as n — oo) as {Vg, },-, converges

(A19) < ' [ Vitwiavn, ~ [ Viwyias,

uniformly to Vi, the second term converges to zero as {®g, } -~ converges weakly to ®x and
Vg is a continuous and bounded function B

Proof of Lemma 12.:

Let R > R. We want to show that h%(w) < h#(w) and g (w) > gf,(w), forally €Y
and all w € [w, @]. Define the sequence {V"} | by V" = (Tj)" Vg. Note that as Vg is strictly
convex and differentiable (by the argument in the proof to Lemma 4.), so are all V™ (by the
argument in the proof to Lemma 4.). Let (h",g;,) be the optimal policies associated with

Vroie.

(A20)

Vi) = (1= 3 ) () + StV g (w))

Y

(A21) gfi(w) > gp(w)

(A22) A (w) < h™(w)
Vi(w) (V") (w)

(A23) 71 < B

for all ¥/ € Y and all w € [w, w]. Since {V"},, converges to V3 uniformly (by corollary 1.)
and {A", g?’],}zo: , converge uniformly to (hR, gy,) (again see Lemma 4.), it then follows that
gpi(w) > gf, (w) (and the other two relations also hold for n replaced with R).

Step 1: Let n =1 and fix w € [w, W]

Suppose, to obtain a contradiction, that there exists g such that g;, (w) > gﬁ(w) >
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U4 (y'). Then from the respective first order conditions (note that V' = T Vg)

(a20) Vy(gyw)) = PR Do)
(425) Vi(gfitu)) = =D emr))

Since Vj is strictly convex Vi (gy (w)) > Vi(g) (w)) and hence (as R > R), h*(w) > h®(w).
From the promise keeping constraint there must exist 7 such that g¥(w) > gL (w) > U (7).

But then (using A24 and A25)

~

BR—-1)
1—p

SR -1)

O ) <

Vilgg (w)) = C'(h'(w)) < Vi(gy (w))

which implies gff(w) < g (w), a contradiction. Hence g, (w) < g[i(w), for all 4 € Y. Then

from the promise keeping constraint h'(w) > h®(w). The envelope conditions are

(V1) (w) C'(h (w))

R—1 R(1—0)
/ (LR
gy Va0 _ COw)
R—-1 R(1—-0)
It follows from the previous result that (VIQEM) > Vgﬁ).

Step 2: Suppose that A21 to A23 are true for n — 1. We want to show that A21 to
A23 are true for n. Again suppose, to obtain a contradiction, that there exists y’ such that

gi(w) > gl(w) > U4 (y'). From the first order conditions we have

V' (@) B
] = mC (h"(w))
Valgg @) B
I I

Since Vg and V"' are convex, gy (w) > ghi(w) and A23 holds for n — 1, we have that

h*(w) > h*(w). Again by the promise keeping constraints there exists 3’ such that gff(w) >
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gy (w) > UA¥(3). But by Lemma 7.

IA
Q

U3
&

gy (w)

gy (W) = gg(w)

and hence

gy (w) < gin(w) < gh(w) < gfi(w) < gy (w)

a contradiction. It follows that for all y' € Y, g (w) < g} (w). From promise keeping we have

V) (w) ~ Va@)
e

h"™(w) > h®(w). As before the envelope conditions imply that

Proof of Lemma 13.:

Define the sequence of measures {®,} -, by @, = (T;)nq) r- We shall prove by
induction that for each n > 1, and each y € Y, ®¥% stochastically dominates ®¥. Since by
Theorem 4. {®,,} converges to ®p in total variation norm, the result then follows.

It will be convenient to define the distribution function associated with any probability
measure ®¥ FY : W — [0,1], as FY(w) = ¥ ([w,w]) = ®,([w,w],{y})/7(y). Since the
domain of these functions is a subset of !, in order to prove that ®Y% stochastically dominates
®Y it is sufficient to prove that for all w € W, Fj(w) < F¥(w).

Step 1: Let n=1

By definition ®; = T:®p whereas @ = T;Pg. Fix an arbitrary y € Y, w € W. Then

Dp([w, w], {y})
m(y)

_ / qo,
{veW|gf (v)<w}

< / ey
{veWl|gft(v)<w}

q)l([wv w]a {y})

m(y)
(A27) = I (w)

Fr(w) =

where the inequality is due to the fact that g)*(w) > gf(w), for all w € W.
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Step 2: Suppose Fj(w) < FY (w), for all w € W, all y € Y. We want to show that

the same is true for n. Note that

FY(w) = (I)n([%;(t;]])v{y})

{veWlgd (v)<w}

(A28) = S w(@FL (va)

yey

where v,, := max{v € W| gf(v) < w}. Note that the last equality requires gf to be increasing
in v as shown in Lemma 6. Continuity of gf ensures that v, is well-defined. Similarly
Fi(w) = deyﬂ(gj)Fg(vR) with vg := max{v € Wlg)(v) < w}. Lemma 12. implies that
vk < v,. Then the induction hypothesis implies that for all § € Y, Fh(vg) < FY_,(v,), and
hence Fj(w) < FY(w) B

Proof of Theorem 6.:

By definition of d(R)

A(R) = [ Valw)iwn ~ [ yav

Since for all R, [yd®p is a constant, we focus on the analysis of the first part of the excess

demand function. From the functional equation

(A29)
[ vatwyan = (1= %) [cwtunarn+ £ x) [Vighwao,

we note that by stationarity and the definition of %,

(A30) [ Va(wdbn = Srly) [ Vilw)aa,

yey

(A31) / V(gh(w))ddy = / V (w)dY,
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so that

(A32)
/VR(w)dch — Zﬂ(y,) / V(g (w))d0n

yl

It follows that

(A33)
[vitwasa= [ cwtw)in,

We want to prove that

/ Vie(w)dy > / Vi(w)dd,

By the previous lemma for all y € Y, &% stochastically dominates @%, and since V7 is strictly

increasing it follows (using A30 that

(A34)
/VR(w)d@R > /VR(w)dq)R

So if we can prove that

(A35)
/ Via(w)ddp > / Vi(w)dd

we are done. Define the sequence {V"}22, by V" = (Tj)" Vx. We will prove by induction
that for all n > 1

/ Va(w)ddy > / V" (w)dd
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Since the sequence {V"}>° , converges uniformly to Vj (by corollary 1.), this proves A35.
Let {h", g% }o2, be the optimal policies associated with {V"}o2, and (h", g[f) be the
optimal choices associated with V.
Step 1: Let n =1.
By definition V' = T3 V. Hence

1 1 1 1 ! 1
Viw) = (1 - E) CUH )+ 3 m(yValgh ()
w30 < (1= 5 ) QO ) + £ S0 ValafHw)

since (hl, g;,) are the minimizing choices associated with V1. Integrating with respect to ®p

and using A33 and A32 yields

/Vl(w)d% = (1—

) [ e wnanns £ S wtw) [ Vitghtwpae
) [ et wnines £ () [ vatawnave

| ) [ Valw)ivn+ = Son() [ Valgliw)avn
(A37) = [ Ve(w)d®g

Step 2: Suppose [ Vrp(w)d®gr > [ V" H(w)d®p. We want to show that the same is
true for n. By definition V" = TV, hence

1 1 / n—1/ n
Vi) = (1= ) €O + £ 3 n)v™ g )
w) < (15 ) Ct) + £ S rv )

by the same reason as in step 1. Again integrating with respect to ®z and using A33 and
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A32 we obtain

[vrare = (1=2) [t pive+ =St [V w)ave
< (1-5) [owtunarns £ Y xt) [vighuien
_ (1_ %) / Vi(w)ddp + — / V(1) dd
< (1— %) /VR(w)dq)R“'g/VR(w)dq)R
(A39) = / Vir(w)d®p

where the last inequality uses the induction hypothesis B

Proof of Theorem 7.

It is obvious that the allocation satisfies the resource constraint 33 since the efficient al-
location by construction satisfies the resource constraint, and 0y is derived from ®q. Also the
allocation satisfies the continuing participation constraints, and, by construction of ag(wo, 3o),
the budget constraint. So it remains to be shown that, for almost all (ag,vo), {ci(ao,y")} is
utility maximizing among the allocations satisfying the budget and the continuing participa-
tion constraints.

The proof is in two steps. We first show that the first order conditions 34 are sufficient
for optimality and we then show that the allocation defined above indeed satisfies the first

order conditions.

Step 1. Define

(A40) U(ao,y') = (1—PBu(clany) +Y > B w(y®ly') (1 = B)u(cs(ao, y*))

s> yo |yt

(A41) UM™(y) = (1= Buly) + D> 87 w(yly") (1 — Bulys)

s>t ys‘yt

Suppose there exist Lagrange multipliers A(ao, yo), { (a0, y*)} > 0 that jointly with {c;(ao, y")}
satisfy 34, the budget constraint 31 (at prices defined in 38) as well as the continuing partic-
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ipation constraints 32

U(ao,y') = U (ye)

together with

(A42)
pi(ao, y*) (Ulao,y") — U (y,)) = 0.

Now suppose that there is a consumption allocation for individuals of type (ag, o), {¢: (a0, y*)},

that satisfies 31 and 32, and that dominates {¢,(ag,y")}, i.e. Ulag,y0) > Ulao, o), where
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U(ag, yo) is defined analogously to A40. Then

0 < Ulag, yo) — Ulag, yo)

(A43)

= Z Zﬁ 7(y |y0 U ct(ao, )) —Uu (ct(ao,yt))}

t=0 yt|yo

(A44)

<A=8) 1> ﬂtﬂ(yﬂyo 1+
=0 yt|yo L

(A45)
Z Z B (y'lyo) |1+
t=0 y*|yo i
(A46)
:)‘(a07y0) Zzp ct Clo, )
t=0 yt|yo
(A47)
= Aao, Yo) Z Zp )éi(ao, y
=0 yt[yo
(A48)
<0

Z (10,
yTEP(Y!)
Z aOa
yTEP(Y)
Ct (Clo, yt))

-3 Y

=0 yt|yo

[u (ét(ao, yt)) —u (ct(ao, yt))}

o (ct(ao, yt)) (@(ao, y') — Ct(GOvyt))

yt—ao

a contradiction. The several steps in the argument are justified as follows: A43 is by definition,

A44 will be proved below, A45 follows from strict concavity of the utility function, A46 follows

from 34, A47 from the budget constraint and the fact that u is strictly increasing and prices

are strictly positive, and finally A48 follows from the budget constraint. Hence there does

not exist a consumption allocation {¢é(ag

{ci(ao,y")} -

,4")}, that satisfies 31 and 32, and that dominates

Now we prove that inequality A44 holds. For this we first note that for all ¢, 3¢, we
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have

(A49)
(1+ plao,y")) (Ulao, ") = Ulao, ")) = Ulan,y') = Ula,y')

If U(ag,y’) > UA(y,), then from A42 it follows that p(ag,y?) = 0, so that A49 is satisfied.
If U(ag,y') = U (y,), then Ulag,y") < Ulag,y") and p(ao,y*) > 0, and again A49 holds.

Now

U(ao,yo) — Ulao, o)
(1+ plao, o)) (mao, w0) = Ulao, o))

= (1+ p(ao,yo)) (Z Z B (y |Z/0 Ct(“Oa )) —u (ét(ao,yt))})

=0 y'lyo

= (14 plag, yo)) * (1 — B) [u (¢o(ao, yo)) — u (ci(ao, y"))]
(1 + (oo, o)) * B3 7l lyo) (U0, 5) = Ulao,3))

9

(1+ (a0, o)) * (1 — 3) [u (éoao, yo)) — u (ci(ao,y"))]

+B°> " (o) (1 + plao,yo) + (a0, ")) (Uao, y') = Ulan, "))

Y1

IN

IN

IN

Z Z 6t71-(yt|y0 (1 -+ Z ao, ) (ct(a(), yt)) —u (ét(am yt))]
“)

=0 yt|yo yTEP(y

n Z ZﬂT—H (5" +y0) (1 ) Z M(%’yr)) (U(ao,yTH) _ U(amyT—H))

yT |yo Y1+1 yTEP(yTHL)

Taking limits yields

U(ao,yo) - U(ao,yo)

< (1-p) (Z Z B (y' o) [1 + Z wlag,y :I ct(ao, yt)) —u (ct(ao,yt))])

t=0 ytlyo yTEP(Y!)

+lim Y g (" o) (1+ > u(ao,yT)) (Tt s - Uleay™)

yT+1|y0 yTGP(yT+1)
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We need to show that the last limit is nonpositive. Now note that from 34

lim Z A (™ ) | 1+ Z o (U(aoijJrl)_U(amyTJrl))

T—oo

yT+1|yo yTGP(yT+1)
li a0, %o) Z m(y"* lyo) (U(aoy?JTﬂ) — U(a, yTH))
= lim —— 2
T—oo (1 — B)RTH! e W (e (ag, yTH))

T+1)

_ )‘(a(JuyO) lim Z 7T( T+1|y0) ((1073/
(1 - ﬂ) T—=o0 YT+ yq R+ (CT-H ((10, yT+1))

. . . U T+1
because, since {c;(ao,y")} is bounded, Hmpo0 37 ri1,, % = 0. Now

T+1)

Aao,%o) lim Z m(y TH’?JO) (ao,y

1
(1—=08) T—c T u'(cpya(ag, y+t)) RTH

IN

Aao, yo) . 58T1 0)u (Cs(ao, y
(a0, ¥ Z Z y\y)(( °))

(1 _ﬁ) THOO s>TH1 ys|yT+1 CT‘H @0, yTJrl))RTJrl

Without loss of generality we can sum only over those elements for which u (¢5(ag,y®)) > 0

(it makes the expression only bigger). Then

Aao,o . ﬂSTl 0)u (Cs(ao, y

T+1 T+1
T a
(1=p) 1o §>TH1 ys|yT+1 w(era(ag, y™)) R

)\CL(),() o)U Csa07
< (15 Y HOZ Z 7(y°|yo)u (¢s(ao, y°))

s>T+1 ys ‘yT+1

where we used the facts that if we can show that {c;(ag, %)} is bounded is bounded above
by, say ¢, and that 3 < 1—1%. From the budget constraint we know that (given the conjectured

equilibrium prices)

Th_rgoz Z y|yocta0,y):0

s>T+1 ys|yT+H1

Since the utility function satisfies the INADA conditions, there exists ¢* > 0 such that
u/(¢*) = 1. By concavity u (¢(ag, y*)) < u(c*) +u/(c*) (¢(ag, y*) — ¢*) . Hence
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TIEEO Z Z m(y°yo)u Ct(amy))

s>T+1 ys |7+

= 1
S lim Z Z y ‘yO Ct aOvy) + (’U,(C*) —C*) lim E
T2 ST gt = ST
= ) — ) dim S L
= W 2
s>T+1

* * R
= (u(c)_C)R_ljll_r}I;oRTJrl

= 0

and we are done.

Step 2. We want to show that there exist Lagrange multipliers A(ag, 40), {t(ag, 3"} > 0 that,
together with the consumption allocation {c¢;(ag, y")} satisfies the first order conditions. De-

fine

M(ao,yo) =0
Mao,y0) = (1 =B’ (colao, o))

and recursively

n u! (Co(am yO))
1+ Z plao, y") = (BR) ' (cy(ag, yt))

YTyt

Note that the allocation by construction (see A7) satisfies

u’ (Ct(a(b yo))
BR (copa (a0, y+1)) —

with equality if the limited enforcement constraint is not binding in contingency 3. Hence

w(ag, ') >0, and p(ag, y**t) = 0 if the constraint is not binding. Obviously the allocation
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and multipliers satisfy 34 B
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A3. The Computational Procedure

In this subsection we describe how, for a parametric class of our economy, we compute
a constant R, policy rules h'(w,y), g/}(w,y) and a distribution over utility entitlements and
endowment shocks ,®y as described in the last section.

Our computational method is an implementation of the policy function iteration algo-
rithm proposed by Coleman (1990). For a fixed R we search for the optimal policies g, (w, y)
and h(w,y) within the class of piecewise-linear functions in w . We start by specifying a k
point grid G = {wy, ..., wx} C D and by guessing the values of a function Vj(.,.) on G X Y .
Notice that this defines a function piecewise linear in w for a fixed y. For a given w,y € G xY
we then use the first order condition
ﬁ(lR;_ﬁl)V'(gyf(w, v),y)
= if gy (w,y) > U (y)

(A50) C'(h(w,y)) <
together with the constraint

(1= Bh(w,y)+ B> w(yy)gy(w,y) =w
y'ey
to solve for solve N 41 equations®” for the N +1 optimal policies g, (w, y) and h°(w, y). Notice
that gg,(w, y) and h°(w,y) are not constrained to lie in G. Carrying out this procedure for
all w,y € G xY defines g,(.,.) and h°(.,.) that are piecewise linear functions in w.

We then use envelope condition

(R—-1)

W) = mi—)

C'(h°(w, y))

to update our guess of V' and repeat the procedure until convergence of gy, (., .), h"(.,.)

and V,/(w,y) is achieved. This yields policy functions that are piecewise linear in w.

2"Note that whenever the first order condition does not hold with equality we know that g, (w,y) = UA%(y')
and we can drop the first order condition for the specific ' as the number of unknowns is reduced by 1.
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To compute the stationary joint measure over (w, y) we proceed as follows: for a given

(w,y) we find wl, (w,y), w(w,y) and a, (w,y) such that

o w, (w,y) =max{w e Glw < g, (w,y)}
(w,y) = min{w € Glw > g, (w,y)}
o ay(w,y) solves ay (w, y)wl, (w,y) + (1 = ay (w, y))wp(w,y) = gy (w, y).

We then define the Markov transition matrix @ : (G xY) x (G xY) — [0,1] as

(Y [y (w,y) if W =wl(w,y)
Q(w,y), (W', y)) = 7W|y)(L —ay(w,y)if  w =w(w,y)

0 else

Note that the matrix () has dimension (K - N) x (K - N). We then solve the matrix

equation

=Q'®

for ®, where ® has dimension K - N and ®(w, y) gives the steady state probability of being
in state (w,y). In this way we can find, for a given R € (1, %), Dp, K (w,y) and g)i(w,y).

We then compute the excess demand function

dR)= Y (C(h*(w,y)) - y)Pr(w,y)

(w,y)EGXY

and use a Newton procedure to find R such that d(R) = 0. This completes the computation
of R,®x and an allocation induced by the policies h*(w,y) and g[}(w,y) that satisfy the
hypotheses of theorem 1.
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