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ABSTRACT

The Economics of QWERTY suggests that historical accidents can trap economies in inefficient
equilibria. This paper suggests that such accidents do not have the force that proponents claim.
The paper presents a mechanism that may unravel a locational advantage caused by an historical
accident. In the model, there are agglomeration benefits from concentrating industry in a particular
location because it enables a large variety of local suppliers to emerge. Firms differ by the extent
to which they purchase from local suppliers. Low-tier firms purchase little; high-tier firms purchase
more. When the industry migrates, the lowest-tier products move first.
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1. Introduction

The possibility of multiple equilibria under increasing returns has received much attention
recently. Work by Arthur (1989), Krugman (1991a), Farrell and Saloner (1985), and David (1985)
emphasizes that in such situations equilibrium outcomes may be determined by accidents of history.
For example, Krugman (1991a) discusses several sources of increasing returns from concentrating the
production of a particular industry in a particular location. With these agglomeration economies,
there may be multiple equilibria that differ according to where the industry concentrates. Krugman
traces the current concentration of the carpet industry in Dalton, Georgia, to an historical accident
in 1895 in which a teenaged girl named Catherine Evans made a tufted bedspread for a gift. To
take another example, David (1985) argues that there are network externalities to the widespread
adoption of a standard keyboard. David attributes the emergence of the QWERTY keyboard
standard to an historical accident. This example is so frequently cited in the literature that Krugman
calls this literature “The Economies of QWERTY.”

A recurring theme of this literature is that the equilibrium selected by the historical accident
may turn out to be an inefficient equilibrium. For example, in the case of the QWERTY keyboard,
it is argued that there exists an alternative keyboard with a superior layout of the keys. However,
according to the argument, people continue to use the QWERTY keyboard because everyone else
uses it.}

Can historical accidents have such force? If for some reason Salt Lake City becomes a more
natural place to produce carpets than Dalton, Georgia, is it possible that the industry will remain in
Georgia because of a bedspread made 100 years ago? This paper suggests that historical accidents
may have less force than what the previous literature suggests. This paper develops a theory of
how economic agents initially situated in an inferior location or standard might migrate to the
superior location or standard. The departure from the previous literature is to consider a model
where economic agents differ in the weight they place on being near other agents. Some agents
value agglomeration benefits a great deal; others value them little.

In the model, there are agglomeration benefits that arise from concentrating industry in
a particular location because concentration enables a large variety of local specialized suppliers
to emerge at the location. The model follows the recent literature (e.g., Abdel-Rahman (1988),
Krugman (1991b)) and uses the Spence (1976) and Dixit and Stiglitz (1977) model of monopolistic
competition to model the emergence of local specialized suppliers. In the previous literature, e.g.,

Krugman (1991b), there is a single type of manufactured final good. In this paper, there is a



continuum of fypes of final goods that vary in their production requirement for the output of local
specialized suppliers. Low-tier products have a negligible requirement for such output. High-tier
products have a substantial requirement. In Section 2, I argue that this continuum of product types
can be interpreted as a continuum of quality types. High quality goods are more sophisticated and
tend to have a greater requirement for the output of local specialized suppliers than low quality
goods.

In the model, there are two locations, the North and South. The South has a natural
advantage for production in the industry, due, perhaps, to a superior climate. Because of some
historical accident, the industry is initially in the North. The paper addresses two questions. Does
the industry eventually migrate to the South? If so, how does the industry migrate?

If a migration takes place, this is how it goes. Producers of the lowest quality products; i.e.,
the producers that place little weight on access to local suppliers, immediately move South to take
advantage of the better climate. As this bottom end of the quality spectrum builds up in the South,
a network of local suppliers begins to emerge to cater to the local production in the South. The
emergence of this supplier network in the South attracts products formerly produced in the North
with a medium requirement for access to local suppliers. As the range of products produced in the
South expands, the supplier base in the South grows. But as the supplier base grows, the South
becomes more attractive to higher-end products, and the range of products produced in the South
expands even more. Ultimately, through this sequence of events, the entire industry migrates to the
South, despite the initial pull of agglomeration economies in the North.

If the natural advantage of the South is very small, it is possible in this model for part of
the industry to get stuck in the North. The goods with the lowest production requirements for
the output of specialized suppliers will always move South. However, since these products make
little use of specialized suppliers, the supplier network that emerges in the South to cater to these
products may be too small to attract the next tier of production. Hence, the migration path I have
described above might get cut off in the middle.

While it is possible for part of the industry to get stuck in the North, this is less likely to
happen in my model with a continuum of product types than in the standard model with a single
product type. I compare my model with a version of the standard model with the same average level
of agglomeration economies. When agglomeration economies matter, the condition that determines
when the industry necessarily migrates to the South is substantially weaker in my model than in

the standard model. The comparison of the two models is most dramatic in the special case where



intermediate inputs are completely nontradeable across locations. In this case, in the standard
model, there always exists a bad equilibrium with all production in the North. (If everyone else is in
the North, a producer will not unilaterally move to the South because it will not be able to obtain
intermediate inputs). In contrast, in this same case in the continuum model, for a wide range of
parameters this bad equilibrium can be unraveled; i.e., for these parameters, the industry necessarily
moves to the South in the long run.

This paper is similar in spirit to Rauch (1993).2 He focuses on the role industrial park
developers play in coordinating a migration. In his model, the developer is a large agent who takes
actions that can effect what happens to the entire economy. In my model, all agents are small; i.e.,
no agent’s action has an effect on the economy as a whole. If the possibility of a developer were
introduced into my model, the industry would be even less likely to get stuck in the North.

The question of how the industry migrates is as important as the question of whether the
industry migrates. I show that along the migration path, each new cohort of entrants to the South
pulls up the average intensity of demand for the output of specialized suppliers compared to the
demand of preexisting firms. The paper then provides a new theory for why a developing region
will begin producing unsophisticated, low quality goods and then gradually over time expand its
product set to include sophisticated, high quality goods. This pattern is a common feature of
economic development and industrialization. In Section 2, I discuss the case of the migration of the
cotton textile industry from New England to the South. The South began producing coarse, low
quality goods, but eventually the production of even the highest quality goods shifted to the South.
An analogous pattern has been observed in developing economies in Asia.® The usual explanation
for this phenomenon is that the production of high-end products requires workers with high skills
and, as an economy develops, its skill base increases, as in Stokey (1991). There also may be
learning-by-doing where the experience of producing a particular product on the quality ladder may
confer benefits for producing the next product on the ladder, as in Stokey (1988). I do not want
to discount the importance of these explanations. Rather, I want to emphasize that the forces I
highlight in this paper can also give rise to this kind of phenomena and may play a contributing
role.

The rest of the paper is organized as follows. Section 2 briefly discusses the migration of the
cotton textile industry. The purpose of this section is to relate features of the model to some real-
world counterparts. Sections 3 and 4 describe and analyze a static version of the model. The static

model is easier to explain than the dynamic model, and much of what is learned about the static



model applies to the dynamic model. Section 5 puts the static model in an overlapping generations

framework and makes the model dynamic. Section 6 concludes.

2. The Cotton Textile Example

One example of an industry where the forces I highlight in this paper may be important is in
the cotton textile industry. The American cotton textile industry was heavily concentrated in New
England in the nineteenth century. Over the period 1880 to 1930, most of this industry migrated
to the Piedmont region of the South. One source of puzzlement to economic historians is why the
migration was so drawn out, given obvious advantages of the South in labor costs and access to raw
cotton.? In the face of clear-cut advantages of the South, why were people still building new textile
mills in New England in 19007

One factor that is not emphasized in the literature is the role agglomeration economies

in New England may have played in slowing the migration.’

The remarkable tendency of this
industry to be geographically concentrated, whether we look across centuries or across continents,
suggests that agglomeration economies may be important in this industry. For example, in the
nineteenth century, the vast majority of this industry was within 50 miles of Providence, Rhode
Island; now the vast majority is in North and South Carolina. The scale effect that allows for
the emergence of specialized suppliers is a plausible source of agglomeration benefits in the cotton
textile industry. In this industry, there are a large number of stages of production, e.g., spinning,
weaving, knitting, dyeing, bleaching, printing, the manufacture of textile equipment, and so forth.
Often times these stages are undertaken by specialized firms, e.g., bleacheries, dyehouses, print
houses, specialized equipment manufacturers, and so forth.® The advantages of being located near
these specialized suppliers include saving on transportation costs and facilitating coordination of
a complicated production process. This advantage is captured in the model with a transportation
cost parameter. Moreover, there are advantages to being located near different kinds of specialized
suppliers. Sometimes a mill might want to have its woven cloth printed and other times dyed. In the
first case, it is useful to be near a printing house and in the second case a dyehouse. This advantage
is captured in the model with a preference-for-variety parameter. There existed a vast network of
specialized suppliers in New England in the nineteenth century. In contrast, in the South in 1890
there were no bleacheries, dyehouses, or print houses.” The existence of this network in the North,
and the absence of this network in the South, may help explain why people were still building new

textile mills in New England in 1900.



One of the well-known facts about the migration of the cotton textile industry is that the
migration proceeded in stages. The production of the lowest quality prodﬁcts shifted to the South
first, and over time, successively higher quality products were produced in the South.® Not so well
appreciated is the fact that the low quality products that moved South first were products for which
access to specialized suppliers was not that important. The first product made in the South was
coarse cloth that did not go through finishing stages such as dyeing or printing and that was used
for clothing for poor farm workers. Over the course of time, the products produced in the South
expanded to include higher quality products that required the various finishing stages of bleaching,
dyeing, and printing, and so forth. A network of specialized suppliers gradually emerged in the
South to undertake these activities.

The connection between the quality of a good and the importance of access to specialized
suppliers is something that holds beyond the cotton textile industry. High quality products tend
to be unstandardized and undergo rapid change compared with low quality products. For example,
high quality clothing tends to be fashion-oriented. Access to local, specialized suppliers is impor-
tant for the production of unstandardized goods because of the flexibility it affords in a changing
environment.® For example, in the garment industry in New York, if a producer of a high-fashion
dress suddenly has a need for a large red button, it can be readily procured from a local supplier.
Analogously, if a manufacturer of high-tech equipment in Silicon Valley suddenly has a need for a

specialized chip or a specialized piece of software, it can be readily procured from a local supplier.

3. The Static Model
The first part of this section describes a static version of the model. The second part defines

equilibrium in the static model.

A. Description of the Model

There is a continuum of final-good product types indexed by 8 on the interval [0, 5]. The
product types differ in how important intermediate inputs are in the production process. In partic-
ular, to produce one unit of 3-type product requires 3 units of a composite intermediate input.

There are two possible locations for production, the North and the South. A key feature of
the model is that the prices of the composite intermediate input in general differ across the two
locations, because these prices depend upon the scale of production at the two locations. Let vy be
the price of one unit of the composite in the North, and let vg be the price in the South.

A second key feature of the model is that the South has a natural advantage for production



in this industry. Assume some other inputs such as labor or capital are required to produce one unit
of a B-type product in addition to the 8 units of the composite intermediate already mentioned.
Assume that the cost of these other inputs is ay dollars in the North and ag dollars in the South.
The costs, ay and ag, of these other inputs are held fixed in the analysis. Assume that ay > as,
so that these other inputs cost more in the North than the South. This difference could arise if the
weather is less favorable in the North than the South requiring more units of labor in the North to
produce one unit of the final good. Alternatively, it could be due to higher wages in the North.

The discussion above implies that the total cost to produce one unit of a 3-type product in
the North is ex(8) = Bun + an, the cost of 8 units of the composite input plus the ay dollars for
the additional inputs. Analogously, cs(8) = Bvs + as.

To keep the analysis simple, I assume that there is an inelastic demand for a measure Q@ units
of each final-good S in the economy. The transportation cost to ship final goods between the two
locations is zero. Hence in equilibrium, the price of a final-good g is independent of the location of
production of the good.

It remains to describe the composite intermediate input sector. The intermediate input
discussed above is a composite of a continuum of differentiated inputs indexed by s € [0, 0).
Let m(s) denote the quantity of differentiated input s employs. The production function for the

composite intermediate is
o0 1 M
1) M= U m(s)l—tds} .
0

This production function has a constant elasticity of substitution equal to ;’j—l If 1 were equal to
one, the specialized products would be perfect substitutes, and final-good producers would have no
preference for variety. Assume that g > 1, which implies that the elasticity is less than infinity and
greater than one.’® The bigger is u, the stronger the preference for variety.

To produce a particular specialized-input s, a specialized factory must be set up in either
the North or the South. The cost of setting up this factory in either location is 6 dollars.!! The
marginal cost to produce one more unit of a specialized input is constant at 1 dollar. Hence, to
produce m(s) units of input, s costs 4+ m(s) dollars.

Specialized intermediate inputs can be shipped between the two locations at a cost. These
costs are of the iceberg variety. For any given amount of an input shipped, a fraction 7 € (0, 1} of
the input is lost in the process. This transportation cost setup is analogous to Krugman (1991Db).

In the model, all agents are small. The final-good producers all behave competitively. The



producer of a particular specialized-input s has a monopoly over this input. However, there is free
entry into the production of specialized inputs, so the equilibrium concepf; is that of monopolistic
competition. The location decisions of final-good producers and of specialized-input producers are
all made simultaneously.

It is easy to reinterpret this model as a model of two alternative technology standards.
The specialized-inputs s could be reinterpreted as products, such as software, that complement
the technology standard. The parameter 3 in this reinterpretation indicates how much weight a
particular consumer places on being able to obtain these complementary products. For example,
a low-( consumer may write his or her own software, and therefore, may not place much weight
on the variety of software available for a technology. The parameter 7 determines how well the
software written for one standard can be used for the other technology standard. If 7 = 1, the
software written for one standard is useless for the other standard. If 7 = 0, the software for the two
standards is interchangeable. It should be noted that this is a model of unsponsored technologies.
Using the terminology of Arthur (1989, p. 117), “Sponsored technologies are proprietary and capable
of being priced and strategically manipulated; unsponsored technologies are generic and not open to
manipulation and pricing.” In other words, there is no analog of Microsoft controlling one technology

and Apple controlling the other technology.

B. Definition of Equilibrium

To define an equilibrium some additional notation is needed. Let Qn(8) and Qg(B) be the
quantity of final-good 3 produced in the North and South, respectively. Let ny and ng denote the
number (or, formally, the measure) of different specialized inputs produced at each location. Let
pn(s) be the delivered price of one unit of specialized-input s in the North. The price depends upon
the location because of transportation costs. If a particular specialized input s is not available in the
North at any price, then py(s) = co. Analogously, I define pg(s) to be the price of specialized-input
s in the South.

The price vy for a unit of the composite intermediate in the North is determined by calcu-
lating the minimum cost way to construct one unit of the composite, given the production function
(1) and given the price py(s) for each specialized-input s in the North. The price vg is calculated
in the analogous way.

An equilibrium is an allocation that satisfies the following conditions. First, final-good pro-

ducers choose to locate in the least-cost location. Formally, if Qn(8) > 0 (so that product S8 is



produced in the North), then cy(8) < cs(8). Analogously, if Qs(8) > 0, then cs(8) < cn(B).
Second, producers of specialized inputs choose their locations and their piices to maximize profit.
Third, there is free entry, so producers of specialized inputs must earn zero profit. Fourth, the total

output of product 3 must equal the amount of the inelastic demand for the product in the economy,

Qn(B) +Qs(B) = Q-

4. Equilibrium in the Static Model

Analysis of equilibrium is facilitated by making a few observations. As I will discuss below, the
prices vy and vg of the composite at the two locations depend upon the demand for the composite
at the two locations. If the demands are exactly the same at the two locations, then the prices are
the same, vy = vg. If demand is higher in the North, then the price is lower in the North, vy < vs,
and so on.

It is clear that there is always an equilibrium in which all final-good producers and all
specialized-input suppliers locate in the South. To see this, note that if all production is in the
South, then the composite is cheaper in the South, vs < vy. Since the cost of the other inputs is
also lower in the South, as < ay, the total cost of production in the South is lower for each S-type
product, i.e., as + Bvs < ay + Bun. Therefore, all final-good producers prefer to locate South.
Suppliers of specialized inputs also prefer to locate in the South to avoid the transportation cost 7.
Hence, it is an equilibrium for all production to locate in the South.

The key question considered in this section is whether or not there exists an equilibrium
with production in the North. If there is such an equilibrium, it must be the case that more than
half of the demand for the composite intermediate is in the North. In this case, the composite is
cheaper in the North, vy < vg. This will offset to some degree the cost advantage of the South for
other inputs, as < ay. The weight placed on the lower composite cost in the North will depend
upon the 8 type of the product. A product with 8 = 0 places no weight on the lower price of the
composite in the North, so such a product will always locate in the South. It is clear that if there is
an equilibrium with any production in the North, there will be some cutoff level of B such that (1)
all 8 < ﬁ strictly prefer to locate in the South, (2) all 8 > (3 strictly prefer to locate in the North,
and (3) the cutoff product B is indifferent between the two locations.

This discussion suggests a two-step procedure for determining whether or not an equilibrium
exists with production in the North. The first step is to take as given that § < 3 locate South

and 8 > 3 locate North and to determine the composite prices at each location consistent with



equilibrium of monopolistic competition in the specialized input sector. The second step is to
determine the set of 3 values that are consistent with the equilibrium location decisions of final-

good producers.

A. Step 1: Taking the Cutoff 8 as Given

Now take as given that for final goods with § < {3, all production is in the South Qs =Q,
@~ = 0) and for final goods with 8 > 8, all production is in the North (Qn = @, Qs = 0). This
subsection solves for the equilibrium of monopolistic competition in the intermediate input market.
The treatment will be brief, since this analysis is standard in the literature.

Each specialized-input producer will have a monopoly over its particular variety. Given the
form of the production function, each specialized-input supplier faces a constant elasticity of demand
equal to ;ﬁ—l— Hence, each producer will set a price equal to a constant markup p over marginal
cost. Suppose a particular intermediate input s’ is produced by a specialized-input supplier located
in the North. The marginal cost of delivering one unit of the input in the North is one dollar. Hence,
pn(s") = p. The marginal cost to deliver one unit in the South is higher because of the transportation
cost. For every unit shipped, a fraction (1 —7) survives the trip. Hence, the marginal cost to deliver

1 1

one unit to the South is ;== dollars, so the price is ps(s’) = = w.12 By analogous reasoning,

if a specialized input s” is produced in the South, the delivered price of the good in the South is
ps(s”) = g, and the delivered price of the good in the North is py(s”) = (—13—15“'

Now take as given that there are a measure ny different specialized inputs produced in the
North and ng different specialized inputs produced in the South. I will derive two equilibrium
conditions that ny and ng must solve. The total number of different specialized inputs produced
in the economy is ny + ng. Given the preference for variety built into the production function
(1), each final-good producer will employ all the different specialized inputs in the production of
the composite intermediate input. The relative usage of specialized inputs at a particular location
will, of course, depend upon the relative price of the specialized inputs at the location. Consider a
final-good producer located in the North. Such a producer faces a price of y for specialized inputs
produced in the North and a price of G—ET),U, for specialized inputs produced in the South. Let myn

and mys solve the following problem:

. ! !
,min - pnymyy + HT—)/,msmNs
MyNs MNs T



subject to

rd LH
1= nympy +nsmyg
That is, myny and mpyg are the input levels of specialized inputs originating, in the North and the
South, respectively, that minimize the cost of constructing one unit of the composite commodity
in the North. Let vy be the value of the minimized cost to construct one unit of the composite

material input in the North. It is straightforward to show that this minimum cost is

oo <nN T s (7 ¢)>—ﬁ>-m_l).

The minimum cost vy decreases in ny and ng because of the preference for variety. Analogous

notation can be defined for the problem of constructing one unit of the composite intermediate in
the South in the cost-minimizing way.
It is straightforward to calculate the demand for delivered units of the composite intermediate

at the two locations. These equal

B . 2 ~2
(3 My = ﬁQdﬂ=Q[%—%}
B — ﬂz
us = [ pras=q|%
0

To see this, recall there is an inelastic demand in the economy of @ for each B-type product.
Furthermore, to produce one unit of 3-type product, there is a fixed requirement of 8 units of the
composite intermediate. Hence, the demand for the composite intermediate arising from production
of final-good B is Q. The total demand My for the composite in the North is obtained by
integrating over the demand of the product types that locate there, i.e., 3 from B to 8. Analogously,
total demand in the South is obtained by integrating over the demand of the product types that
locate there, 8 from 0 to B.

Now consider the problem of a specialized-input supplier. The optimal prices, taking entry
as given, have been discussed above. So it remains to determine the entry condition. Let z) denote

the quantity of sales of a specialized-input supplier that locates in the North,

zy =mynMy + (l—-—mSNMs-

— 7—)
The first and second terms are the sales to final-good producers located, in the North and the

South, respectively. Note that sales to the latter include the portion of the good that dissipates in
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transportation costs. The profit of a specialized-input supplier in the North is
TN = uIN — TN — 0.

The first term is revenue (the price is p, and the quantity sold is zx). The second term subtracts
variable cost, and the third term subtracts the fixed cost. In an analogous way, one can calculate
the quantity of sales z5 and the profit 75 of a specialized-input supplier that locates in the South.

Taking the cutoff B as given, and taking as given the variety of products ny and ng produced
at each location, we can calculate the variables vy and vg, zn and zg, mn and wg. In an equilibrium
of monopolistic competition, it must be that if there is production of specialized inputs at a particular
location, then with free entry, profit at that location must be zero. If there is no production at a

location, then profit at the location must be nonpositive. Formally,

(4 m; = 0,ifn;>0,j€{N,S}

S 0, lfT'LJ=O

Straightforward calculations can be used to prove the following lemma.
Lemma 1. For each cutoff 3, there exist unique equilibriﬁm levels of ng, (B) and nes(B) which solve
the zero-profit conditions (4).

Figure 1 shows how the variety levels nf; and ng vary with B in the monopolistic competition
equilibrium. Assuming 7 < 1, there exists a point 3_ > 0, such that if 3 < B_, no specialized-input
suppliers locate in the South, ng = 0. In this range of 3, somewhat paradoxically the variety of
producers in the North ny actually increases as 8 increases, and production is shifted to the South.
This is an artifact of the twin assumptions of iceberg transportation costs and inelastic demand for
delivered units of the composite. As production is shifted to the South for 3 in this range, the total
production of the composite in the economy increases because more of the composite dissipates
in transportation costs. This increase in total production enables ny to increase in this range.
For B above B_, there is sufficient final-good production in the South to support the existence of
specialized-input suppliers in the South. As 3 increases in this range, the variety of suppliers ng in
the South increases, while the variety of suppliers ny in the North decreases. When J is increased
to 3= %E, it is straightforward to calculate (using the formulas given in (3)) that total demand for
the composite is exactly the same at the two locations, My = Mgs. At this point, product variety
is exactly the same at the two locations, ny = ng. As B is increased even further, eventually a

point B+ < B is reached, such that for all 8 > ﬁ, all suppliers locate in the South. As mentioned
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above, this discussion assumes that 7 < 1. If 7 = 1, then transportation of intermediate inputs
is impossible. In this case, for any Be (0,1), the equilibrium levels of an(B) and ng(B) are both

positive.

L

B. Step 2: Equilibrium Levels of B

The previous subsection solves for the equilibrium of the economy and takes as given that
final goods 8 < B locate production in the South, while 8 > 3 locate in the North. This subsection
determines what levels of ,B are consistent with optimal location decisions of final-good producers.

I begin by introducing some new notation. As discussed in the previous subsection, a given
cutoff level B determines unique ny(3) and ng(B) levels which pin down the composite prices
un(B) and vs(B) at each location. Recall that a S-type product requires 8 units of the composite
intermediate input. Define A(B) to be the difference in the cost between the South and the North
of acquiring the composite intermediate inputs required for a B good, given that 8 below 8 locate
in the South and 3 above ,fi locate in the North; i.e.,

AB) =B [vs(B) - on(B)] -

This difference in cost will play a important role in the >analysis. To see why, suppose that there
exists a 3, such that A(8) = anx — as. In this case, given that final-good production is distributed
according to B, the difference in the composite cost between the South and the North for a ﬁ-type
producer exactly offsets the North’s disadvantage in the cost of the other inputs. A B-type product
is then indifferent between the North and the South, while 8 > B strictly prefer the North, and
B < [ strictly prefer the South. This cutoff is then an equilibrium.

To determine when an equilibrium exists with production in the North, I need to determine
how A(B) varies with 3. The following lemma lists several properties of A(B) that are useful here.
Lemma 2.

Case 1. Suppose either (a) 7 < 1 or (b) 7 =1 and p < 2. Then (1) limy_, A(B) = 0. (2) There
exists a point B >0, such that if 8 < B*, A(p) is strictly increasing, and if 8 > g, A(ﬁ) is strictly
decreasing.

Case 2. Suppose 7 = 1 and p > 2. Then limg_, A(B) = oo, and A(p) is strictly decreasing over
the entire range of B.

Lemma 2 distinguishes between two cases. In Case 1, either some transportation is possible
(r < 1), or if it is not, then u < 2. In this case, A(B) goes to zero as 3 goes to zero. This is obvious

in the case where 7 < 1 because here the difference in the composite price between the two locations
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is finite (equal to the cost of transportation), and the weight ,B on this finite difference goes to zero.
This is not obvious for the case where transportation is impossible (1 = 1) because the cost of the
composite vs(ﬁ) in the South goes to infinity when ﬁ goes to zero, in this case. However, for the
case of pu < 2, it turns out that ﬂvs(ﬁ), the price of the composite weighted by B, goes to zero, so
A(B) goes to zero.

In Case 1, A(B) is first increasing in ﬁ up to a point B*, and then it is decreasing. The slope
of A(B) is
(5) £=[US—UN]+5 PrEPT)

For small 3, the composite intermediate is more expensive in the South, so the first term is positive.

dA " [dvs va]

Increasing 3 puts more weight on the composite cost disadvantage of the South, and this tends to
increase A. The second term is negative. This term reflects the fact that as 8 is increased and more
production is shifted to the South, the composite cost disadvantage in the South decreases. For
small 3, there is little weight on this negative second term, and the net effect of an increase in B is
positive. For large ,B, the weight on the negative second term is large and the first term is negative.
Hence, for large 3, the slope (5) is negative. )

Now consider Case 2. Here transportation is impossible, and p is relatively large. In this
case, Bus(B) goes to infinity as B goes to zero. In this case, the slope (5) is strictly decreasing over
the entire range of 8.

For Case 1, define A* to equal A(B*). For Case 2, set A* = co. The variable A* is

the maximum value of the cost difference A(,B) over all 3. Whether or not an equilibrium with
production in the North exists depends on the relationship between A* and the difference in the
other input costs ay — ag at the two locations.
Proposition 1. Assume either 7 <lorpu <2 Ifay —ag> A*, the unique equilibrium is for all
production in the industry to be in the South. If ay —ag < A*, there are three equilibria: one with
all production in the South and two equilibria with interior values of B in which some production is
in the North.

The proof of this result is illustrated in Figure 2. This illustrates what the A(8) function
looks like in Case 1 (i.e., either 7 < 1 or 7 =1 and p < 2). Consider first the case where the South’s
natural advantage ay — ag is bigger than A*. This case is labeled “large ay —as” in the figure. As
can be seen in the figure, the unique equilibrium is at point A where all production is in the South,

ie., 3= 7. For any B, the value of the natural advantage exceeds any composite cost advantage of
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the North; i.e.,I apny — ag is greater than A= B[vs — upN].

Now consider a second case where the natural advantage of the South is less than A*. This
case is labeled “small ay —ag” in the figure. Here there are three equilibria. There is an equilibrium
at A where all production is in the South. There are also equilibria at B and C. Consider point B.
Here the cutoff is 3 B, Where the natural advantage of the South is exactly equal to A(B g) Type
B p is indifferent between the two locations. Since higher 3 weight the price of intermediate inputs
more, product-types 8 > ﬁ p strictly prefer the North, and product-types 8 < B g strictly prefer the

South, so ) g is an equilibrium. By similar reasoning, point C is also an equilibrium. !

C. Discussion of the Critical Natural Advantage
I conclude this section by discussing when the condition for uniqueness holds. For this

purpose, it is useful to define a normalized value of the natural advantage of the South,

Normalized Natural Advantage = a%;—g_

3Vs (ﬁ)
It equals the absolute difference in costs of other inputs oy — ag, divided by expenditure on the
composite for the average B-type product (when all productien is in the South, i.e., when B =0).
Given this normalization, I restate Proposition 1 as follows. There exists a unique equilibrium in

which all production is in the South if and only if
(6) Normalized Natural Advantage > Critical Level,

where the critical level is defined by
(7)  Critical Level = = A .
Sun(0)

It turns out that the critical level (7) depends only on the transportation cost 7 and the

preference-for-variety parameter u and is independent of all the remaining parameters of the model.
Table 1 presents the critical levels for various values of 7 and pu. For each given value of 7 and
i, there exists a unique equilibrium with all production in the South if and only if the normalized
natural advantage exceeds the critical value in the table.

Consider first the case where the transportation cost is zero, 7 = 0. In this case, there are no
agglomeration economies, and the critical level is zero. For any arbitrarily small natural advantage
of the South, the unique outcome is for the whole industry to be in the South.

When 7 is greater than zero, the critical value is above zero. In this case, when the natural

advantage of the South is sufficiently small, there exist equilibria with production in the North.
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The table illustrates that the cutoff increases with the transportation cost 7 and the preference for
variety u.14 That is, when agglomeration economies become more importaht, it is more likely that
an equilibrium with some production in the North exists.

To place these values in perspective, I consider the following exercise. Consider an alternative
version of the model in which there is only a single product type instead of a continuum of product
types. I refer to this alternative model as the single-type model and the original model as the

continuum model. Suppose that in the single-type model, the entire distribution is concentrated at l—;,
the midpoint of the distribution in the continuum model. Suppose that all the other parameters are
the same for the two models, e.g., 7 and . The total demand and average demand for intermediate
inputs is exactly the same in the two models. The models differ in the distribution of this demand
across products.

Analogous to the continuum model, for the single-type model it is possible to determine a
critical level of the normalized natural advantage. If the normalized natural advantage is above this
level, there is a unique equilibrium with production in the South. If it is below the critical level,
then an equilibrium with production in the North exists. It turns out that the critical level for the
single-type case depends upon 7 but is independent of u. The last column of Table 1 presents the
critical values for various levels of 7.

Suppose first that 7 = 1.00, so transportation is impossible. For the single-type model,
the critical value of the normalized natural advantage is infinity. No matter how big the natural
advantage of the South, there is always an equilibrium with production in the North. It is easy to
see why. If all production is in the North, there is no production of intermediate inputs in the South.
If a final-good producer were to locate in the South, the producer would face a composite price that
was infinitely high. This would outweigh any finite advantage of the South. This can be contrasted
with the continuum model. For u < 2 (which holds if the elasticity of substitution is greater than 2),
the critical values are finite. For example, consider the case of p = 1.1 (an elasticity of substitution
of 11). The critical value in this case is .14. This means that if the natural advantage of the South
is at least 14 percent of the average expenditures on the composite, the unique equilibrium is for the
entire industry to be located in the South. If one were to take the same economy and concentrate
the distribution of product types at the center -723:, an equilibrium would exist with production in the
North for any natural advantage of the South.

Now consider the case where 7 is less than one but still large; e.g., 7 = .80. The critical values

in the single-type case are substantially greater than the corresponding values in the continuum
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case for the same 7. Thus, the range of natural advantage under which an equilibrium exists with
production in the North is much smaller in the continuum model than in the single-type case.
Finally, consider the case where 7 is small but not zero; e.g., 7 = .20. With transportation
costs close to zero, agglomeration economies are not important. The critical values are small for
both the continuum model as well as the single-type model. Note that for such low values of 7,
the critical value in the single-type model can actually be slightly less than the critical value in the

continuum model for some values of p.

5. The Dynamic Model

This section makes the analysis dynamic by considering an overlapping-generations model of
final-good producers. It assumes that as of period 0, all previous generations of final-good producers
have located in the North. This section asks whether or not the entire industry eventually migrates
to the South, and if so, how the industry migrates. The section finds that if the natural advantage
of the South exceeds the critical level from the static model, then eventually all final-good producers
locate in the South. Furthermore, the migration proceeds in a particular way. Each new entering
cohort of final-good producers locating in the South pulls up the average intensity of demand for the
composite relative to the demand of preexisting producers in the South. Initially, newly entering
high-3 producers may choose to locate in the North, analogous to the people who built new textile
mills in New England in 1900. But eventually all new entrants locate in the North.

Suppose that time is discrete, ¢ € {0,1,2,...,T}. For technical reasons, I assume that the
horizon is finite; i.e., T < 0o. However, I assume that T is so large that the choice of T has no effect
on what happens early on in the economy.

In each period, a new generation of final-good producers enters the economy. Each gener-
ation lives for h periods. In each generation, there are a measure _%_ of final-good producers. In
each generation, producers vary by B-type product, and this product type is uniformly distributed
between 0 and 8. Adding up over the h generations, in any given period there is a total measure of
Q= h% final-good producers in the economy, the same as in the static model just considered.

The specialized-input sector is the same as in the static model. A specialized-input supplier
must pay a fixed cost of § dollars to set up a factory. The factory only lasts for one period. If a
specialized-input supplier desires to produce in the following period, the supplier must pay the fixed
cost of 6 dollars again.

The thing that distinguishes this model from the static model is that when a new generation of

16



final-good producers enters, these producers make a once-and-for-all location decision. If a producer
chooses to locate in the North in the first period of his or her life, the producer must remain in the
North over all the remaining h — 1 periods of his or her life. Assume that when making the location
decision, a new producer uses a discount factor § € [0, 1] to discount future profits.

Assume that as of the start of period 0, all the h — 1 previous generations that are still alive
have all located in the North. I will not try to model how such an initial state ever came about.
Perhaps previous to period 0, the North actually had a natural advantage over the South. Perhaps
the South did not even exist previous to period 0.

I should note an obvious asymmetry here between the treatment of final-good producers
and specialized-input suppliers. On one hand, the location choices of final-good producers have
consequences h — 1 periods into the future. On the other hand, the location choices of intermediate-
input suppliers are made every period. In a more realistic model, the location choices of intermediate-
input suppliers would also have some degree of permanence. I rule this out to make the analysis
tractable, but I do not think the analysis would be qualitatively different if it where added in.

The analysis of this dynamic model is similar to the analysis of the static model. In any
given period t, there will be some distribution of final-good production that will determine the
distribution of the demand My and Mg, for the composite intermediate at the two locations in
period ¢. Given My ; and Ms;, we can determine the prices vy, and vs,; of the composite from the
monopolistic-competition equilibrium of the specialized-input market.

Final-good producers take as given the sequence of future composite prices at the two loca-
tions when making their location choice. The discounted cost to a final-good producer of type 8,
born at time £, of locating in the North equals the discounted value of the cost of other inputs, plus

the discounted cost of 8 units of the composite in each period,
(8) CN,t(ﬁ) = [1 +6+..+ 5h_1] ay+ 3 ['UN,t + 5'UN,t+l + ...+ 5n-l'UN7t+h_1] .

The discounted cost cg¢(8) of locating in the South is defined in a similar way. Final-good producers
choose their location to minimize discounted cost. It is immediate from the form of the discounted
cost (8) that in any equilibrium of this economy there is a cutoff rule Bf in each period t, such
that all new entrants with 8 < B: locate in the South, and all new entrants with 8 > ,Bf locate
in the North. It is straightforward to show that an equilibrium always exists in this economy (the
appendix contains a proof). The equilibrium is not always unique, as will be clear in an example

below.
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The next result provides a characterization of equilibria in this economy. For this character-
ization, I assume that the natural advantage of the South exceeds the critical level defined in the

analysis of the static model; i.e.,
Assumption 1. ay —ag > A*.

The analysis is complicated, and in order to make some headway, I consider only two special cases.

The first case is where generations live two periods, but the discount factor is general; i.e.,
Special Case 1: h=2and 6§ € [0, 1].

The second case is where the number h of generations is arbitrary, but the discount factor is zero;

ie.,
Special Case 2: h > 2 and 6§ = 0.

I suspect the result holds for the intermediate case of general h and 6, but I have not been able to
prove it. To state the result, I have to introduce some additional notation. Let a; be the average
cutoff in period ¢ of the h — 1 previous generations that are still around at the beginning of period
t

Bt Biat By
- h—1 '

)

Proposition 2. Suppose Assumption 1 holds. Assume either Special Case 1 or 2 applies. (1) There
exists a k > 0 that is independent of T, such that in any equilibrium if B: < B, then ,Bf > ar + k.
(2) Let T > EJhk;ll There exists a ¢ < T, such that if ¢ > ¢, then 3; = 3.

The result holds when the natural advantage of the South exceeds the critical level. In this
case, there exists a constant & > 0, such that in any period where there is entry in the North (i.e.,
,Bi < B), the equilibrium cutoff ,B: exceeds the average cutoff of the preexisting generations by the
amount of this constant k. The easiest way to state the result is for the case of h = 2, because in this
case, the average cutoff of the preexisting generations is just the last-period cutoff; i.e., a; = Bt_l.
The result implies that for the case of h = 2, the cutoff Bt strictly increases over time, in increments
of at least k, until it hits 8, where it stays for all subsequent periods.

It is useful to illustrate the equilibrium path with a numerical example. Suppose that p = 1.5
and 7 = .8. Suppose that the Normalized Natural Advantage is .81. This exceeds the critical level

of .76 for this u and this 7(see Table 1), so all production is in the South in the unique equilibrium
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of the static Iﬁodel. Suppose that for the dynamic model, final-good producers live four periods
(h = 4) and that the discount factor is § = .1. '

Table 2 illustrates two possible equilibrium paths. The first line in the table reports the
levels of the variables in period t = —1. As mentioned above, I assume that prior to period 0, it
is impossible for new entrants to locate in the South, so all new entrants locate in the North. The
total demand in the economy for delivered units of the composite intermediate is normalized to
one. Of this total demand in any given period, .75 is fixed by the location decisions of the three
preexisting generations of entrants. Table 2 provides the distribution of the demand from preexisting
generations across the two locations. In period ¢ = —1, all of this demand is in the North. Table 2
provides the cutoff B, which determines where the new entrants locate. In period t = —1, the cutoff
is B_; = 0; i.e, all B € [0,1] locate in the North (they have no other choice). Table 2 reports the
measure ny ¢ and ng; of specialized-input suppliers at each location. These are normalized so that
when all demand for the composite is concentrated at one location, the equilibrium variety is 1.000.
This is what happens in period ¢ = —1. Table 2 also reports the distribution of the total output
across the two locations. In period t = —1, all output is in the North.

For this given set of the model’s parameters, all production is in the South in the long-run
in any equilibrium. In this example, eventually all new entrants locate in the South. Consider the
path referred to as the Slow- Transition Path. In period 20 and all subsequent periods, the cutoff ﬁt
is at the maximum level of one; i.e., all new entrants locate in the South beginning in period 20. For
this set of the model’s parameters, this is the slowest possible transition; i.e., there does not exist
an equilibrium with any entry in the North in period 20 or thereafter. The situation is different
in the single-type model with the same parameters, i.e., in the model where average agglomeration
economies are the same, but demand is g for each final good rather than being distributed on
the interval [0,5]. In this alternative model, there exists an equilibrium in which the industry is
permanently stuck in the North; i.e., all producers locate in the North in every period.!®

Consider period 0 in the Slow-Transition Path. In this period, the equilibrium cutoff is
Bo = .102. Hence, about 10 percent of all new entrants locate in the South in the initial period.
Since entry represents one fourth of all output, the South’s share of period-0 total output is about
2.5 percent. The demand for the composite in the South in period 0 is too small to support any
specialized-input suppliers, so all of the composite used in the South in period 0 is imported. The
scarcity of specialized suppliers in the South explains why entrants with 8 > .102 chose to locate

in the North. This entry in the North is analogous to building new textile mills in New England in
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1880.16

Now consider the subsequent periods in the Slow-Transition Path. Period 1 begins with a
small demand for intermediate inputs already in the South equal to .003. The equilibrium cutoff
in period 1 is Bl = .103, slightly higher than the previous cutoff. Going into the next period, the
preexisting demand for intermediate inputs in the South increases a little, and the cutoff increases a
little. This process repeats itself, and production in the South gradually builds up. Specialized-input
suppliers begin to emerge in the South. By period 19, the cutoff has grown to 319 = .501, so about
half of the entrants locate in the South and half locate in the North. In this period, 35 percent
of final-good output is in the South. By period 19, the South has established an specialized-input
industry with a measure .235 of producers compared with .922 in the North. In period 20, the cutoff
shifts up to Bzo = 1, and all entrants locate in the South. However, there still is production in the
North because of the location decisions of previous entrants. In period 23, the long-run outcome is
attained with all production in the South.

In the Fast- Transition Path, period 2 is the last period with entry in the North. Given these
parameters, this is the fastest transition path; i.e., there does not exist an equilibrium without
any entry in the North in period 2. The Fast-Transition Path is qualitatively similar to the Slow-

Transition Path in that the cutoff increases over time. The difference is that things move faster.

6. Conclusion

This paper develops a theory of how industries migrate when agglomeration economies are
important. It determines when an industry will not get stuck at the wrong location. It determines
the features of the migration path.

One avenue for future research is to use this model to help determine how important ag-
glomeration economies are in an industry. It is sometimes difficult to estimate the importance of
agglomeration economies by looking at a particular incidence of agglomeration, e.g., the cotton tex-
tile industry in New England in the nineteenth century. By looking at an industry on the move,
we might be able to learn some things about agglomeration economies that are not apparent when
the industry is sitting still. If agglomeration economies are important, the migration might proceed
in certain ways; e.g., certain kinds of products may move first. If agglomeration econormies are not
important, the migration may proceed in other ways. These different implications may enable one

to identify the importance of agglomeration economies.
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Notes

1For an alternative view, see Leibowitz and Margolis (1990).

2See also Leibowitz and Margolis (1995).

3See, for example, Young (1992).

4Wright (1981, p. 605) writes, “Why did it take fifty years for the South to triumph? With
hourly wage rates 30 to 50 percent below Northern levels as early as 1880, as Lars Sandberg has
written, the Southern advantage ‘now seems so obvious that the principal task of economic historians
is to explain why it did not happen sooner.’”

®Hekman (1980) has emphasized that agglomeration economies may have been an important
reason for why the industry initially concentrated in New England.

61n the time period under consideration, spinning and weaving would often be done in the same
establishment. But the finishing stages of printing, dyeing and bleaching were often undertaken in
an establishment different from the one spinning the yarn. The 1890 Census reported that of plain
cloth printed in that year, 80 percent was printed in specialized printing houses and only 20 percent
in cotton mills that wove cloth. Analogously, specialized dyehouses accounted for 91 percent of the
woven fabric that was dyed, and specialized bleacheries accounted for 87 percent of the woven fabric
that was bleached (U.S. Bureau of the Census, 1895, p. 182).

"See U.S. Bureau of the Census (1895, p. 232).

8For example, Table IV of Wright (1981) shows how the average yarn number (an indicator
of yarn quality) monotonically increased over the period 1880 to 1920.

9See Lichtenberg (1960 p. 58) and Hall (1959, p. 12) for discussions of this point. More
recently, there have been many discussions of the importance of what has been called flexible spe-
cialization, e.g., Piore and Sabel (1984).

10This rules out the case of o < 0. It is standard in the literature to ignore this case since it
implies inelastic demands which are inconsistent with an equilibrium of monopolistic competition.

11 An alternative assumption is that the cost of producing intermediate inputs is lower in the
South for the same reason that other costs are lower in the South. For example, it could be the
ratios of fixed cost and the marginal costs in the South, to their counterparts in the North, are the
same as the ratio of as to ay. The algebra is more tedious for this case, but the basic results do
not change.

12Note that there is no arbitrage opportunity here because pg(s’) = n—};ij(s' ).

13Point C is not a stable equilibrium in the sense of stability invoked in the literature.
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14For large 1 and large 7, normalized A* begins to decrease in u.

15There also exists an equilibrium in which all producers locate in the South in every period.

16The result that in the initial period there is continuing investment in the North is reminiscent
of what happens in Chari and Hopenhayn (1991). In that model, individuals continue to invest in
old technologies because there are complementarities between what the current entering generation

does today and what previous generations did before. The same is true here.
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Appendix

This appendix begins by proving the claim in the text that an equilibrium exists. It then
presents a proof of Proposition 2.
Proposition 3. An equilibrium exists.
Proof. Let B denote a vector of cutoffs, B = (Bo,ﬁl, ...,,BT), and let Z be the space containing
vectors B, i.e., B € Z if and only if Bt € [0, ], for all ¢. I begin the proof by constructing a mapping
from Z into Z. For each B € Z, there exists a unique sequence of prices (un,0,UN,1,-.s UN,T)
and (vsp,vs,1,...,vs,r) solving the monopolistic competition equilibrium conditions. With these
sequences of prices, one can calculate the discounted costs cn:(8) and cs¢(8) to a B-type product
entering at time t. If ey (B) > cs.4(B), let B, = B. Otherwise, let 3, be the unique 3 € (0, 8) where
ent(B) = cs(B). Let F(Bo, B, ..., B7) = (Bo, B1, ..., Br) dencte the mapping I have constructed. It
is straightforward to show that the function F(-) is increasing; i.e., if for two cutoff vectors B° and
B B < th) for all ¢, then 3, < ﬁ’t for all t, where F(B°) = B° and F(B') = B'. Since this mapping
is increasing, continuous, and maps into a bounded set, there exists a fixed point to this mapping
which is an equilibrium of the economy.R

The proof of Proposition 2 uses a lemma. The statement and proof of this lemma require some
additional notation. Let vy (3,a) and vs(B,a) denote the prices of the intermediate inputs solving
the monopolistic competition equilibrium conditions, given the cutoff of the current entering cohort
is 8 and that the average cutoff of the previous entrants that are still alive is a. It is straightforward
to show that vS(B, a) - vN(B, a) is strictly decreasing in 3 and a.

Lemma 3. Suppose that for all 3 € [0, 3],

(10) an—as~f [US(B, B) — v (B, B)] > ko,

for some kg > 0. There exists a k; > 0, such that if for any fi
(11) aN_aS_B[US(B’B-x)_UN(Bvﬁ_z)]Sov

then =z > k.

Proof. Note first that since vs(8,a) — vy (B, a) is decreasing in a, the only way that (10) and (11)
can both be true is if z > 0. Suppose that the lemma is not true. Then for each n, there exists a
8" €10,8 and a z™ € [0, 1) such that (11) holds. Since the sequence {Bl, ﬁ2, ...} is bounded, there

exists a convergent subsequence {ﬁm}. Let {z™} denote the associated subsequence of {z"}. By
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the continuity of vy (8,a) and vg(B, a), the limit of the left-hand side of (11) as a function of the
subsequences {Bn’} and {z™} is nonpositive. Since the limit of {z™} is zero, this contradicts (10).1

I now turn to the proof of Proposition 2. It is convenient to restate the proposition in a
slightly more general form by allowing for any arbitrary initial state. This slightly more general
result is referred to as Proposition 4.
Proposition 4. Assume that ay —ag > A* (Assumption 1). Suppose that either (Case 1) h = 2
and & € [0,1] or (Case 2) h > 2 and 6 = 0. Let (821,85, ...,Bi(h_l)) be an arbitrary initial state.
Let {35, 85, -, B;} be an equilibrium sequence of cutoffs, given this initial state. (1) There exists a
k > 0 that is independent of T', such that in any equilibrium, if B: < B, then ,Bf > ay+ k. (2) Let
T> E-(-h—k_—l-l There exists a t' < T, such that if ¢ > ¢/, then ﬁ: = 4.
Proof. The assumption that o N — ag > A* implies that (10) holds. So there must exist the k3 > 0
so that (11) holds. Set k equal to this k;.

I first show that part (1) of the proposition is true for £ = k; and for T = 0, and then by
induction, show it is true for all T'.

Suppose T = 0 so there is only a single period in the model. Let ap be the average B of the
h— 1 previous generations as in (9). Let ¢;(Bo, ao) be what the equilibrium cost at location j would
be, given that By is the cutoff in period 0 and given ap (analogous to what I did in Section 4.A).
Suppose ,@; < f. A necessary condition for equilibrium is that the difference in cost between the

. € .
two locations for a type (3 is zero,
~e ~e ~e
0= ay —as - B [us(B5, a0) — vn (B, 00)) -

Inequality (11) then implies that fig—ao > k;. This completes the proof of part (1) of the propositioh
for the T = 0 case.

In Case 2 where § = 0, the proof for the case of general T is the same as the proof for T' = 0.
So assume that Case 1 holds where h = 2.

To prove the result for the case of h = 2 and general T, assume the result is true for 7' — 1.
I will show that the result is also true for T

Let ﬁil be the initial state in the h = 2 economy, and let {,BS, Bi, ey ﬁ;} be an equilibrium.
Consider a new economy in which the initial period is period 1, the final period is period T', and the
initial state is [33 This initial state is what the state in period 1 is along the equilibrium path of the
original economy. It is immediate that {ﬁ;’, ey B;} must be an equilibrium of the new economy. By

the induction argument, we know the result must hold for this new economy since the number of
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periods in the hew economy is one less than the original economy. Hence, for any ¢ > 1, if Bf < B,
then f; > Bf_l + k1 (noting that af = B:_l, for the case of h = 2). It remains to prove that this
holds for ¢ = 0; i.e., if By < B, then B85 > B, + k1.

If BS < B, then the discounted difference in cost to type BS between the North and the South

must be zero; i.e.,

(12) 0 = {an—as—F [vs(85.81) —ow (35,821 }
+6 {aN —as - B [vs(Bf,ﬁg) - UN(BT,BS)] } :

The first bracketed term is the difference in period-0 cost, the second bracketed term is the difference
in period-1 cost. Given the symmetry of vs(B3,a) and vn(B3,a) for h = 2, one can rewrite the

difference in period-1 cost as
ay - as — f [vs(B:,Bg) - vN(B:',B;)] = an ~as — B [US(BS, B) - 'UN(BS,BT)} :

Since ﬁi > [33, the lemma implies that the difference in period-1 cost must be strictly positive.
Equation (12) then implies that the difference in period-0 cost, the first bracketed term of (12),
must be negative. Inequality (11) then implies that B; - ao > k1. This completes the proof of part
(1) of the proposition.

The proof of part (2) is immediate.l
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Table 1
Critical Values for the Normalized Natural Advantage

Single-

T H Type
(Transport (Preference for Variety Parameter) Model
Cost)
110 | 130 [ 150 | 2.00 [  3.00

.00 .00 .00 .00 .00 .00 .00
.20 14 26 28 .30 30 25
40 14 41 .54 .63 .66 .67
.60 14 44 72 1.01 1.13 1.50
.80 14 44 .76 1.46 1.90 4.44
.99 .14 44 77 1.97 5.88 99.00

1.00 14 44 a7 2.00 © )




Table 2
Two Equilibrium Transition Paths for the Example

Demand for Cutoff | Number of Final-Good
Period |Intermediates §  |Specialized-Input| Production
Fixed in Previous Producers
Periods i
North | South | North | South | North | South
-1 750 .000 .000 1.000 .000 1.000 .000
Slow-
Transition
Path 0 750 .000 102 1.007 .000 974 .026
1 747 .003 103 1.014 .000 .949 .051
2 745 .005 105 1.021 .000 .923 .077
3 .742 .008 122 1.018 012 .892 .108
4 741 .009 129 1.017 .017 .885 115
16 .708 .042 275 .979 121 .753 .247
17 701 .049 304 971 139 732 .268
18 692 .058 354 958 .167 .703 297
19 677 .073 501 922 235 .641 359
20 633 17 1.000 737 .497 .460 .540
21 .406 .344 1.000 535 .704 .286 714
22 187 563 1.000 301 .882 125 .875
23 .000 .750 1.000 .000 1.000 .000 1.000
Fast-
Transition
Path 0 750 .000 102 1.007 .000 .974 .026
1 747 .003 .104 1.014 .000 .948 .052
2 .745 .005 118 1.020 .003 919 .081
3 741 .009 1.000 825 384 .669 331
4 494 256 1.000 .616 627 445 555
5 .247 .503 1.000 .370 .835 221 779
6 - .000 750 1.000 000 1.000 000 1.000




Figure 1

Equilibrium Variety as a Function of the Cutoff




Figure 2
Graph of the A Function




