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Introduction

This paper cdmputes estimates of the parameters of Friedman's [1956]
permanent income model of thé censumption function. The estimates are
obtained from.gggregate time series data for the U.S. by imposing thé
restrictions across the consumption and income processes that are implied
by the hypothesis of rational expectations in the context of the permanent
" income theory of consumption. That the hypothesis of rational expectations
is an important element of Friedman's applicétion of his theory, especially
to the cross-section data, has recently been emphasized by Lucas [1976].

To implement the rational expectations theory in the present
context requires characterizing the stochastic structure of the consumption,
income process from the point of view of extracting optimal forecasts of
future income from records of past income and consumption. For us the
important aspects of this‘characterization'happen to coincide with the
Wiener-Granger notion of "causality." According to Wiener and Granger's [1969]
definition, a process C 1is said to cause a process Y if given past values

[1972]
of ¥, past values of C help to predict future Y. A theorem of Sims/informs
us that if C fails to Granger-cause Y, then there exists a model consistent
with the data in which Y is strictly econometrically excgenous with respect
to C. This is of interest here because, as is well knbwn, in standard
Keynesian stochastic macroeconomic models, income Y is predicted not to
be exogenous with respect to consumption C. Despite this fact, this paper
devotes some space to describing #n estimator that is appropriate
in the case in which Y is strictly econometrically exogenous with respect

to C. By way of indicating that the hypothesis of exogeneity of ¥ with



respect to C is not uniformly rejected by macrceconomic theory, section

1 describes a version of Tobin's Dynamic Aggregative Model [1955] which predicts
that ¥ is exogenous with respect to C. In Tobin's modei, movements in
government purchasesleave GNP unaltered in the short run, while movements
in the money supply cause sympathetic movements in real GNP, in sharp
contrast to the Keynesian model. The differing implications of Tobin's
modgl aﬂd the Keynesian model for the Granger-causal structure of income
and consumption indicate that the econometric exogeneity tests that are
reported in section 6 are of independent macroeconomic.interest, over and
above their implications about appropriate procedures for estimating the
consumption function under rational expectations. Section 2 digresses
somewhat from the main theme of this paper by indicating how in Tobin's
model there may emefge a spurious investment accelerator, this déspite the
fact that in Tobin's model firms have no investment demand schedules.

Sections 3 and 4 describe estimation procedures for the cases
in which income is and is not exogenous, respectively, while section 5
takes a stand on the question of whether seasonally adjusted or unadjusted
data are the appropriate ones to use. Exogeneity tests are reported in
section 6 while the rational expectations restrictions are imposed and
tested in section 7,

This paper stays with Friedman's [1956] original very simple
gpecification of the consumﬁtion function, supplemented only by the
imposition of Muth's hypothesis [1961] that expectations of future income are
"rational.” Proceeding in this way is subject to the valid criticism

that it ignores the insights into the form of optimal consumption rules



provided by Merton [1970]. Further, from the viewpoint of equilibrium
thecries of the business cycle, which envision agents as confronting not
incomes but rather sequences of wages and priées at which they can supply
labor and consume (as in Lucas and Rapping [1968]), the coﬁsumption
schedule estimated in this paper is misspecified.ij Both of these
criticisms ought to be taken seriously.

Let me warn the reader in advance that the econometric findings
are not encouraging from the viewpoint of the permanent income model of
consumption. But finding confirmation of that theory ought not to be
the only reason for reading this paper. The paper describes a useful
technology for imposing rational expectations on time series models, a
technology which is applicable to a number of dynamic econometric models
of rational agents. The paper illustrates the feasibility of that
technology, and élso the strongly overidentifying nature of the restric—
tions embodied in rational expectations models. .

Thé reader not interested in the macrceconomic issues associated
with the question of the econometric exogeneity of consumption can
without loas advaﬁce to Section 3 and find a discussion of the estimation

technology.



1. Econometric Exogencity of Income

in the Consumption Function

Most macroeconomists would find unacceptable the specification

that income is strictly econometrically exogenous in the consumption

function. Indeed, ever since Haavelmo's famous paper [1943], the failure

of the consumption function to be a regression equation in the context of a

Keynesian model has been a classic example of simultaneous equations bias.

. It perhaps bears pointing out, however, that there exist interesting

macroecononic models in which Y is econometrically exogenous in the con-

sumption function.

One such model is illustrated here, though it is

certainly not the only possible example of such a model.2

Consider -.the following stochastic version of Tobin's "Dynamic

Aggregative.Model" [1955]:

(a)
(b)
(c)
(d)
(e)
(£
(8)

(h)

)

log Yt = 0 log Nt + elt; ozl

log L log P, = g* (log Ni-log Kt) + Egps

r. = h(log Nt—log Kt) + €qp

log Mt - log P, - log Yt = brt + Eht’

n .
log w, = z vy log L + €5

1=1 *
= >
Ct Bth + U, B>Q,
Y = (1~a) } &JE ¥ 0<a<l
pt j=0 ° t+j’

h>0,

(production function)

(aggregate demand schedule
for employment)

(marginal productivity for
capital)

(portfolioc balance schedule)
(exogenous money wage process)
(consumption function)

(definition of permanent
income)

(GNP identity)



Here Y is GNP, N is employment, v, the interest rate, Gt govermment

t

purchases, P, tbe price level, W, the money wage, Mt the money supply,
'and It investment ; E1r® €2p* €3¢2 €4p2 Fse2 and u, are stationary
random processes with Einite means and variances. I assume that the u
process is statistically independent of the E1s Eg» Egs Eps and €5
processes, though these latter five processes can be statistically
dependent. The notation E Y denotes the linear least squéres fore-

£t

cast of Yt based on information available at time t.

+i
Tobin's model is of substantial interest to macroeconomists
partly because it is a concrete example of a model in which “pure"
fiscal policy (e.g., a change in government expenditures or a lump sum
transfer} does not affect output in the short run, while monetary policy

does. The present version of the model is nine equations in the nine

endogenous stochastic processes Yt’ Nt’ Tis Pys Wpo Ct’ Y ., It’ and Kt

Pt
» and the £, _'s. As it

it

happens, equations (a), (b), (c), (d), and (e) form a recursive block

with exogenous driving processes Mt’ Gt’ u,
that each period determines Yt, rt, P> W and Nt given values of the
exogenous Mt and the predetermined Kt (predetermined in a fashion to be
explained shortly). Given Yt s0 determined, equations (f) and (g)
determine Ct’ while (h) determines It’ which through equatiom ()
determines Kt+1'

'To Indicate in more detail how (a)-(e) determine Y, r; P, W,

and N, substitute (a) and (b) into (d) to get the modified "LM" curve
(LM) br, = log M_ - log we + (g-0) log N, - g log K_ + €ap = E4e?

which, given Mt’ Wes Epps and €4 depicts the (rt,Nt) locus that assures

portfolio balance, assuming that (a) and (b) are satisfied. Equation (c)



is a second curve in the (r,N) plane, one along which the demand for the

existing stock of capital equals the supply. Both {c) and the (LM)
3/

curve are upward sloping curves in the (r,N) plane. Stability~ requires
that the LM curve be the steeper, which is the condition that E%Q > h.

Substituting (LM) into (c} and solving for log Nt gives the reduced form
. &8¢ = - -
b(h 5 )log N, log M, log W, + (bh-g)log K,

+ (ezt—e4t—be3t).

The assumption of stabilit& guarantees that the coefficient on log Nt is
positive, so that employment varies directly with ﬁt’ inversely with
wt.ﬁ/ Because the sign of (bh-g) is ambiguous, so is the effect of
capital on employment and also, given (a), on output. Increases in
log Kt h;ve two contrary effects on employment. On the one hand, an
increase in Kt’ gi&en Nt’ calls for a higher real wage via (b) and,
given the w, fixed by (e), a lower p,. This lowers the portfolio-
balancing interest rate and is>expansionary (see equation LM). On the
other hand, an increase in Kt lowers the marginal product of capital
given Nt’ and therefore lowers the capital-market clearing interest
rate, wﬁich i1s contractionary (see equation ¢), The two effects are
opposing:él

In this mo&el, Y . will be strictly econometrically exogenous

pt
in the consumption schedule under two conditions.éj First, the u,.
process must, as I have assumed, be statistically independent of the €
processes. Second, we must have the condition (bh-g) = 0, so that
capital does not appear in the reduced form for employment, the two
opposing effects of the preceding paragraph just offsetting one another.

With these two conditions met, (a)~(3j} is an example of a model in

which Y t is strictly econometrically exogenous in the consumption function.



It is worth remarking that were we to add the side condition
that u, be serially independent, then even without our second condition,
the consumption function (f) ig a regression equation; that is, it
satisfies the population least squares orthogonality condition EutYps = 0
for all t > s. The force of our second condition is to guarantee EutYpS =0

that u be sgerially uncorrelated,

for s > t. Under the side condition/ estimation of the consumption
function (f) by variants of least squares methods (methods modified to

extract proxies for the unobservable th) would yield consistent estimates

even without our sgsecond condition.

6bviously, a priori séttiné doﬁn of_ﬁ;dels likéigggvégbvé one
(or like the standard Keynesian model) cannot settle the issue of whether
th is properly regarded as econometrically exogenous in the consumption
function. All that the model in this section is intended to suggest is
that testing for econometric exogeneity in the‘consumption—income process

is an interesting enterprise from the perspective of alternative macro-

econcmic models.



2. A Spuricus Accelerator in Tebin's Dynamic

Aggregative Model

The preceding model is one in which a spurious investment
accelerator emerges in the data, despite the fact that the model is one
in which firms have no investment demand schedules. To illustrate

things simply, I assume the special version of the model in the preceding

section,

(k) C.=—2—7% +u . 0<A<1
t  1-2L 't t ’

(my = Y =¢_+T1I

£ t t

where Eut-YS = 0 for all t and s, so that ¥ is strictly econometrically

exogenous in (k) Asgsume that Y and u are covariance stationary stochastic

processes. Now solve (k) and (m) for I, to get
_ {1-B)-AL
(n) Te = 7100 e T %

Equation (n) expresses I as a one-sided distribuﬁed lag of Y with a
disturbance -ut that is orthogonal to the entire Y process. That is, Y
is strictly econometrically exogenous in (k). If (1-B)=XA, then (n)
approximately assumes the form of the distributed lag accelerator. To
see this more generally, the model (m) implies that the spectrum of Y is

related to the cross-spectra of Y with € and I, respectively, by
SY(w) = SCY(W) + SIY(w) .

Dividing by the spectrum of ¥ gives

SIY(W) -SCY(W)

© s "t E
SY(W) SY(W)



If the gain | SCY(w) / SY(W) l of consumption on income has the charac-
teristic permanent income consumption function form with gain generally
falling with increases in angular frequency w, it follows from (o) that
the gain of investment on inc&me will display the characteristic (distri~
buted lag) accelerator form with the gain of investment on income generally
rising with increases in angular fregquency. Indeed, as (o) shows, the
gain of investment on income is in a sense the reflection of the gain of
consumption on.income.

I; would obviously be a mistake to interpret (n) as a structural
investment demand'schedule reflecting firms' behavior. Rather, it is a
saving schedule réflecting choices of consumers. Tﬁé present illustration
is in effect an extreme example of the fact thét least séuares estimates
of investment schedules of the form (n) in the context of most macro-
economic models typically represent a confounding of firms' investment
demand with households' saving behavior.

Of course, it is possible to set up examples of macroeconomic
models in which the dual of the above error occurs; that is, models in
which there is a true structural investment demand schedule, and in which
the projection of consumption on income looks like a consumption function

despite its truly being a mere reflection of the investment schedule..



3. Estimation of the Consumption Function under

Rational Expectations with Income Exogenous

Suppose the consumptibn function is

4

(1) ~ C_ = BY +u

t pt t
(2) Y, = (1l-a)[Y, +aBE Y +a2EY + ... ]

bt . t t t+1 £ e+2

(1-a) E jE Y Q<a<l
O & BTy o
=0

where o is a discount factor, Eth+j is the linear least squares forecast
of Yt+j conditional on information assumed to be known at time t, and ut is

a stationary random process that obeys Eu Ys=0 for all t and s, which is

t

equivalent with the condition that Ys is strictly econometrically exogenous

in (l). Subsequently, I will assume that information at time t consists of

so that E x

Ct'ct—l""’yt'Yt—l""' & Ex Ct,Ct_l,...,Y 4 pre-. where E

t’ Tt

is the linear least squares projection operator.7 The assumption that Yt

is econometrically exogenous in (1) implies that,8 given lagged values of Yt'

lagged values of C do not help predict Y Therefore, so far as concerns

€
the covariance structure of the (C,Y) process, it involves no further

restrictions to assume that Eth+j is simply the regression (projection)

of Yt+j on current and past Yt’s, since even if current and lagged C's

were included in the conditioning set, they would bear zero coefficients.
By the linearity of the projection operator Et' {2) can be

10
rearranged to read

- (1a i
(3) Y = (1 u)Et V3 Yt+j .

rt

Il 8

3=0
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Suppose that

Yt is a linearly regular stationary stochastic process with covariance

generating function

(4) R (2) = o%b(z)b(z 1)

oo

where b(z) = I bjzj, 02>0. Any linearly regular (strictly linearly indeter-
j=0

ministic) stochastic process has a covariance-generating function that can
be represented in the form (4). By a famous formula of Wiener and

‘ 11 ’ R .

Kolmogorov, the z-transform of the coefficients in the projection of

Y, . against Y _, ¥ ... is given by

45 R
1 -3
blzy 12 B,
. o o
where [ ], means ignore all negative powers of z, i.e., | Z h zj] = }h z3 .
+ 7+ J
j=—m j=0
Then using (3), th can be written
(5) th = h(L)Y,
' o (1-a) 1
(6) h(z) = b(2) (- 0 b(z)],

)

(1-az

In practice, b(z}) could be assumed to be a ratio of finite order polyncmials
in z so that Y would be a moving average, autoregressive process. Under

such assumptions, by using the method of partial fractions, convenient

l-a 1 .
5z and | =) b(z)]+ in terms of the

{(1-az )

closed form expressions for

roots of (b(z)=0) can be obtained. 1In this way, for fixed ¢ and given

b(z), a closed form expression for h(z) can be obtained.

Rather than pursue those calculations here, I propose to exhibit

the following more compact calculations. I assume temporarily that {Yt}
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is a covariance stationary stochastic process, though the calculations

below permit limited departures from stationarity. From Wold's decompo-
L. 12 : .

sition theorem, it follows that Yt can be represented uniquely as the

sum of two orthogonal stochastic processes

= +
e = ¥ a4

It

i ; . . s x s
where EYt ds 0 for all t and s. Here dt is a linearly deterministic

stochastic process, which can be predicted arbitrarily well, arbitrarily
far into the future from knowledge of past d's or past Yt's alone; Ytl is
‘a linearly indeterministic process which generally can't be predicted

perfectly from its own past. Wold's decomposition theorem states that

s

i ' . . i
Yt always has a moving average representation Yt = Z djat—j where
=0 -,
[2s]

J 4.°<w and a, = ¥, - EY_|Y
j t

£ & A bivariate version of
j=0

t—l'Yt—2' cee .
Wold's theorem asserts the existence of a gimilar 6rthogonal decomposition
into deterministic and indeterministic processes for bivariate jointly
covariance stationary stochastic processes.

The model formed by (1) and (2) imposes restrictions across
both the deterministic and the indeterministic part of the C and Y
processes. In the remainder of this section, I shall focus on character-
izing the restrictions imposed on the indeterministic parts-only. I shall
assume that the strictly deterministic parts have been subtracted off;
certain.ocf the estimates reported in section 7 utilize as data residuals
from regressions on a trend and seasonal dummies in an effprt to approximate
the purely indeterministic parts of the C and Y processes. I shall defer

until section 4 the task of characterizing the restrictions that (1) and (2)

impose across the deterministic parts of the (Ct,Yt) process.
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I now assume that Yt is strictly linearly indeterministic (or
that the deterministic parts have been subtracted). I further restrict things

. t
by supposing that Yt is an n h order Markov process

= cen +
{7) Yt alyt_l + + 6nyt_n €,

2. 2
where € is a covariance stationary stochastic process with E€t=0, EEt=0€ and

e St i k4 mmic e dmain o - mmw ke m3 b e ewe 4 ——

where Ee = D for all s>0. Wrife-(7) iﬁ_hatrii«form as

t t-s
= L+
(&) Ko T B¥ gy TN
! [
where : Yt Et.\
X T Ye-1 L ©
0
!
LYt-n+lJ L 0 J ’
and [ 5, 8, - . 8
1 0 . . o
A= o 1 0 . o
Lo o . 1 o

We can recover Yt from xt by

Yt = dxt

where & = [1, 0, ..., 0} , a {1lxn) row vector.

From (8) we have

t+1 Tt t+1
X 42 = a%x + An + 7N
the = A x, t+1 £+2
. .1
xt+j = alx + aJ n + ...+ n

£+
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[ ) ) . [ iy -
Since by assumption Ent+j x/ 0 for all j>0 (because Eet+th 0 for

all j>d), we have

‘= ]
txt+j A Xt .

(9 E
If the eigenvalues of A are distinct, A can be expressed as

(10) A = php T

where the columns of the nxn matrix P are the eigewvectors of A and A is

a diagonal matrix of eigénvalués of A. Using (10), we can write
» o .
(11) al = padp7t

Thus we have

= paipL
Etxt+j = PA°P X,
and in particuiar'
(12) Eth+j = dEtxt+j
= dPAjP—lx

t

To form permanent income we take the appropriate weighted sum of {(12)

oo
+

‘="_ ‘]
th .(1 a).E o Eth+j
=0
- (l—a)dP( y a3A3)5>'1xt
b
(13) Yy = (1-0)dPH pix
pt . o t

where H is the diagonal matrix
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1
o . . . o \
l-aAl
1
H = 0 .
o l-aA2 .
: 1
© ) ) : l-ai
n

where the Aj's are the eigenvalues of A. I am assuming that IuAi|<1 for
. o

+

all i, in order to ' guarantee that the infinite seriés Z ajlij converges
. 3=0

to l/{l—uii). For o<l, this condition is weaker than the condition
lAi|<1 for all i, which is the condition required if {Yt} is to be a
Qtationary stochastic process.‘ It is possible for permanent income (2)
to be a well-defined convérgent series even if income is nonstationary

in the sense that max Ihil>l. Provided a<l, permanent income is thus

potentially well defined by (2) even im the face of a Stochastically
upward-~trending rate of income. Equation (13) is a convenient closed

form for th in terms of the eigenvalues and eigenvectors of A (i.e.

in terms of the roots of luﬁlz “aa —ann = 0), which can easily be

implemented on a computer.
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In summary, we have the structure

(1) C =BY . +u

t pt t
- {8) T
Yt #‘dxt
(13) Y = {L-a)apH P i
pt a0t

We thus have the observable‘consumptioh function,

(14) ‘ Ct B{1 a)dPHaP X, + u,

The force of‘thé rational expectations hypothesis and the restrictions
imposed on the error'proééss u is to iﬁpose (highly nonlinear) restrictions
| across the exogenous Y.process {8) and the opserﬁable consumption function
'(14). The most 5traightforﬁérd methéd of testing the model is to‘ |
estimate (8) aﬂd_(14) simultaneously using the method of maximum likelihood,

estimating first subject to the cross-equation constraints imposed by (8)



le

and (14) and then with those constraints relaxed. A likelihood

ratio test can be computed to evaluate the validity of the constraints.
I propose the following algorithm for estimating the vector

autogregression for the (Y,C) process under the restrictibns imﬁlied by

rational expectations, an algorithm applicable when Y is strictly econo-

‘ metfically exogenous with respect to C. Suppose thét ut follows‘the

second order Markov process

4 =P 1u

u
e = Pil%en TP TG

t

where Et is a serially uncorrelated process with mean zero. I assune
that Et is orthogonal to the entire Y process. (It will be clear how to

t . . .
proceed where u, follows an n h order Markov process.) Quasi-differencing

(li then gives
C

= 0Cq “PC 2 =B - - |
t 17t-1 2 -2 (Yo = Py¥pea P Yn, ol T &,

Since Et—lgtz 0, projecting both sides of the above equation on things

. dated t-1 and earlier gives
(15) Bee1® 7 P1C-1 7 P82 T BIE, ;¥p, = 03¥proy ~ Pa¥pe_z!

But we know that

= (1-a)dpr{ Al }P—lx

Eio1¥pt T-a), £-1
1 -1

Yopol = (1-a)dp [1_aki} P x, g
1 -1

Yppop = (1-edP {1—axi} Boxio
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Substituting these into equation (15) gives

X,
_ i -1
B b T P3C g T P6, + Bllma)dP {1—ali} Poxia
1 -1
—plB(l-a)dP {l—uki} 1
1, -1
-p,B(l-a)dp {l—uli} PUx_,
(16) E, .C, =p.C + p.C + B(l-u}dpP {Ai_pl} P_l
=17t Pitee1 T P2tz 1-an, £=1
1 -1
-p,B(1-a)dP {l—ali} Px

Equation (16) gives the vector autoregression for C in terms of the p‘'s

that characterize the Markov process for u and the §'s that characterize

the autoregression for Yt and that determine A = PAP_l.

If we had assumed that ut followed the sth-order Markov process

ce. ¥ pu + £

= +
Uy AUy T PN, s t-s t

where Et—lgt = 0 , then (16) would be

Et-lct = plct--l + p2Ct—2 AEEERE psct-s

Ai—pl} o1
l—ali t-1

+ B(l-a)dP {

1, -1
l-ali} P leyxe o

- B(1-a)dP { toX ot ... b x, )

Proceeding with our second order example, we can now write the

vector autoregression for (Yt,Ct) as
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Y, =8.Y/~ + ... + 86

Y
t 1 t-1 n t~-n ¥ ayt
A,-R
i1 -1
= + + - — P
€, =0y t 0, , +Bl-a)dP {1-aki} X g
1 -1
~pyB(l-a)ar {1—uAi} PoXe A
and where ayt = £
: 3 ‘ = = / i
where the innovations (ayt, act) obey Et-layt Et—lact 0/ Assuming that

(ayt, act) is jointly normally distributed, given a sample over t=1,...,T,

maximum likelihood estimates can be obtained by minimizing |V| where

Lya2 Liaa
T t=1 vt T £=1 Yyt ct
VvV =
T T
1 1 2
— L4 & =1 &
T t=1 vyt ct Tt=l ct

The minimization is carried out over the parameters 61, cver Gn Py

' le p
B, and a. The log likelihood function at the maximum likelihood parameter

estimates can be shown to be (see Wilson [1973])
log L = -»mT log 21 - &%T (log |V| + m)

where m is the number of variables being modelled (in our case 2, C and Y)l
To test the model, it is appropriate to estimate the vector

autoregression twice: once subject to the constraints in (16); another

time unconstrained. Let log Lu be the value of the log likelihood uncon-

strained, while log Lr is its value under the constraints. Then

-2 (log Lr - log Lu)

chi-square with q degrees of freedom,
is asymptotically distributed as / = where g is the number of restrictions



19
imposed. Equivalently, we can express the likelihood ratio as
T {log lVrl - log ]Vul}

where Vr and Vu are the values of V under the restriction and unrestricted,

respectively.

Notice.that the parameters B and & are estimated only.from the
systematic part of the vector autoregression of the (C,Y) process. In
particular, information about the contemporaneous covariance matrix of

the innovations a is not used in estimating the parameters B and o.

ct'ayt _
This estimator takes no stand on how the contemporanecus covariance
between a.. and ayt is to be accounted for. In Granger's language, this
estimator permits "instantaneous feedback" between C and Y in either
direction, but ignores it in estimating B and a«. Notice, however, that

Simg' theorems assure us that if C fails to Granger-cause Y, then there

exists a model of the following form that is consistent with the data:

(*) C, = L h¥ ;s 6

i=0 t

LY

-

£ ,Z §i¥es ¥ Ve
i=1

where .
/Eitws = 0 for all t and g. In this model, all contemporaneous covariance

between the innovations ang and ayt is swept into the first equation, in
our case, the consumption function. A maximum likelihood estimator of B
and a could be based on this model provided that the instantaneous feed-

back between Y and C is partitioned a priori, as it is, for example, by

the model of section 1. In that model, all instantaneous feedback flows

from Y to C through the consumption function, thereby in effect identifying
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the first eguation of (*) as the consumption function. A maximum likelihood
estimator along these lines uses more information than is incorporated

by the estimator descxribed above.14 However, at this point I prefer an
estimator that does not, for example, attribute all contemporanecus
covariance between a £ and a. to the workings of the consumption function.
The estimator that I have recommended above does permit instantaneous
causality to flow from C to ¥, a feature that would characterize a class

of macroeconomic models in which C still fails to Granger-cause Y.l5 In
summary, the maximum likelihood estimator that estimates B and a by
imposing the restrictions (16) requires weaker conditions on the covariance
between ut and disgosable income than are imposed, for example, by the

. s 16
macroeconometric model of section 2.
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4, Estimation of the Consumption Function under

Rational Expectations with Income Endogenous

a. Purely Indeterministic Process

Now return to the structure (1) and (2), and drop the assumpticn

is orthogonal to u at all ¢t and s. This change in assumption

that Yt

permits income to be econometrically endogenous and renders the preceding
estimation procedures invalid, i.e. the estimators for B and o proposed
above will not in general be statistically consistent when Y fails to be
econometrically exogenous in (1). In this section I propose an estimator
that, under special assumptions, is statistically consistént even where
Y is not econometrically exogenous in (1). As will be shown, in obtaining
consistent estimateé, it is important to control for serial correlation in
u, so long as our information is confined to observations on the (C,¥)
precess alone. I begin by working things out for the case in which the
(Ct,Yt) process isg purely linearly indeterministic. Later in the section,
it is assumed that the (Ct,Yt) process contains both deterministic and
indeterministic parts.

Combining (1) with (2) gives

oo . .
C, = Bfl—a)[jZOGJFJJEth +u

or

1
17) Ct = B(l-a) Toar Eth +uy

i i = licatio
where F is the operator defined by FEtYt+k Eth+k+l’ so that application

of F leaves the conditioning set unchanged while shifting the time index
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on the random variable operated upon forward by one periocd. Operating

on both sides of (17) by the operator (1-aF) gives

(18) ct = aE:tct+1 + B(l-a)Yt + u, - aEtut+1

Now suppose that ut follows the fifst.order Markov process
(19) u, = pu + w

where wt is serially uncorrelated and orthogonal to lagged ¥'s and C's.

from both sides of (18) and noting that E u

£-1 Y+ ~ PU

Subtracting pC "

gives

C_-pC_ . =da(EC - pE )

t_lCt) + B(l—u)(Yt - pY

t-1

+ — pr— pa—"
Q ap)ut p(1 ap)ut_l

Projecting both sides of the above equation on information dated t-1 and

earlier gives

{20) E {C { )

e-1'C¢ = PCey) = oF

- pC.) + B(1-0)E__, (¥, - oY

t t-1 Ct+l t-1

Equation {(20) is a restriction across the systematic part of the vector

autoregression of the (Ct*pc ,Yt—th_l) process. To characterize

t-1

. t
the restriction, let the systematic part of the n h-order vector auto-

, _ 17
regression of (Ct_pct*l’yt_pyt—l) = (ct,yt) be
= P + + +...+d
(21) Ei1G = G¥eg T Cp¥p * S¥eon ¥ S t 4%
= + + b +. ..+ b
Beo¥e = 3¥pq ¥ 3V F e T A Y P1% gy T Py%en

. 18
Application of the "chain rule of forecasting” gives

c
n t-n

c
n t-n
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(22) E + ... +

= c.E +
e-1%¢+1 © C1e-1¥e T Co¥i “nYt-n+l

+ ... +dy

+
d t-1 n” t-n+l

1Et-1ct + dzc

Substituting from (21) into (22) and rearranging gives

(23) Et—lct+l = (clal+c2+dlcl)yt_1 + (d1a2+c3+dlc2)yt_2 f e

*+ (clan—l+cn+dlcn—l)yt—n+l * (clan+dlcn)yt-n

2
+ (e)b,+d,"+d e, . + (e b t+d d+d.)c

1 12 73 "t-2

* (o _j+did _+d) N

1 n-l+ 1l™n Ct—n+1 + (Clbn+dldn)ct—

Using (21) and (23), the restrictions implied by (20} become

(24) ¢y = B(l—u)al + d(dlal+c2+dlcl)
c, = S(l-u)a2 + a(cla2+c3+d1c2)
cn—l = B(l“m)an--l + a(clan—1+cn+dlch—l)
c, = B(l-a)an + a(clan+dlcn)
d, = B{l-a)b, + a(c, b, +d. 2+d.)
17 @)Dy T ale;bytdy 4,

d, = B(-l—u.)b2 + a(clb2+dld2+d3)

d.d d_)

= - +
d B(1 D!)bn— n—l+ 1 n-1 n

1 + a(clb

dn = B(l-—a)bn + q(clbn+dldn)
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These (2n) equations determine al,...,an,bl,...,bn as functions of B,ua,
cl,...,cn.dl,...,dn. For example, notice that the first equation determines

a, as a function of B, «a, ¢ys C,r and d The equations (24) embody the

1-
restrictions that equations (1), (2) and the assumption on the error
process (19) impose on the systematic part of the nth order vector auto-
regression for (c.,y).-

Write the vector autoregression for (ct,yt) as

+ ... +cy + ... + 4

(25) Cp T S ¥y nYeen * 9%

o] + a
n t-n ct

= + ... e
Ye alYt—l + anyt-n + blct-l + + bnctun + ayt

where (act'ayt) are disturbances orthogonal to Yt—l""'yt-n'ct—l"'"ct—n

Let a, = (

N act'ayt) - Given a sample extending over a period t=1,...,T,

maximum likelihood estimates of (25) under the restrictions (24) are

obtained by minimizing

T
= (L
vl B .T tzl a,al

with respect to the free parameters B,a,cl,...,cn,dl,...,dn. To test the
model, (25) can be estimated unconstrained and then the appropriate
likelihood ratio statistic can be constructed. Maximum likelihood esti-
mation of (25) subject to no constraints amounts to least squares

estimation of each eguation separately.

b. Deterministic Components Present

So far, my calculations have assumed that consumption and income

are purely linearly indeterministic processes, or else that the model (1)
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and (2) applies cnly to the indeterministic parts of consumption and
income. I now relax this assumption and assume instead that the (yt,ct)

process is governed by

= . +
(26) Sy C1¥e 1 + ... ¥ n + dlct_1 + ... ¥+ dnct__n + n, + a
Y
= + ... * + + ...+ +
yt alyt-l anyt—n blct-l bnct—n nt ayt
where (a a _.) are orthogonal to c n ¢ and ¥
ct’ Pyt g Yt_ll £=1" ---ryt_n:ct_nr t ' ﬂt ’

and where ntc and nty are deterministic components that are given by
c __.c c c c c
(27) n,o=Y t + 61 Si4 + 62 Sop + 53 Sap + 64 Sae
Yy _ Y b4 Y Y
noo= Yyt + 61 S)e + 52 Sop + 53 s3t-+54 Syt .

Here the seascnal dummy s equals unity every fourth quarter and zerc in

1t

the intervening three quarters, and 52t+l=slt' s3t+l=52t' S4t+l=s3t and

= '] -+ . =
slt+l S4t' Notice that Slt SZt+53t+S4t 1 for all t. I assume that agents
b4

are able to forecast N, and ntc perfectly. Then from the chain rule of

forecasting we have

¥y

+ b +
nt-n T Mt

+ ... tay + Db

= .
c,la nYt-n © “1%-1

Beo1%e1 1¥e-1

+ C + ... + Cc ¥

2¥ -1

(o]
+ dl{c nct__n + nt }

1¥e-1
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Equation (20) then places the following restriction across the n 's:

t
ntc é B(l4a)nty + q[clnty + dlntc'+ nt+lc]
or
[l—adllntc = tB(l-a)+ucl]ntY + unt+lc
Substituting from (27) gives
{l-adl)[th + 6lcslt + dzcszt + 63cs3t + 64Cs4t] =
[8-a) + ac) 1yt + 8, ¥s, + 8,78, + 6.Ys,, + 6%,
+ a(yct + Yc(s +5,. +5_ +s. .} + & “g + & cs
1t "2t "3t T4t 1 1t+l ‘2 2t+1
+ 63cs3t+1 + 54c54t+1) )

Noting that Slt+1=84t' 52t+l=slt' s3t+l:s2t' s4t+1=83t’ we deduce the

following restrictions:

(28) (1-ad)y" = [BQ-w) + ac 1v¥ + oy®

(1-ad )6, = [B(1-a) + ac 16,V + a(v® + 8,9

(1-0d )8, = [B(1-a) +ac, 16,Y + a(r® + 6.5

(l—adl)63c = [R(1-a) + ac1]63y + a(Yc + 64c)

(1-aal)a4? = [B-0) +ac 16,7 +aty® + 6,
These five equations determine Yy, 61Y, GZY, GBY, an& 54Y as functions of
B, a, YC, 61c, 62c, 63c, 64C, cq and dl' It is readily verified thaF the
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restrictions (24) continue to hold across the a, b, ¢, and d's. Thus,
equations (24) and (28) summarize the restrictions that the theory imposes
on the parameters of the vector autoregression (26). Once again, the
strategy is to estimate (26) by maximum likelihood, first subject to

(24) and (28), then unconstrained, and to compute the pertinent likelihood

ratio statistic.
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5. Appropriate Data

The preceding sections have indicaied the restrictions that
the rational expectations hypothesis imposes across the autoregressive
representation of the (C,Y) process. Evidently these restrictions are
applicable to the unadulterated seasonally unadjusted daf:a.l9 Even in the
presenqe of a linearly indeterministic seasonal in Y, the model (1)-(2)
is supposed to hold. The restrictions in general are predicted not to
hold for seasonally adjusted data.ZDThus, let seasonally adjusted
consumption and income, Cta and Y a' respectively, be related to Ct and

t

Yt by

n

£(ric,

T o

g(L)Yt

where £(L) and g(L) are two-sided seasonal adjustment filters. Wallis
[1974] has argued that actual seasonal adjustment procedures are well
approximated by the application of such linear filters. The cross-

covariance generating matrix of the adjusted data is given by

— — — .

52 (z) Szy(z) f(z)f(z_l)sc(z) f(z)g(z-l)scy(z)
s? (z)  s%(z) (z) £z )s (z) glz)g(z 1)s. (=)
yz y g ye Y

-

where Sc(z), Sy(z), and Scy(Z) are, respectively, the covariance generating
functions of C and Y, and the cross-covariance generating function between

C and Y. Restrictions that hold across elements of the c¢ross—-covariance
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generating function of the unadjusted data will not in general hold across
elements of the cross-covariance generating function for the left-hand side.
To take aﬁ example, with Y exogenous, Br the unadjusted data the generating
function for the coefficients in the projection of Ct on the Y process,
Scy(z)/s (z) is one-sided and has common parameters with the covariance-

generating function of Y, Sy(z) = czb(z)b(z_l), as indicated in section 3.

The projection of C: cn the Yi brocess has coefficients with generating

S I(z)

function g%z%——ngzy- which in general is two-sided unless f(z) = g(z),
Y

and in any event does not obey the section 3 restrictions with the para-
meters of the covariance generating Ffunction of the adjusted Y,

(z) = 2g(z)glz bz bz 1)

Below i analyze Both seésbnally édjusted and unadjusted data.
This is done partly because other investigators have usually used seasonally

adjusted data, and partly because many readers may find the arguments of

Sims [1976] compelling.
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6. Exogeneity Tests

For the post-war U.S. for both seésonally'adjusted and unadjusted data
I have defined the followiug variables:
'Yl';-aﬁP - capital consumption - state gn&:lﬁbaimzéx receipts
- Pederal tax receipts + transfers
C = consumption of du;ables + consumption of nondurables
+ . consumption of serviées
; = residential construction + nonrésidential fixed investment
+ change in business inventories
Y, =C+ I
I=1I+ consumption of durables
D_ = .975 (consumption of durables) + .95 D,y

C, = C. - .9875 (consumption of durables) + .025 D,

The data are quarterly and "real." The seasonélly adjusted data are
deflated by implicit price deflators and are measured in 1972 dollars.
The seasonally unadjusted data were deflated by quarterly averages of

the consumer price index and are measured in 1967 dollars. The sources

of the data are given in the appendix.

The disposable income concept Y2 differs from fhe usual dispo-

sable income concept Yl by in effect subtracting from Yl the rate of

real government deficit. To the extent that the government deficit is

financed by issuing bonds and to the extent that agents fully discount

anticipated future taxes levied to service the debt, Y2 is the appropriate

disposable income concept.22

Table 1 reports the results of testing for Granger causality

e &

over the period 194