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Introduction

Over the last decade there has been growing a substantial literature on the
structural estimation of dynamic discrete choice models of behavior. The reason
for this growth is that many behavioral economic models are described naturally
as sequential discrete choice optimization problems constrained by resource
limitations and imperfect information about future events. Such models have found
application in industrial organization, labor economics, development economics,
health economics, public finance, and economic demography. Recent surveys by
Eckstein and Wolpin (1989a) and by Rust (1992, forthcoming) provide a good
introduction to this literature.

A major impediment to the application of this approach is computational.
Like gtatic discrete choice models, the dimension of the integration that must
be performed to calculate the choice probabilities that are necessary for
estimation is directly related to the size of the choice set. However, in the
dynamic setting, integrations of that dimension must be performed not only to
calculate choice probabilities as part of the estimation problem, but also to
solve the dynamic optimization problem itself.! Moreover, those integrations
must be performed at all values of the state space (discrete, or discretized if
continuous) upon which the evaluation of choices is conditioned, which is what
Bellman (1957) called the "curse of dimensionality."

The inherent computational problem of this approach has been accommodated
in the literature in several ways. In many applications the dimensionality of the
problem, both in terms of the number of choices and the size of the state space,
has been kept small. A significant part of the literature has been restricted to
problems of only two alternatives. Among the earliest contributions of this type
were studies of the following dichotomous decisions: to re-enlist in the air

force or not (Gotz and McCall, 1984), to remain in an occupation or choose a



different occupation (Miller, 1984), to renew a patent or let it expire (Pakes,
1986), to replace a bus engine or not (Rust, 1987), to have a child or not
(Wolpin, 1984), to accept employment or continue to search (Wolpin, 1987).

A number of alternatives to reducing the size of the choice set and/or the
state space have been developed and implemented. They can be classified as
methods that rely on the full solution of the dynamic programming model but take
advantage of particular structures, functional forms or distributional
assumptions (Miller, 1984; Pakes, 1987; Rust, 1987), or methods that circumvent
having to solve completely the optimization problem (Hotz and Miller, 1991;
Manski, 1988; Hotz, Miller, Sanders and Smith, 1992). The advantages and
drawbacks of these methods will be addressed in a later section.

Empirical implementation of optimization models that attempt to uncover
"gtructural® parameters, as do all of the methods in this literature, requires
agsumptions about functional forms and estimation error distributions.? Because
the correct functional forms and true error distributions are unknown, all of the
methods of solution and estimation discussed in this paper can be considered as
approximations to the "correct" optimization problem. At a possibly deeper level,
the model itself or the decision rules it generates, regardless of such
assumptions, reasonably may be considered only an approximation to the actual
optimization problem or decision rules that individuals adopt. Keeping these
issues in mind, we will nevertheless refer to "approximations" in this paper as
inexact solutions to a given optimization problem inclusive of functional form
and digtributional assumptions.3

Computational complexity will always be limiting if exact full solutions
to optimization problems are desired. The purpose of this paper is to explore the

performance of approximate solutions obtained by simulation and interpolation of



the integral values that must be computed within full solution methods. In
section one we present the general problem and the specific example of
occupational choice we use throughout the paper. In the second section, we
present a brief overview of methods that have been developed in the literature
to ameliorate the computational complexities.

Section three begins with the presentation of our approximation method,
which consists of simulating the multiple integrations embedded in the optimal
solution by Monte Carlo integration for a subset of the state space elements and
interpolating the nonsimulated values using a specific regression function
approximation that we develop.4 This procedure can potentially greatly
ameliorate the “"curse of dimensionality™ problem. We next present the results of
using the approximation, first in terms of the degree to which it mimies the
optimal choice sequence, and second in terms of the parameter estimates it
generates and in its resulting predictive accuracy. Evaluations are made for
three different sets of structural parameter values that generate different
behavioral choice patterns. The overall performance of the approximations is
excellent, although not universally across the three data sets and not with
respect to all performance criteria. The method is sufficiently promising, in our
view, to consider its implementation on real data as a serious alternative to
other methods of estimation.

The particular interpolating function we develop has the disadvantage that
it may become computationally infeasible when the state space is extremely large,
as occurs, for example, when the underlying unobservables are serially
correlated. We therefore present several alternatives where the computational
burden does not necessarily grow with the dimension of the state space and assess
their relative performance. An important advantage of the approximation methods
explored in this paper, in our view, is that their performance will improve
naturally as computational power continues to increase.

3



I. The General Problem

A. The Choice-Theoretic Framework

We consider a general model in which an individual decides among K possible
alternatives in each of T (finite) discrete periods of time. Alternatives are
defined to be mutually exclusive so that if di(t) =1 indicates that alternative
k is chosen at time ¢ and d,(t) =0 indicates otherwise, then sz;dk(t)=1.
Associated with each choice at time ¢t is a current period reward, Ry(t), that is
known to the individual at time ¢ but that is random from the perspective of
periods prior to t.

The objective of the individual at any time ¢=0,..,T, is to maximize

T

(M) EN T Y R() d(n) |s(t) |
where 6 >0 is the individual‘s discount factor, E(®*) is the mathematical
expectations operator, and S(t) is the state space at time . The state space
consists of all factors, known to the individual, that affect current rewards or
the probability distribution of any of the future rewards.

Maximization of (1) is accomplished by choice of the optimal sequence of
control variables {d’k(t)}kEK for £=0,..,7. Define the maximal expected value of

the discounted lifetime reward at t as

T K

= 7 -t
(2) V(S(t),t) {d:??)}jc)t“ E 2; ) g; Re(7) dp () |s(t) |

The value function V(S(t),t) depends on the state space at £ and on ¢ itself (due
to the finiteness of the horizon or the direct effect of age on rewards), and can

be written as
3 V(S(t),t) = Vi (S(Et), )},
(3) (S(2)st) = max {V(S(t),£)}

where Vi (S(t),t), the alternative-specific expected lifetime reward or value

function, obeys the Bellman equation (Bellman, 1957)
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Vk(S(t), L) = R (S(E),t)
(4) +90 E[V(S(t+l),t+1) ]S(t),dk(t) = l], t=?1,
Vi(S(T),T) = R(S(T),T).
Notice that the dependence of the current period reward on the state space (or
at least a subset of it) is made explicit in (4). RAs seen in (4), the alterna-
tive~specific value function assumes that future choices are optimally made for
any given current period decision. The expectation in (4) is taken over the
distribution of S(t+l) conditional on S(t) and dg(t) =1, with the conditional
density denoted by

(5)  Bre(S(E+1)|S(E),d(t) = 1).5

The randomness in rewards arises from the existence of state variables at time
t+1l observable to the agent at t+1, but unobservable at t or before. The
formulation in (5) allows for contemporaneously‘and serially correlated rewards.

B. A Model of Occupational Choice

To understand the difficulties in solving and estimating dynamic discrete
choice problems, we consider as a concrete example a model of occupational
choice. This example is the basis for the subsequent work in this paper on the
simulation method we propose as a means of solving and estimating the general
model. We chose a specific example because it is difficult to come up with a
generic state space. We chose an occupational choice model because its structure
accommodates a wide range of complications that are illustrative of the general
problem and because the economics literature on occupational choice has been
stagnant for some time (Miller 1984, which is discussed below, is an important
exception).6 The reader should understand that the approximation method we
propose is applicable to discrete choice dynamic programming models generally,

that is, those that can be structured as in section I.



To motivate the model, consider a single sector economy with K-2
occupations or job types that are separate factors of production. Aggregate
output depends on the aggregate number of efficiency units of labor allocated to
each occupation.7 An individual possesses a certain number of efficiency units
of each job-type skill, but can work in only one occupation at any time. The
skill level or efficiency units that an individual brings to occupation k at time
t, ey, depends on the individual’s job history h;, completed level of schooling

sy, and on a time-varying technology shock ¢y , according to
(6) ekt = € (B, S¢)exp(eye) -

The ey (skill mapping) function is technological in nature and is assumed in (6)
to be stationary. Its form does imply, however, that the effects of job history
and schooling on skill level may differ by job type.

The wage that an individual receives on a job depends on the competitively
determined equilibrium skill rental price for a job (the price of an efficiency

unit of labor), 2y, and is the product of the rental price and the skill level,

The ikt skill rental price in a competitive market is equal to the marginal
product of aggregate skill in occupation k and will vary over calendar time as
there are exogenous changes in product demands, in production technology, in
factor prices other than labor, and in the age distribution of the population.

Because schooling affects skill levels, it is natural to consider it within
the choice set. Schooling produces a flow of future benefits in the form of
general skill acquisition, i.e., skills that are useful in all jobs, although
differentially so. The contemporaneous or current value of schooling consists of
its (monetary equivalent) consumption value (positive or negative) minus direct
schooling costs. In addition, it is assumed that returning to school, having once
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left, is more costly than continuous schooling in terms of its direct net
consumption value.

Finally, an individual may choose neither to work in the market nor to
attend school. In this case the individual receives the (monetary equivalent)
contemporaneous consumption value of nonmarket production or leisure. There are
no future benefits or costs associated with this choice.

To simplify further, assume there are only two occupations, and so four
alternatives: occupation one, occupation two, schooling, and home. The per-period

reward functions are given by

Ri(t) = wyr = q(SgrXqerXpiq)e™
() Rp(t) = Wop = Wo(Sp,XqpsXpei0p)e™
Rz(t) = Bg - B1 I(s¢=212) - Bp(1 -dz(t-1)) + €3¢«
Rp(t) = v t+ €4t

In (8), sy is the number of periods of schooling obtained by the beginning of
period t, Xy, is the number of periods that the individual worked in occupation
one (experience) by the beginning of period t, xp; is the analogously defined
level of experience in occupation two, «q and o, are parameter vectors associated
with the wage functions, f; is the consumption value of schooling, B1 is the
post-secondary tuition cost of schooling, with I an indicator function equal to
one if s¢ 212 (the individual has completed high school)and zero otherwise, >
is the adjustment cost associated with returning to school (if d3z(t-1) = 0), andyp
is the (mean) value of the nonmarket alternative.® While the state space is
large by any standard for reasonable length horizons, the restriction that only
total occupation-specific experience affects wages, rather than the exact
sequence in which occupation-specific experience is obtained, dramatically
reduces the potential size of the state space. The ¢ ‘s are alternative-specific
shocks, to skill levels (k=1,2), to the consumption value of schooling (k=3),
and to the wvalue of nonmarket time (k=4). Note that these shocks appear
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multiplicatively in the wage, and thus reward, functions for the two occupations,
but additively for the schooling and home alternatives. Wage offers are always
nonnegative, but consumption values of school and home may be of either sign.

If the population is homogeneous in skill endowments and underlying
preferences for home and school, then comparative advantages develop solely as
the result of the realizations of technology and preference shocks; individuals
with identical sequences of shocks will behave identically. Given that the model
represents the optimization problem of a single individual, incorporating
individual (permanent) heterogeneity in occupation—-specific skill endowments and
school and home preferences does not change anything of substance. The same is
true of the opposite extreme in which there are aggregate shocks affecting all
individuals in the same way.

c. Solving the Optimization Problem

Case I: ¢ ‘s serially uncorrelated.

It is convenient to consider first the case where the ¢ ‘s are jointly
serially uncorrelated. In that case, the joint distribution of the ¢ ’s
is ﬁf(e1t,62t,e3t,e4t;n) where 7 is the vector of distribution parameters and
f is the marginal (joint) distribution of time t errors. Further denote the full
parameter vector of the model as 6 = {&q,03,8,v,7} where the elements of § are
the appropriate vectors in (8). The individual knows # and must solve for the
sequence {dy,(t)}, for t=0,..,T7, that maximizes (1) subject to the evolution of
the state.space (5).

The state space for this problem at time t is S(t) = {S¢, X1, Xp¢.d3(t-1),
€1¢,62¢,€3¢,64¢}. It is convenient to denote the deterministic (more accurately,
predetermined) elements of the state space, si,Xqt,X%2¢,d3(t-1), as E(t). The

elements of the state space evolve according to



Xq,t41 = X1 * di(€),

*2,t+1 Xp¢ + dp(E),

(9}

St sy + dz(t),

£(er | S(E), () = F(er.q] S(E) de(t)).

The last equation in (9) reflects the fact that the ¢ ‘s are serially indepen-
dent. Initial conditions are xq9 = xp9 = 0, sp = 10. Notice that the deterministic
elements of the state space take on only discrete values.

Consider an individual entering the last decision period, T, with
particular values of the deterministic state space elements E(T). At T the
individual receives a draw from the joint distribution of the ¢gg ‘s. The
individual would then calculate each of the T period reward functions (equa-
tion(8) at t=T) and choose the alternative with the largest realized reward.

Suppose the individual were instead at period T-1, again with particular
values of the deterministic state space elements, E(T-l) . In order to calculate
the alternative-gspecific value functions, (4) at T-1, the individual must

calculate
Emax (R1(T) + Ro(T) , R3(T) , Ry (T) |§(T-1) ' dk(T—l))

(10) = max(Ry (T) , Rp(T) , R3(T) + Ry(T), | 5(T-1), di(Z-1))

£(eqrr €1s €31/ €47) degrdepr dezr degr o
for each k=1,..,4. It is important to notice two characteristics of (10):
(i) Emax(®) is in general a multivariate integral even when the ¢4 ‘s are
stochastically independent and (ii) Emax(®) must be calculated at all of the
feasible discrete-valued state space points that can evolve at T given E(T—l)
and dy(T-1) . At T only one state space point in E(T) can possibly arise for each
k and given EkT-l). But to calculate all of the alternative-specific wvalue
functions at T-1, given E(T-l)  requires that the alternative-specific value

functions at T be calculated at four different state points, one for each k. Thus



(10) must be calculated four times, given that the individual is making a
decision at T-1 because the state space at T can take on four different values
for a given E(T-l) .

Having calculated (10), the value functions at P-1, V(S(T-1l),T-1l), are
known up to the random draws of the ¢, 7.1°S. The individual receives a set of
draws at T-1 and chooses the alternative with the highest value.

As we move backwards in time, the individual must compute, analogously to
(10), the expected maximum of the alternative specific value functions at every
t=0,..,T. These take the form

Emax [ Vq(S(t+1),t+1),Va(S(t+1),t+1),Vz(S(t+1),t+l),

(11) - .
Vi(S(t+1),t+1) | S(t),de(t)]
As in (10), (11) is a four-variate multiple integral over the joint €k, t +1
distribution. Moreover, in order to calculate (11) the alternative-specific value
functions at (t) must have been calculated for all of the possible state space
values at t+1, E(t-i-l) ; that may arise given E(t) and dy(t). This implies that
at t+2,¢+3,..,T7, the alternative-specific value functions at those times must
have been calculated at all of the feasible state points that could have arisen
at those times given E(t) and dy(t). Thus, in order to solve for the t=0
alternative-specific value functions, it is necessary to have calculated the
alternative-specific value functions at each future date at all feasible state
points. At time T, this means calculating (10) for every combination of E(T—l)
and d(T-1), i.e., for every possible point in E(T). In the case of T =40,
E(T) has 13,150 elements.’

Case II: ¢ ‘s serially correlated.

In this case the joint distribution of the €'’s is
£(€10r ~rE40r 2€17s +€4721) - The state space at t now alsoc must include all of the

€ 's that are known at ¢ and that affect the distribution of ¢ ,;. Thus, the state
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space at t, S(¢t)= G(t),e1t,62t,e3t,e4t, ~r€10r€207€30s €40 1, which is composed of both
discrete and continuous elements.
With serial dependence, (10) becomes
Emax (Rq(T) ,Rp(T) s R3{T) , Ry (T) | S(T-1), d(T-1))

(12) =_ 2 max(Ry(T) , Rp(T) , R3(T), Ry (T) | S(T-1), d(T-1))

f(eq1s €217 €37+ &1 lS(T’l) 18 (T-1))deqr deoy dezy degte

The expected maximum of the 7 period rewards now depend on the prior g draws
as well as on the state space elements E(T—l). This carries over to all periods
of the Emax functions; S(t) replaces E(t) in (11). Clearly, the computational
effort is greatly magnified when there is serial dependence because the state
gspace becomes infinitely large. Lacking analytical solutions for (12), backwards
solution of the dynamic programming problem requires discretization of the ¢4 ’s.
With four distinct shocks, this procedure leads to a not inconsequential increase
in the number of state space elements.

c. Estimation

The computational complexity that arises in providing an exact solution to
the optimization problem is that the expected maximum function entails a multiple
integration of dimension X and that function must be calculated for each element
of the state space.1° However, the reason for solving the optimization problem
is that the solution serves as the input into estimating the parameters, 8§, of
the model given data on choices and possibly some of the rewards. Any inexactness
in the solution presumably translates into estimation bias.

To understand the connection between the solution of the model and
estimation, consider having data on a sample of homogenous individuals from the
same birth cohort who are assumed to be solving the occupational choice model
previously described and for whom choices are observed in each of the periods
t=0,..,T. In addition, as is usual, wages are assumed to be observed only in the
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periods in which market work is chosen and only for the occupation that is
chogen.

To simplify the presentation, consider the case where the random elements
of the reward functions are serially independent." Then, the joint probability
of choosing occupation one at time t and its corresponding (accepted) wage is

Pr(dy(t) = 1, wye | S(t))
=Pr (wyy + OEmax(V(S(t +1),t+1 | S(t), dq(t)=1)
2@ (S(t)) €% + SEmax(V(S(E+1),t+1 | S(t),dp(t)=1),
wye + OEmax (V(S(t+1),t+1 | S(t), dq(t)=1)
(13) =0y - B1 I(s¢=212) - Ba(1-dz(t-1)) + €3¢
+ SEmax (V(S(t +1),t+1) | S(t),d3(t)=1),
wie + 0Emax (V(S(t +1),t+1 | S(t), dy(t)=1)
2y + €y + OEmax(V(S(t+1),t+1) | S(t), d4(t)=1),

wWig) s

namely the probability that the alternative one value function exceeds the other
three and that the wage that is accepted is the observed wage. An exactly
analogous probability statement holds for occupation two, with the difference
between those for the occupations and the probability statements for schooling
and home being that the current period rewards are not observed for the latter.
The likelihood function for the sample is the product of these probability
statements over time and people. Maximizing the sample likelihood with respect
to 6 would yield consistent and asymptotically normal estimates. Evaluation of
the likelihood function itself requires the calculation of four-variate
integrals. In the context of serial dependence in the stochastic elements of the
reward functions, maximum likelihood estimation would require the calculation of

a KT variate integral rather than a segquence of K variate integrals.
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If the Emax(®) functions could be calculated without error, it would be
possible to construct unbiased simulators of the choice probabilities and form
an MSM (method of simulated moments) estimator of the type developed by McFadden
(1989) and Pakes and Pollard (1989) for static discrete choice models.? The
computational gain over maximum likelihood would be no different in kind for the
dynamic discrete choice model. The MSM estimator is linear in the choice
probabilities and is therefore a consistent estimator for a fixed number of
simulation draws used to simulate choice probabilities. However, it is important
to understand that the MSM estimator combined with a simulated estimate of the
Emax(®) functions is not consistent. As seen in (13) the choice probabilities
are nonlinear functions of the Emax(®) functions which implies that the
simulated choice probabilities using simulated Emax(®) functions will be biased.
Both the likelihood estimator and the MSM estimator, that depend on simulated
Emax(®) functions, are inconsistent in the context of nonlinear measurement
error.

II. A Brief Review of Existing Solution and Estimation Methods

In this section, we review existing methods in the literature for dealing
with the computational problems described in the previous section that arise in
the full solution and estimation of discrete choice dynamic programming models.
Notice that there are no conceptual problems in implementing models with large
choice sets, large state spaces, and serial dependencies in unobservables. The
problem is in implementing interesting economic models that are computationally
tractable. A comprehensive review is beyond the scope of this paper, particularly
in light of the several surveys previously mentioned that have appeared in the
literature. Our purpose is to give the reader a context within which to place the
approximation method explored in this paper.

Full-Solution Methods
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Computational simplifications for handling large choice sets and/or large
state spaces (which includes the case of serially correlated uncbservables),
while remaining within the full-solution paradigm, have involved finding
convenient forms for the reward functions and error distributions. Miller (1984),
Pakes (1986), and Rust (1987) are the leading examples of this approach. Rust’s
formulation has been more widely adopted in the economics literature, perhaps
because of its structural similarity to the static random utility model.® That
formulation has also served as the basis for the implementation of several of the
nonfull solution methocds discussed below.

Rust makes the following assumptions: (i) the reward functions are
additively separable in the unobservables, with each unobservable associated with
a mutually exclusive choice; (ii) the unobservables are conditionally indepen-
dent, i.e., conditional on observable state variables; (iii) the unobservables
are serially independent; and (iv) the unobservables are distributed as
multivariate extreme value. There are two very appealing consequences of these
assumptions for solution and estimation:

1. The Emax(®) function (the expected value of (3) appearing in (4)) has
the closed form solution

exp(Vi(5(t),t)
T

)Y

K
(14) E[V(S(t),t)] =y + 7 1n{ k};

where GL is the expectation of the alternative-specific value functions, the
expectation of (4), and ¥ is Euler's constant. Multivariate numerical integra-
tions are, thus, avoided in solving the dynamic programming problem. It should
be noted that (conditional) independence of the alternative-specific errors is
not sufficient to obtain an analytical form; the extreme value assumption is
ecrucial.

2. The choice probabilities are multinomial logit, i.e., with 7 normalized
to unity,

14



exp(Vi(S(t), £))
exp(V;(S(E), t))

(15) Pr(dg(t)=1) [S(t)) =
jeKk

Therefore, multivariate integrations are also avoided in likelihood estimation.
However, as in the static logit model, only limited forms of correlation among
the alternative-specific errors can be accommodated. 14

In addition to simplifications achieved through functional form assump-
tions, there are several examples in the published literature of what can be
viewed as a simplification achieved through an approximation to the full
solution. Stock and Wise (1990) estimate a model of retirement which they call
an "option value" model, but which is equivalent to substituting the maximum of
the expected alternative-specific value functions for the expected maximum of the
alternative-specific value functions. Lumsdaine, Stock, and Wise (1990) evaluated
the performance of this approximation vs. the exact solution in predicting the
effect of the pension window plan studied by Stock and Wise, and concluded that
the fit was about the same. Stern (1991), analyzing a different model of
retirement concluded from simulation evidence that while the approximation did
predict well the large impact of a pension window, it did not predict well other
dynamic aspects of the model.

Wolpin (1992) estimates a structural model of labor force dynamics in which
agents are assumed to optimize over longer discrete periods the further are the
periods into the future. This simplification has the effect of reducing the size
of the state space. More recently, Geweke, Slonim and Zarkin (1992) have proposed
a solution and estimation method based on approximating the agent’s decision
rules that still recovers structural parameters. This latter paper is the closest
in spirit to the approximation method proposed and analyzed in this paper.

Non—Full-Solution Methods

The reduction in computational complexity achieved by the non—full-sclution
methods that have appeared in the literature, Hotz and Miller (1991), Hotz,
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Miller, sanders, and Smith (1992), and Manski (1988), also arises from
circumventing the need for performing the multiple integrations required for the
calculation of the full solution to the dynamic programming problem. These
methods use alternative representations of the future component of the choice-
specific valuations that do not depend explicitly on the structural parameters
of the model, but are estimated from data on future choice or reward probabili-
ties. Because the choice-specific valuation functions are specified in the first
two papers as they are presented in section I, it is relatively easy to describe
their methodologies. However, the representation in Manski‘s path utility
framework is sufficiently different that we will forgo discussion of it. Manski’s
approach does share many of the same advantages and drawbacks. 13

The insight of Hotz and Miller can be most eagsily illustrated under Rust’s

assumptions. Using (14) and (15), it can be shown that

K _ :
E[V(S(t),t)) = K};Pr(dk(t)ﬂ[ S(t))x
(18) *

[Y +V(5(t),t)~In(Pr(d(t)=1] S(t))].

Successive forward substitution for Gi(g(t),t), recognizing that it contains
future expected maximum functions, implies that the expected maximum function at
any t can be written as a function of the future conditional choice probabili-
ties. Hotz and Miller show that this result is not dependent on the extreme value
distribution assumption, but generalizes to any distribution. The extreme value
distribution ig appealing because the representation has a closed form. Empirical
implementation uses data on observed future choices to cbtain the conditional
choice probabilities that are needed for calculating alternative-specific value
functions. Because choice probabilities are obtained nonparametrically from the
data and are state-specific, implementation may require very large observation
sets, particularly when the state gpace is large. Structural parameters are

recovered from the contemporaneous reward functions, which are the only places
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they enter in this formulation. The estimation, therefore, does not take into
account all of the parameter restrictions contained in the theory. Although
significantly more tractable, an inherent limitation of this approach is that it
cannot admit to the existence of individual-specific unobservables as a component
of the state space, generally ruling out forms of serial correlation including
permanent unocbserved heterogeneity.

The methodology in Hotz, Miller, Sanders, and Smith also uses the Hotz and
Miller representation theorem. However, rather than computing the alternative-
specific valuation functions by considering all feasible future paths as in Hotz
and Miller, they simulate future paths in calculating the expected maximum
functions, using (16) in the extreme value case. Noting that in the extreme value
case, for example, the expected values of the alternative-specific wvalue
functions (normalized against one of the alternatives) are just the log-odds of
the choice probabilities, data on choice probabilities are sufficient to estimate
(nonparametrically) the normalized value functions. Parameter estimates are
obtained by comparing the data to the simulated value functions using a weighted
distance estimator. Because the estimator is linear in the simulated value
functions, analogous to the MSM estimator, only one future path needs to be
simulated to obtain consistent estimates. While this method is even more
tractable computationally than Hotz and Miller, its limitations are not
different.

ITI. Apgfoximating the Solutions by Simulation and Interpolation

A. The Method

In this section, we present an approximation method based on simulation and
interpolation. As illustrated by (13), the choice probabilities that enter the
likelihood function are nonlinear functions of the expected maximum function
(EMAX). Consistent estimation of 6 (T fixed as N grows) requires that EMAX be
precisely calculated for all elements of the state space. Approximations to EMAX
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lead to inconsistent estimates and presumably to greater finite sample bias. The
extent of this bias as the accuracy of the EMAX calculation varies is unknown a
priori and_is the subject of the rest of the paper. The method we propose can
accommodate both iid and serially correlated unobservables.

We propose to approximate EMAX by crude Monte Carlo integration.16 That
is, we take D draws from the joint e distribution, calculate the maximum of the
value functions over the four choices for the given € draw, and average the
maximum over the D draws. Clearly, the estimated expected maximum is unbiased and
is consigtent as D becomes large. It is possible to calculate the simulated EMAX
for each element of the state space; a continuous state space can be discretized.
However, for problems of the size we would like to consider, a pure simulation
strategy is not computationally practicable.

As a method for coping with the "curse of dimensionality,"™ we propose to
simulate EMAX by the above Monte Carlo integration for only a subset of the
possible state points and to interpolate EMAX at the remaining state points.
There are several possible ways to do the interpolations. One method would be to
use a neighborhood criterion, interpolating EMAX values from those states that
are nearby. However, there is no obvious metric of proximity among state points
in a multi-dimensional setting. A second approach, the one we adopt, is to search
for a function relating EMAX (as in (10) or (11)) to its arguments, namely, those
of the maximum function and those of the error distribution function that
approximaﬁes EMAX well. Those arguments include only the state space elements,
so that potential interpolating functions are either those of the state space
elements themselves or functions of the state points, such as expected rewards
or expected alternative-specific value functions. After considerable experimenta-
tion, we found that the following general class of functions works well.
Denoting, as before, ;L(S(t),t) as the expected value of VWV (S(t),t), and
MAXE (S(t),t) as mﬁx(EL(S(t)), the Emax(V(S(t),t)) function is approximated by
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(17) EMAX (S(t),t) =~MAXE(S(t),t) +g(MAXE(S(t),t) - Vi(S(t),t), t),

where the term inside the g(®) function is a vector of elements over k EX and
where g(*) >0. The intuition for this form is that the difference between EMAX
and MAXE, which must be positive, will depend on how far apart are the expected
alternative-specific value functions as captured by the individual differences
between MAXE and the ;k’s. The inclusion of MAXE in g, along with the alterna-
tive-specific value functions, captures the notion of distance between the value
functions. The parameters of the g(®) function depend on properties of the jointe
distribution, i.e., on its higher-order moments, and on t itself. 7 Below, we
compare the accuracy of several alternative interpolating functions (g(®)) 8

Consider how a backwards recursive solution would be obtained using our
simulation-interpolation method. At T we perform the EMAX simulations as
described above for a subset of state points, S*(T). These EMAX values along
with the alternative-specific expected wvalue functions, ;k(s‘(T),T) , are used
to estimate the interpolating function by a regression eguation. Moving backwards
to T-1, we wish to perform the same calculation for a subset S§*(T-1). To
calculate the simulated EMAX’'s as well as the arguments for the interpolating
function, as seen from equation (4), requires that we calculate EMAX at T at
every point in the state space that can be reached from a point in S*(T-1).
Those EMAX values at T (that were not simulated at T) are calculated from the
interpolating function, g(T). These steps are repeated as the backwards solution
proceeds.

It is important to note that the backwards solution using the interpolating
function (17) requires that the value of EMAX either be simulated or interpolated
at every point in the state space. To see this, denote by S**(t) the set of
points at which we either simulate or interpolate EMAX at time t. Clearly, if K

alternatives are available in each state in each time period, then S**(T) must
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be K times larger than S**(T-l), which must be K times larger than S**(T—Z), etc.
Thus, S**tt) must contain the entire state space regardless of the number of
state points contained in S*(t).

The computational advantage of this approximate solution method is that,
for S*(t) a small subset of S(t), most of the time-consuming multiple integra-
tions necessary to construct the EMAX functions are replaced by fast interpola-
tions using a regression estimate of (17). If the interpolating function provides
a close approximation to the EMAX(e®) function, this method has the potential to
ameliorate the "curse of dimensionality" problem. However, it is important to
determine how rapidly the number of state space points used to estimate the
interpolating function must increase with the size of the state space in order
to maintain accuracy. Moreover, even though the interpolations are considerably
faster than the multiple integrations that would otherwise be necessary
(regardless of the numerical integration technique), if the size of the state
space becomes sufficiently large, the computational burden of calculating the
fitted values of the nonsimulated state points from the regression may become
infeasibly large. Later, we analyze the performance of alternative interpolating
functions that permit S**(t) to be less than the full state space at time t,
S(t). An important point about our approximate solution method is that we
use the interpolated values of the Emax(e®) functions only at those points in the
state space needed for the backwards solution for which we did not simulate the
Emaxz(®) function. We always use the simulated EMAX values when they occur in the
backwards solution. Thus, as the number of state points at which we calculate
simulated EMAX values increases and the number of draws used in the simulation
become large, our approximation approaches the exact solution.

As already noted, the interpolating function based on (17) may be
implemented in the serially dependent case using discretized values of the
e (t) 's. If they take on M possible values at each t and the serial dependence
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ig first-order Markov, then the state space will be M*x/ (R’ is the number of
disturbances, which in our example is the same as the number of alternatives, X)
times larger than in the iid case. If this state space is too large, given a
"reasonable" value for M and given the size of 5, for the interpolation using
(17) to be computationally £feasible, one of the alternative interpolating
functions described in section III.D below can be used. These interpolating
functions do not require discretization of the shocks.

The output of the solution is, for each period ¢, the simulated and
interpolated values of EMAX that together span the state space. The simulated
EMAX values are obtained by Monte Carlo integration for a subset of the state
space elements and the interpolated EMAX values from the fitted values of an
interpolating (regression) function. These EMAX values can be used to calculate
the choice probabilities as given by (13) that would be used in estimation.

B. Simulated Data

To ascertain the performance of the approximate solution method described
above, we adopt the following specifications of the four—-alternative occupational
choice model
iy = o * oq1Sy + GqpXqp — GqzXiLt GnXar ~ ki

(18) Wat = O * O3Sy * OpXqp Otz3X12t +ageXer ~ azsxgt:

F(ere reaer€serest | S(E-1), di(£-1))
= ferer€2¢s€30064t] S(E=-1),dc(t-1)) ~ N(O,IL).
The other aspects of the model are as previously described.

Table 1 reports parameter values for three different data sets that we use
for assessing performance.19 In all of the data sets, occupation two is more
skill-intensive in the sense that schooling has a higher return (except in data
set three where they are equal), and "own" experience has a higher return. In
addition, experience in occupation one increases skills (and thus the wage) in
occupation two while the reverse is never true. Thus, both schooling and
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occupation one experience provide general skills useful in both occupations,
while occupation two experience provides skills specific only to occupation two.

Data. set two differs from data set one in several aspects: (i) occupation
two has a lower mean wage at t=0 in the second data set than in the first, (ii)
schooling has positive consumption value, there is a nonzero tuition cost for
college and a larger adjustment cost associated with returning to school in data
set two, (iii) the value of nonmarket time is lower in data set two, and (iv) the
gstandard deviations of the (1ln) wage errors are twice as large, and the schooling
value and home value errors four times as large, in data set two.

Data set three differs from one and two in that (i) the (1n) wage functions
in both occupations are linear in experience, rather than concave, in data set
three, (ii) the schooling adjustment cost is larger in data set three, (iii) the
value of home time is larger in data set three, (iv) the standard deviations of
the (ln) wage errors are at least twice as big- in data set three as in two and
at least four times as big as in one, and the standard deviations of the
schooling and home time value errors are slightly bigger in three than in two,
and (v) the 1ln wage errors of the two occupations have a contemporaneous
correlation of .5 and the schooling and home time value errors have a correlation
of -.5 in data set three, while all contemporaneous correlations are zero in data
sets one and two.

These particular parameter values were chosen for two reasons, because they
give substantively different life-cycle choice patterns and because they have
increasingly larger error-variances. The latter characteristic should, by itself,
reduce the accuracy of the EMAX simulations. Tables 2.1-2.3 show the choice
distributions generated by these parameter values based on an exact solution of
the optimization problem, a solution which uses 100,000 draws for EMAX computed

for all state space elements, for 1000 individuals.?® The individuals are
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identical in that their different life cycle paths are generated solely by the
different lifetime error draws of the 1000 people.

In data set one, the proportion of individuals in occupation one begins at
.39, rises to a peak in period four of .46 and gradually declines throughout the
rest of the life cycle to .23 in period 40. In data set two, the pattern is
similar although the initial rise in participation in occupation one is greater,
from .34 in period 1 to .66 in period seven, and the fall more gradual to .55 in
period 40. In data set three the rise is even more pronounced, from .17 in period
one to .80 in period 12, as the skills acguired in occupation one are more
general, and the decline more pronounced, to only .27 in period 40, as the
returns are obtained by switching to occupation two. Participation in occupation
two increases continuously over the life cycle in all three data sets, although
more steeply in data sets one and three.

The proportion of individuals in school declines rapidly in all three data
sets as schooling is essentially only an investment good. Schooling has its
highest overall return in data set three, the next highest in two, and the lowest
in one, which is consistent with the ordering of life cycle schooling choices
across the data sets. Home-time is lowest in data set one and constant over the
life cycle, has an inverted u-shape in data set two reaching a peak of .09 in
period seven, and has a u-shape in data set three rising to .13 in period 40.
Thus, data set three generates some degree of voluntary retirement since
individuals leave occupation one because its investment opportunities are less
valuable as the end of the horizon is approached.

C. Results: Assessing Performance

In this section, we report on the performance of the approximation method
using several criteria: (1) how well the approximate solution corresponds to the
true sgolution at the given parameter values, (2) the extent of the bias in
estimated parameters resulting from using the approximate sclution method, (3)
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the extent of the bias in out-of-sample predictions using the approximate
solution method, and (4) the extent of the bias in the impact of the policy
experiment of introducing a college tuition subsidy using the approximate
solution method.

In order to implement the method we need to specify a functional form for
the interpolating function (17). The specification that worked best (evidence is

presented below) was of the following forms:

4 - 4 _ 1
(19) EMAX - MAXE = 7 + Z‘iqr” (MAXE - Vj) + 2“’21 (MAXE —vj)"’ .
Ja ‘s

The 7’'s are freely time-varying and are estimated by ordinary least sguares. 21

The subset of state points used to estimate the interpolating function, for a
fixed number of elements in the subset, is chosen randomly.22
1. Approximate Solutions at True Parameter Values
The first set of results considers the performance of approximate solutions
in terms of how closely they correspond to the optimal solutions at the true
parameter values. Simulating EMAX at all of the state points, we vary the number
of EMAX simulation draws using 2000, 1000, and 250 draws. Then, fixing the draws
at 2000 we simulated EMAX values at randomly selected state points and used these
points to estimate the interpolating function (16). The EMAX values are
interpolated at the remaining state points. We report results of this interpola-
tion method using 2000 and 500 state points. In contrast to the simulation-
interpolafion approximation we also solve the optimization problem using MAXE
instead of EMAX.? For each approximation specification we generate a sample of
1000 people using the same e draws. Thus, differences between approximate
solutions and the optimal solution are due solely to the approximation error.

Further, because estimation in the case of serial independence is based on one-

step~ahead forecasts rather than on full forecasts that are based only on initial
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conditions, we also report one-step-ahead forecasts for the case with 2000 draws
and 500 points.24

Tables 3.1-3.3 report the proportion of times an approximation specifica-
tion yields an optimal choice at five period intervals and over all 40 periods
for each data set respectively. In all three data sets, using 2000 simulation
draws at all state points almost always produces optimal solutions: 98.5 per cent
of the time in data set one, 99.4 percent of the time in data set two, and 99.1
percent of the time in data set three. While performance deteriorates as the
number of draws is reduced and all state points are used, even with only 250
draws over 96 percent of the choices are correctly matched in all of the data
gsets. Performance also deteriorates only mildly as the number of state points
used is reduced. Simulating EMAX at 2000 state points (as opposed to all of the
state points), and applying our interpolation method reduces the overall correct
matches to no worse than 96.6 percent. Using oniy 500 state points (3.8 per cent
of the maximum number in period 40) reduces the percentage of correct matches to
96.8 percent in data set one, to 92.3 per cent in data set two, and to 94.2
percent in data set three. The comparable one-step ahead forecasts do
considerably better, particularly in data set two for which the full forecast was
least effective. The use of MAXE as an approximation to EMAX does much worse
than any of the other approximations, achieving a 34 per cent overall success
rate in data set one, a 74 per cent success rate in data set two, and a 50
percent success rate in data set three.

The previous set of tables reports only cross-—sectional matches. Tables
4.1-4.3 evaluate performance of the same set of alternative approximation
specifications on a longitudinal basis by reporting the distribution of the
number of periods over the 40 period lifetime that choices were optimal and the
average number of optimal periods. Using this criterion, the approximations
other than MAXE perform very well in all three data sets. Although the fraction

25



of individuals with all 40 choices correctly predicted does diminish, and
considerably when interpolation is used, the fraction of individuals with at
least 30 periods correctly matched never is below 90 per cent. And even in the
worst case, over 50 percent of individuals are matched correctly in 39 or 40
periods. In contrast, for the MAXE approximation only in data set two are even
50 percent of the individuals matched correctly for 30 or more periods.

Tables 5.1-5.3 report chi-square fit tests, based on the same simulated
sample of 1000 people, of the choice distribution and the state variables,
accumulated schooling and occupation-specific work experience, for each
approximation specification. For data set one, except with respect to MAXE, the
data generated by the approximations are statistically indistinguishable from the
true data. For data set two, the approximations other than that using only 500
state points and MAXE generate "identical" data and the one-step ahead forecast
with 500 points generates the same choice distribution as the true data. 1In data
set three, the approximations deteriorate more rapidly as fewer draws and/or
state points are used. The schooling distribution is poorly fit using the 250~
all, +the 2000-2000, and the 2000-500 specifications, and the latter two
specifications also do noticeably worse in fitting occupation-specific
experience. Again, MAXE is a significantly worse approximation. Given the
stringency of the chi~-square test and the results from the prior tables, the
results are overall quite impressive.

The evidence from Tables 3-5 is that (i) when EMAX is approximated by Monte
Carlo integration at all state points, in most cases even 250 simulation draws
may be adequate to approximate the solution of the optimization problem, and (ii)
the approximation solution, while more sensitive to the number of state points
for which EMAX must be interpolated than was the EMAX approximation using all
state points to the number of draws, is by most criteria close to the true
solution.
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It is possible that the deterioration in the performance of the approxima-
tions as fewer state points are used to estimate the interpolating function is
because the interpolating function that we have specified doesn’t predict EMAX
very well. Table 6, however, provides limited evidence that the function we use
provides a quite accurate prediction. Table 6 reports the correlation between
the actual EMAX in period 40 and the predicted EMAX for the three data sets, when
all state points are used and when only 200 state points are used, for four
different specifications of the interpolating function. The different specifica-
tions refer to different functional forms for g(*) in (14). The forms we report
are linear, square root, logarithmic, and both linear and square root. Recall
that the linear plus square root specification is the function used in producing
Tables 3-5. The combined linear-square root specification yields the highest
out~of-sample correlation among the different specifications, .973 for data set
one, .994 for data set two, and .989 for data set three.

Figures 1.1-1.3 depict the actual and predicted dependent variable,
EMAX - MAXE, as ;'-2 varies over a representative part of the state space at fixed
values of ;1 and ;3 (-‘;4 is always fixed) for each of the three data sets. When
;2 is below MAXE, i.e., ;2 is not the maximum of ;1 through ;4, EMAX - MAXE rises
with ;2 as MAXE is constant. EMAX - MAXE reaches a maximum when ;"2 equals MAXE
and then declines as ;’-2 increases; each unit increase in ;2 and thus MAXE
increases EMAX by less than one unit and by smaller amounts the greater is ;2
(and thus MAXE). As is evident from the figures, and consistent with Table 6, the
predictions based on the interpolating function (15) are usually very close.

Figures 2.1-2.3 replace EMAX - MAXE with EMAX itself, which is what enters
the dynamic programming solution. The figures also include the MAXE approximation
which is below ;2 until ;2 = MAXE and is thereafter equal to ;2. While the
interpolating function fits quite well, as is already known from the previous set
of figures, MAXE differs from EMAX by as much as 40 percent.25 In spite of the
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evidence from Table 6 and these figures, it is nevertheless true that the errors
induced by the simulation-interpolation of EMAX must be sufficiently large in
some cases to produce the chi-sqguare £it test results reported in Tables 5.1-5.3.
2. Estimation Based On Approximate Solutions

While the evidence suggests that solving the optimization problem using the
2000~-500 approximation specification would generate statistically different data
than would the exact solution, it is unclear to what extent that approximation
would generate bias in parameters estimated from data obtained from the exact
solution. To ascertain how large the bias would be, we performed a Monte Carlo
experiment of estimating the parameters of the occupational choice model for 40
different 100 person data sets generated from the exact solution. Estimation was
performed by simulated maximum likelihcod (Albright et.al., 1977) using 200 draws
to form smooth simulators of the probabilities, as given by (13), that enter the
likelihood function.?®6 as seen in (13), the choice probabilities at &, given
a particular state, are functions of the Emax(®) functions. As before, the EMAX
values are interpolated for those points in the state space not included in
S*(t) and the gsimulated values are used for those points in S‘(t).27 For these
experiments, we used a 500~200 approximation specification, 500 draws to simulate
EMAX and 200 state point for the interpolating function, considerably smaller
than the draw~-state point combinations reported in Tables 3-5.

Tables 7.1-7.3 report the results of this Monte Carlo experiment for the
three daté sets. The parameters are as previously defined except for the a;;’'s
which are the Cholesky decomposition parameters used to generate the jointeg
error covariance matrix. The third column in the tables reports the estimated
bias, that is, the average deviation of the estimated parameter from the true
parameter over the 40 experiments. The t-statistic for that bias, reported in
the next column, is obtained from the standard deviation of the estimated
parameters over the 40 experiments, which is shown in column five. The last
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column shows the average estimated standard error of the parameter estimate
obtained from the (simulated) first derivative outer product approximation of the
Hessian matrix of the likelihood.

Consider the results for each of the data sets. For data set one, the
biases overall seem to be very small and precisely estimated. The only
parameters for which the bias seems at all substantively significant are the
Cholesky parameters azz,a;», and a,,. €Given that we observe the current period
rewards for occupations, namely (accepted) wages, but not for schooling or home,
it might be expected that pinning down error variances and covariances involving
those choices would be most difficult. Based on the standard deviations of the
estimated parameters, the estimated parameters (true value + mean bias) are
themselves in most cases also precisely estimated; t-statistics over 100 are not
unusual. However, standard errors based on the simulated approximation to the
Hessian matrix are significantly overstated, often by an order of magnitude.

The biases are also generally small for data sets two and three, although
less precisely estimated. Again, the only substantively important biases seem
to be for the Cholesky decomposition parameters associated with schooling and
home, azq and az; for data set two and azq and a,; for data set three. Also as
with data set one, parameters are estimated precisely, but standard errors using
the simulated outer product approximation to the Hessian, while generally
overstated, seem to be less severely overstated than was the case with data set
one.

While the biases appear small in some sense, it is unclear what is an
appropriate metric. If one is interested in the estimates of particular
parameters in themselves, then it probably makes little difference if the
"return™ to schooling is thought to be 3.8 percent in occupation one or 3.822
percent as is the case for data set one. However, it is likely that the parameter
values themselves are not of primary interest, but rather that the model would
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be used for some forecasting purpose. It is therefore important to consider the
performance of the approximation in estimation in terms of its out-of-sample
predictive power. Table 8 provides such information. To obtain out-of-gample
predictions, a new set of 40 samples of 100 persons each was drawn and matched
to each of the 40 sets of estimated parameter vectors obtained from the original
40 samples of 100 persons. From each of those 40 new samples, we calculated mean
schooling attainment and work experience in each occupation at the end of life
based on the estimated parameters and using the approximate solution method. The
same calculations were performed at the true parameters using the exact solution
method.

For data set one, Table 8 shows that the approximate solution overstates
schooling attainment by .06 periods, understates work experience in occupation
one by .36 periods, and overstates work experience in occupation two by .32
periods. The residual home time, not reported in the table, is overstated by .02
periods. In percentage terms, prediction errors are all below three percent.
While the standard errors of the prediction error estimates generally exceed
their point estimates, based on 95 per cent confidence intervals one would
probably judge these differences to be substantively small. The prediction
biases for data set two are larger than those obtained for data set one, and they
are also much more precisely estimated. However, 95 per cent confidence
intervals span still reasonably small biases. Data set three has the largest
schooling prediction bias, 15 per cent, but small experience biases. The 95
percent confidence interval for the schooling bias includes what might be judged
an economically significant error, at the outer bound .75 periods (years) given
actual additional attainment of 3.78 periods or a 20 per cent error.

An important reason for obtaining estimates of the structural choice model
is to calculate the effects of counterfactual policy interventions on decisions.
Table 9 compares the estimates of a college tuition subsidy on end-of-life
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schooling and occupation-specific experience using the approximate and exact
solutions based on the out-of-sample data used in constructing Table 8 described
above.28 The amount of the tuition subsidy varies across the data sets in order
to keep the effects of similar magnitude. 2As Table 9 indicates, a 500 dollar
per-period subsidy assuming data set one parameters increases schooling by 1.44
periods, a 1000 dollar per-period subsidy assuming data set two parameters by
1.12 periods, and a 2000 dollar per-—period subsidy assuming data set three
parameters by 1.67 periods. The corresponding tuition effects based on the
parameter estimates obtained from the approximate solution are 1.72, 1.08, and
1.14 periods. Using the approximate solution would overstate the cost of the
program by 140 dollars per cohort member for data set one (860 dollars vs. 720
dollars per cohort member). It would understate the cost by only 35 dollars per
cohort member for data set two (1082 vs 1117), but would understate the cost by
1060 dollars per cohort member for data set three (2280 vs 3340). Confidence
intervals on all of these estimates are quite narrow. Whether an understatement
of 30 per cent of the total cost of the intervention, as for data set three, is
large depends on the accuracy of alternative forecasts.

D. The Case of Extremely Large State Spaces: Alternative Interpolating

Functions
1. The Problem

As discussed in the previous section, the interpolating function based on
(17) would become infeasible to implement if the state space were sufficiently
large. Recall that the approximate solution method based on (17) requires that
the value of EMAX be either simulated or interpolated at every point in the state
space. The reason is that the arguments in the EMAX interpolating function (17),
the GL'S, are themselves functions of the next period EMAX function, as can be
seen by taking the expectation of (4). Even very fast interpolations will become
too computationally burdensome when the state space, and therefore the number of
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fitted EMAX‘s, is sufficiently large. Computer memory limitations will be reached
eventually as well.

Serial correlation in unobservable state variables is a special case of the
general problem because, as noted, it has the effect of increasing the size of
the state space. If each disturbance is first-order Markov, calculating
EMAX(S(t+1),t+1l§(t),e(t),dk(t)=l) requires integrating over the distribution
of e(t+1l) conditional on e(t) . A backwards solution using (17) involves
constructing and saving in memory a wvalue (simulated or interpolated) of
EMAX(S(t+1),t+1|S(t),e(t),dg(t)=1) for every (S(t+l),e(t)) point in the state
space.

The general problem of an extremely large state space can be avoided by
using interpolating functions for EMAX that do not include next period EMAX
values as arguments. Examples would be interpolating functions for EMAX at time
t whose arguments were the state variable at time t themselves, or the expected
reward functions at time t. In these cases, the fitted EMAX values can be
constructed as they are needed in the backwards solution from the estimated
interpolating function parameters, and none of the interpolated EMAX values need
to be saved in memory.

In the case of serially correlated unobservables, it is only necessary to
treat them symmetrically with the other state variables. First, simulate the
EMAX(S(t).,t |§(t-—1) 1€(t-1),d¢(t-1)) values corresponding to a subset of the state
pointsg froﬁ the (g(t) (€{(t -1)) set. Then, given any element from the (-S-(t—l) se{t-1))
set and given any choice dg(t-1)=1, form the EMAX(S(t),t [g(t-l),e(t-l),dk(t—l))
function from the interpolating regression that has g(t) and e€(t -1) , or simple
functions of them in the case of expected rewards, as arguments. This approach
has the additional advantage that the disturbances need not be discretized. In

terms of estimation, simulated maximum likelihood is substantially complicated
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when there is serial correlation. However, the recursive simulation method
developed by Keane (forthcoming), applies directly to this case.

In cases where the interpolating function involves as direct arguments the
state variables or the expected rewards, or in any case where the interpolating
functions for EMAX at t do not include EMAX values at t+l, it is not necessary
that S**(t+1), the set of state points for which EMAX at t+1 is simulated or
interpolated, be larger than S**(t). Thus, the curse of dimensionality is
essentially circumvented provided the interpolation function provides accurate
predictions based on a computationally feasible number of simulated state points.

2. Results Using Alternative Interpolating Functions

In this section, we provide evidence on the performance of three
alternative interpolating functions that are computationally tractable even when
the state space is large enough that it becomes infeasible to £ill in all of the
EMAX values by interpolation. The first alternative we consider is to
interpolate EMAX from a quadratic approximation in the deterministic state space
elements. Recall that the deterministic part of the state space for the dynamic
program consists of the number of periods of experience in each occupation, the
number of periods of schooling, and a dichotomous indicator of whether the
individual attended school in the previous periocd. The second alternative uses
a quadratic approximation in the contemporary payoffs evaluated at the means of
their stochastic components; the contemporary payoffs are given by the
determiniétic components of the reward functions shown in (8). Note that the
deterministic reward in the nonmarket sector does not vary with the state space
and is not used in the interpolating function. The third specification of the
interpolating function modifies the second by adding the maximum of the
deterministic components of the value functions, MAXE(0), as a regressor. This
last formulation ig still feasible in the case of serial correlation because,

unlike the Gi functions, this deterministic function does not depend on e(t -1l).

33



However, this form is not feasible if the deterministic component of the state
space is extremely large, because MAX(0) must be congtructed at all points of the
deterministic part of the state space.

The performance of these interpolating functions is compared in Table 10
and in Tables 11.1-11.3. We use the same three data sets as in Tables 1-9.
Unfortunately, it is not feasible to compare the approximations to the exact
solutions for models where serially correlation is actually present or where the
state space is many times larger than that we have already considered, because
obtaining an exact solution of the model is computationally too burdensome.

Table 10 reports the proportion of correct choices, paralleling Tables 3.1-
3.3, and the average number of periods correct, as in the last row of Tables 4.1-
4.3. The dynamic program is solved using 2000 simulation draws for the EMBX
calculations and 500 state points for the interpolating regregsion. The results
indicate that the third specification is the most consistent, performing slightly
better than our preferred interpolating function in data set three, slightly
worse in data set two, and fairly significantly worse in data set one. The third
specification dominates the more parsimonious second specification in all three
data sets. The first specification, using the state space elements directly for
the interpolation, is almost identical to the third specification in data set
three, is somewhat better in data set two, but is very significantly worse in
data set one.

Tables 11.1~1.3 report the performance of the three alternative interpolat-
ing functions in estimation. Monte Carlo experiments were performed using the
same design as those in Table 7. However, given the computational burden of this
exercise, we use only data set one for the evaluation. Unlike the results in
Table 7.1, the quadratic in state variables approximation shown in Table 11.1
reveals biases of substantially economic magnitude in several parameters, in
particular, the blue-collar wage function intercept, the cost of returning to

34



school, the wvalue of home-time, and the concavity of the experience effects.
Biases in the covariance matrix of the disturbances are also considerably larger
than in Table 7.1. Approximations based on the second alternative interpolating
function, quadratics in the rewards evaluated at the mean disturbance, generally
have smaller biases as seen in Table 11.2, However, the bias in the estimated
cost of returning to school and in the value of home-time remain large, as do
those of some of the Cholesky parameters. As Table 11.3 indicates, the third
interpolating function causes, on balance, the smallest biases. Although larger
than those in Table 7.1, they are usually of the same order of magnitude.

The evidence indicates that the interpolating function based directly on
the state variables can perform poorly. Taking into account how the state
variables enter into the reward functions seems to matter. Experiments with
alternative functional forms in these sets of arguments is needed before strong

generalizations should be drawn.

IV. Conclusion

In this paper we have proposed a new method for approximately solving
discrete choice dynamic programming problems. The method is based on simulation
and interpolation. It requires that one simulate the expected maxima of the value
functions only at a subset of the state points. Then, these simulated expected
maxima are used to fit an interpolating regression that provides fitted wvalues
for the ekpected maxima at the other points, which are needed in the backwards
solution process. Thus, our approximation method ameliorates Bellman’s “curse of
dimensionality" problem, obtaining approximate solutions for problems with
otherwise intractably large state spaces.

The method we propose requires choosing a particular interpolating
function. For the fairly general type of problem we consider, we find, in a
number of Monte Carlo experiments, that a function that includes the expected
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alternative-specific value functions performs quite well in several dimensions.
First, it produces optimal decision paths very similar to those produced by the
true solution. Second, estimation based on this approximation method embedded in
a simulated ML procedure produces parameter estimates with biases that seem
negligible from a substantive economic point of wview. Third, the estimates so
obtained, used in conjunction with the same approximate solution method, do
exceedingly well at out-of-sample prediction, and produce simulated policy
effects very similar in most cases to those predicted by the true parameter
values in conjunction with the exact solution method.

A drawback to the interpolating function that uses the expected value
functions as regressors is that it requires that the simulated plus interpolated
EMAX values span the entire state space. As the state space grows, the number of
interpolated values can themselves become intractably large in terms of
computational capacity and memory. Alternative interpolating functions that do
not require spanning the whole state space were presented and evaluated. These
include functions whose arguments are the state space elements themselves or the
reward functions evaluated at the mean of their disturbances. These interpolating
functions are tractable regardless of the size of the state space, and circumvent
the "curse of dimensionality" problem to the extent that they are good
approximations. We find that approximations based on quadratics in the state
space elements perform rather poorly, at least with respect to one of the
simulated‘data sets, while those based on quadratics in the expected rewards
perform reasonably well. None perform as well overall as the interpolating
function based on the expected value functions.

It is our view that the approximate solution method proposed in this paper
is a promising way to greatly increase the complexity of the optimization models

that are feasible to solve and estimate. However, much additional work, with
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expanded state spaces and choice sets, needs to be done to determine the method’s

general applicability.
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FOOTNOTES

1 In random utility models (McFadden, 1973), the size of the choice set is
usually taken to be the number of mutually exclusive choices and the additive
random errors attached to each choice, while possibly correlated, have some
unique component. However, a statistically nondegenerate model, one in which all
mutually exclusive choices have nonzero probability, can be obtained with as few
errors as the number of distinct (nonmutually exclusive) decision variables.
Thus, the relevant dimensionality of the numerical integrations need not expand
exponentially as more choices are added.

2 1n principle, empirical implementation can be nonparametric. However,
Rust (1992) provides a formal demonstration of the nonparametric nonidentifi
ability of the discrete choice dynamic programming models considered in this
literature.

3 Po the extent that the numerical integrations necessary to obtain the full
solution decision rules are always inexact, all full solutions are approxima-
tions. There is therefore some arbitrariness in what to classify as an
approximation. Moreover, we restrict our attention to approximations which
maintain the mapping from the parameters of the approximation solution to the
structural parameters of the full solution. One can always consider decision
rules that depend parametrically on the appropriate state variables of the
optimization problem as an approximation to the correct decision rules. 2An
example in which this interpretation is explicit is the paper by Hotz and Miller
(1988).

4 Bellman, Kalaba and Kotkin (1963) proposed using polynomials in the state
space to approximate value functions in a continuous choice setting. As will
become apparent, our approach to approximation, while related, differs in

important ways.
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5 The fact that the state space is assumed to evolve as a Markov process
does not mean that the underlying randomness is Markovian because the state space

may include the entire history.

6 We are also currently implementing a version of this model on actual data.
7 This model is formally equivalent to a dynamic version of the model by Roy

(1951), recently reconsidered by Heckman and Sedlacek, 1985.

8 Note that (8) assumes that (equilibrium) skill rental prices are constant
over time. We make this assumption to avoid having to deal with aggregate shocks
later in the Monte Carlc estimation. The existence of an aggregate shock, except
for having to specify its stochastic process, raises no additional difficulties

to what we consider below.

9 This number reflects the appropriate constraint that the sum of the
occupation-specific work experiences and schooling cannot exceed T. We also
assumed that schooling could not exceed ten additional years.

10 The numerical integration may be of dimension greater than K if there is
more than one source of randomness per alternative. In the occupational choice
model, for example, there may be shocks to the marginal product of schooling or
experience in the skill mapping functions. On the other hand, allowing for
nonexclusivity over the choice set, i.e., for working in either occupation and
going to school, does not require that we add additional sources of randomness.

" Only Miller, 1984, and Pakes, 1987, have allowed for serial correlation
in unobservables of this kind. Some applications have included permanent
unobserved heterogeneity (e.g., Engberg, (1991)) which leads to less serious
complications in the solution and estimation of these types of optimization
problems.

12 Berkovec and Stern (1991) use the MSM estimator for a dynamic programming

optimization problem for which there are analytical solutions.
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13 Miller formulates an occupational choice model as a multi-armed bandit
problem. The method he develops for tractably solving (employing the Gittens
index) and estimating that model, accommodating as it does a large choice set and
serial correlation in wages, is generalizable to problems with the same
structure. Its main drawback is that the assumption in such problems of
independence across arms may be too restrictive over a broad range of economic
problems. For example, it would inapplicable to the occupational choice model we
consider if work experience in one occupation affects productivity in another
occupation. Pakes considers an optimal stopping problem (whether or not to renew
a patent) in which serially correlated unobservables enter the reward function
additively. While the distributional assumptions that make the solution of the
dynamic programming problem tractable are specific to the particular
problem, and thus not generally transportable to other stopping problems, Pakes
demonstrated the feasibility of incorporating serial correlation into the
estimation of discrete choice dynamic programming models.

1% There is a direct analogy to nested logit, but without its usual implied
sequential decision-making interpretation. Even in the non-nested case, the
independence of irrelevant alternatives axiom does not hold in the dynamic
setting because augmenting the choice set must affect the valuation attached to

all choices.

5 For a brief description of Manski’s approach, see Eckstein and Wolpin
(1989).

16 we do not employ acceleration techniques, e.g., antithetical variates,
in order to keep the methed simple. Using such methods might increase accuracy
for a given computational burden.

7 As can be seen by manipulating (13), this representation is exact for the

multivariate extreme value distribution.
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18 por the case with additive errors, Stern (1991) shows that the EMAX

function must satisfy the following derivative conditions with respect to ;i
(Stern, 1991): (1) the first-partial derivatives are positive, (2) the first-
partial derivatives sum (over k) to one, (3) the first-partial derivatives are
less than one, (4) the second own-partial derivatives are positive, and (5) the
second cross-partial derivatives are negative. When the errors are
multiplicative, or a mixture of multiplicative and additive errors as in the
occupational choice model, conditions (1), (4) and (5) still hold.

19 The discount factor is set to .95 throughout the analysis.

20 we did not create a data set with serially correlated unobservables
because obtaining an exact solution and conducting an analysis of the performance
of our approximation method would have been computationally prohibitive. Except
for the errors caused by the discretization of the disturbances, there is no
reason to believe that, for a given dimension of the state space, the performance
of the approximation method would be different with serially correlated
disturbances.

21 None of the derivative properties of the EMAX function are consistent
with (19); specifically, some of the cross partial derivatives in (19) are
identically zero. However, adding interaction terms generally led to worse out-
of-sample EMAX predictions. And imposing the set of restrictions when the
interpolating function is only an approximation will not necessarily improve the
predictions. For example, using the form for EMAX obtained in the extreme value
case (14) performed worse than our interpolating function, even though it
obviously saﬁisfies the derivative restrictions. The one restriction we did
impose on the interpolated values was to set EMAX equal to MAXE if the predicted

value for EMAX was below MAXE, a rare occurrence.
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22 ye were not able to come up with a way of systematically choosing the
state points that improved the EMAX out-of-sample predictions. This is clearly

an area for further research.

23 mpven ignoring the existing literature on the use of MAXE, the fact that
MAXE is a lower bound to EMAX and that they move together makes it a natural
choice as a comparison approximation. Moreover, EMAX approaches MAXE as the

dispersion in the disturbances go to zero.

24 Calculating the exact solution using 100,000 draws and all of the state
points took approximately 50 minute of cpu time on a CRAY 2. Using 2000 draws and
all state points took 47 seconds, using 2000 draws and 2000 state points took 20
seconds, and using 2000 draws and 500 state points took 10 seconds. Cutting the
number of draws in half, to 1000, using 2000 state point values reduced the cpu
time to 13 seconds and using 500 state points to 6 seconds. Comparable times on

an IBM RISC 6000 Model 350 are 7-8 times greater.

25 Interestingly, while the MAXE function is convex in ;}, as must be the
Emax function, the best fitting approximation function is not.

26 phe smoothing function is necessary because with only 200 draws there are

cells that have no simulated observations. The =moothing function used was the
Kernel smoothing function described in McFadden (1989) with a window parameter
of 500.
27 The simulated ML estimator is consistent as the number of state points,
the number of EMAX simulation draws, and the number of choice probability
simulation draws all become large.
28 1t is important to recognize that these are partial equilibrium effects.

Providing a tuition subsidy would lead to changes in occupation-specific skill

rental prices that would further modify behavior.
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Table 1

Parameter Values

Parameters Data Set One Data Set Two Data Set Three
a0 9.21 9.21 8.00
o1 .038 .04 .07
a1z .033 .033 .055
a3 .0005 .0005 0.0
a4 0.0 0.0 0.0
a5 0.0 0.0 0.0
020 8.48 8.20 7.90
a1 .07 .08 .07
- .067 .067 .06
o3 .001 .001 0.0
ay, .022 .022 .055
ag .0005 .0005 0.0
Bo 0.0 5000. 5000.
81 0.0 5000. 5000.
B> 4000. 15000. 20000.
Yo 17750. 14500. 21500.

(o112 ® .2 .4 1.0

012 0.0 0.0 .5

013 0.0 0.0 0.0

014 0.0 0.0 0.0
(Gap) .25 .5 1.0

023 0.0 0.0 0.0

o2 0.0 0.0 0.0
(o33) ¥ 1500. 6000. 7000.

o34 0.0 0.0 -2.975 x 107
(0ug) ™ 1500. 6000. 8500.

Ri(t) =wqy = exp(oqp + Q115 + X ~ 0413X12t *oaXpe T a1sX§t + €1¢)
Ra(t) = wpe = exp(opg + Q218 + 02Xpt — 0!23822t Xt ~ azsxizt + €3¢)
Rz(t) =fg = B1I(sy 213) ~ fr(1 -d3(t-1)) + e3¢

Ry(t) = yg + €4t

L = (o))



Table 2.1

Choice Distribution: Data Set One?

Occupation Occupation NonMarket
Period One Two Schooling Sector
1 .386 .116 .480 .008
2 427 .175 .354 -.044
3 444 .220 .308 .028
4 .459 .263 .255 .023
5 417 .332 .218 .033
6 .427 .374 .175 .024
7 .412 .387 .179 .022
8 .399 421 .185 .025
9 -372 475 .130 .023
10 . 355 .501 126 .018
11 . 340 .537 .09% .024
12 .342 .567 .081 .010
i3 .322 .585 .073 .020
14 .321 .612 .056 .011
15 .303 .619 .062 .016
16 .297 .640 .052 .011
17 .290 .664 .034 .012
18 .304 .656 ‘ .028 .012
19 .283 .686 .018 .013
20 277 .695 .016 .012
21 .288 .691 .011 .010
22 .266 .716 .003 .015
23 .268 . 717 .006 .009
24 .258 .731 .001 .010
25 .265 .715 .005 .015
26 270 .720 .003 .007
27 .254 .730 .000 .016
28 .252 .743 .000 .005
29 249 .736 .000 .015
30 .241 .742 .000 .017
31 .246 .743 .000 .011
32 .243 .750 .000 .007
33 .242 .748 .000 .010
34 .243 .746 .000 .011
35 .229 «757 .000 .014
36 .244 +.750 .000 .006
37 .234 .755 .000 .011
38 .238 .749 .000 .013
39 .231 .753 .000 .016
40 .230 .758 .000 .012

a. Based on a simulated sample of 1000 people.



Table 2.2

Choice Distribution: Data Set Two®

Occupation Occupation NonMarket
Period One Two Schooling Sector
1 .344 .038 .575 .043
2 .481 .0589 .375 .085
3 .606 .073 .238 .083
4 .633 .115 .176 .076
5 .658 .126 .143 .073
6 .659 .146 .111 .084
7 .662 .151 .0%6 .091
8 .642 .182 .097 .079
9 .657 .174 .084 .085
10 .632 .210 .082 .076
11 .648 .227 .056 .069
12 .642 .241 .046 .071
13 .641 .254 .044 .061
14 .643 .265 .036 .056
15 .633 .278 .029 .060
16 .625 .291 .023 .061
17 .623 .305 .020 .052
18 .628 .289 ' .028 .055
19 .599 .325 .014 .062
20 .597 .322 .020 .061
21 .621 .317 .017 .045
22 .613 .327 .010 .080
23 .585 .358 .006 .051
24 .580 .360 .005 .055
25 .596 .344 . 000 .060
26 .622 .334 .003 .041
27 .566 .376 .002 .056
28 .567 .386 .001 .046
29 .548 .394 .000 .058
30 .560 .373 .002 .065
31 .562 .374 .000 .064
32 .568 .388 .000 .044
33 .562 .374 .000 .064
34 .568 .367 .000 .064
35 .578 .369 .000 .053
36 .557 .390 .000 .053
37 .562 .387 .000 .051
38 .542 .397 .000 .061
39 .562 .3858 .000 .053
40 551 .390 .000 .059

a. Based on a simulated sample of 1000 people.



Table 2.3

Choice Distribution: Data Set Three®

Occupation Occupation
Year One Two School Home
1 .169 .036 752 .043
2 .308 .042 .594 .056
3 .455 .058 .430 .057
4 .574 .066 .326 .034
5 .628 .070 «255 .047
6 710 .071 .189 .030
7 725 .080 .166 .029
8 . 746 .090 .139 .025
9 .752 .090 .132 .026
10 .762 .101 .123 .014
11 .782 .115 .083 .020
i2 .797 .120 .071 .012
13 793 .129 .070 .008
14 .782 .153 .059 .006
15 .788 .148 .055 .009
16 .779 .158 .054 .009
17 .783 .173 .042 .002
18 «775 .182 .035 .008
19 776 192 .02% .003
20 .763 .208 .028 .001
21 .757 .218 .022 .003
22 . 740 .235 .020 .005
23 .704 .280 .014 .002
24 «712 <274 .012 .002
25 .712 269 .013 .006
26 .698 .290 .008 .004
27 .657 .332 .004 . 007
28 .625 .368 .003 .004
29 .628 .369 .001 .002
30 .587 .396 .004 .013
31 .557 .433 .001 .009
32 .541 .452 .000 .007
33 .516 . 468 .000 .01le
34 .494 .484 .001 .021
35 .445 .518 .000 .037
36 .388 .571 .000 .041
37 .370 .575 .001 .054
38 .329 .584 .000 .087
39 .306 .595 .000 .099
40 .270 .604 .000 .126

a.

Based on a simulated sample of 1000 people.



Table 3.1

Proportion Correct Choices for Alternative Approximations at Selected Periods:

Data Set One?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000¢ MAXEd

No. States all all All 2000 500 500 all
Period

1 .979 .977 .974 .984 .971 .971 .401

5 .988 .980 .972 .983 .958 .990 .456

10 .982 .972 .969 .983 .963 .992 .386

15 .985 .978 .971 .980 .966 .992 .334

20 .986 .977 .970 .983 .967 .994 .312

25 .985 .978 .973 .984 .970 .998 .305

30 .985 .979 .972 .986 .971 1.00 .279

35 .985 .977 .970 .984 .971 .999 .261

40 .985 .977 .971 .988 .973 1.00 .264

Totals .985 .977 .970 .984 .968 .994 .338

a.

b.

C.

Based on a simulated sample of 1000 people.

EMAX = E max(V', v2,v3,v4.

One-step ahead forecast.

MAXE = max(EV', EVZ, EV3,EVY).




Table 3.2

Proportion Correct Choices for Alternative Approximations at Selected Periods:

Data Set Two?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000° MAXEd

No. States a1l All all 2000 500 500 all
Period

1 .997 .980 .986 .987 .976 .976 .742

5 .994 .978 .960 .977 .920 .971 774

10 .995 .975 .957 .969 .898 .966 .769

15 .989 .968 .959 .961 .911 .975 .754

20 .996 .974 .962 .956 .907 .965 .728

25 .996 .978 .968 .968 .926 .980 .736

30 .996 .978 .960 .961 .927 .994 .721

35 .993 .980 .963 .974 .928 .996 .740

40 .996 .984 .970 .981 .930 1.00 .734

Total: .994 .975 .962 .967 .923 .978 .740

ae

b.

C.

d.

Based on a simulated sample of 1000 people.

EMAX = E max(Vv',ve,v3,v4).

One-step ahead for cost.

MAXE

= max(EV', EV3, EV3,EV%).



Table 3.3

Proportion Correct Choices for Alternative Approximations at Selected Periods:

Data Set Three?

No. EMAX Draws® 2000 1000 250 2000 2000 2000°¢ MaxEd

No. States All all All 2000 500 500 All
Period

1 .995 .995 .992 .993 . 969 .969 .709

5 .985 .993 .962 .968 .932 .956 .470

10 .989 .992 .956 .970 .898 .941 .427

15 .986 .992 .984 .963 .917 .939 .414

20 .994 .997 .987 .970 .924 .961 .421

25 .990 .993 .988 .978 .954 «9717 .445%

30 .989 .997 .990 .959 .960 .974 .514

35 .992 .996 .988 .962 .960 <976 .615

40 .996 .998 .990 .982 .975 1.00 .765

Total: .991 .994 .982 .966 .942 .963 .508

Based on a simulated sample of 1000 people.

EMAX = E max(V', Ve, v3,v%).

One-step ahead forecast.

MAXE = max(EV!, EVZ, EV3,EV4).



Table 4.1
Distribution of Number of Periods of Lifetime Correctly Predicted
(Percent) for Alternative Approximations:

Data Set One?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000¢ MAxEd
No. States All All all 2000 500 500 aAll
Periods
0-10 1.3 2.1 2.6 1.0 2.4 0.0 71.0
11-29 0.3 0.2 0.3 0.2 0.5 c.0 4.1
30-35 0.4 0.5 1.2 0.8 1.7 0.0 0.3
36-38 2.4 3.1 3.1 2.8 5.2 1.8 1.6
39 1.4 2.4 3.0 9.5 10.6 18.6 1.9
40 84.2 91.7 89.8 85.7 79.6 78.6 21.1
Average No.
Periods 39.4 39.1 38.8 3%.4 38.7 39.8 13.5
Correct

a. Based on a simulated sample of 1000 people.
b. EMAX = E max(V'1,v2,v3,v4.
c. One-step ahead forecast.

d. MAXE = max(EV!, EVZ, EV3, EV4).



Table 4.2
Distribution of Number of Pericds of Lifetime Correctly Predicted
(Percent) for Alternative Approximations:

Data Set Two®

No. EMAX Drawsb 2000 1000 250 2000 2000 2000°¢ MAXEd
No. States all All All 2000 500 500 All
Periods

0-10 0.0 0.1 0.2 0.0 0.4 0.0 3.40

11-29 0.8 3.4 4,4 3.0 8.8 0.0 37.1

30-35 0.7 2.9 5.4 4.7 10.3 0.4 21.3

36-38 2.4 4.9 8.3 12.3 18.0 23.1 17.7

39 1.9 3.4 5.5 16.8 19.7 33.7 8.6

40 94.2 85.3 76.2 63.2 42.8 42.8 11.9

Average No.

Periods 39.7 39.0 38.5 38.7 36.9 39.1 29.6

Correct -

R I R R R R R R R R ——e—e—e——— /e
r— ———— e e

a. Based on a simulated sample of 1000 people.
b. EMAX = E max(v', v2,v3,v4).
¢c. One-step ahead forecast.

d. MAXE = max(EV!, EVZ, EV3,EVY).



Table 4.3
Distribution of Number of Periods of Lifetime Correctly Predicted
(Percent) for Alternative Approximations:

Data Set Three®

-——-——____—'—'————————_——__-—_—_—__—_———

No. EMAX DrawsP 2000 1000 250 2000 2000 2000¢ MAxEd
No. States All All all 2000 500 500 All
Periods
0-10 0.0 0.0 0.0 0.0 0.0 0.0 1.4
11-29 0.3 0.0 0.2 0.3 1.3 0.0 90.6
30-35 1.3 0.7 3.2 6.6 14.0 2.7 7.1
36-38 6.4 5.7 13.1 25.8 35.6 38.9 0.6
39 7.4 5.3 11.6 21.2 23.9 33.2 0.3
40 84.7 88.3 71.9 46.1 25.2 25.2 0.0
Average No.
Periods 39.7 39.8 39.3 38.7 37.7 38.5 20.3
Correct -

Based on a simulated sample of 1000 people.
EMAX = E max(v1,v2,v3,v4),
One-step ahead forecast.

MAXE = max(EV', EVZ, EV3, EV4) .



Table 5.1
Number of Periods Chi-Square Fit Test Rejects
Approximation for Alternative Approximations

and Data Elements: Data Set One?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000°¢
No. States All All All 2000 500 00
Significance .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01. 05
Level

Choice

Distribution® 0 0 0 0 0 0 0 0 0 1 0 0]
Schooling

Distributionf ) 0 0 0 ) 0 0 0 ) ) - -

Occupation One

Experience

Distributionf 0 0 0 0 0 0 0 0 ] ) - -
Occupation Two

Experience

Distributionf ) ) 0 0 0 ) 0 ) 0 0 - -

a. Based on a simulated sample of 1000 people.
b. EMAX = E max(V!,vZ2,v3,vé.

c. One-step ahead forecast.

d. MAXE = max(EV', EVS, EV3, EVY).

e. Maximum number of periods = 40.

£. Maximum number of periods = 39.



Table 5.2
Number of Periods Chi-Square Fit Test Rejects
Approximation for Alternative Approximations

and Data Elements: Data Set Two?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000° MaxXEd
No. States All All All 2000 500 500 All
Significance .01 .08 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05
Level

Choice

Distribution® 0 0 0 0 3 11 0 1 36 39 0 1 40 40
8chooling

Distribution® 0 0 0 0 0 13 0 0 37 38 - - 39 39
Occupation One

Experience

Distributionf 0 0 0 0 0 10 0 2 37 38 - - 39 39
Occupation Two

Experience

pistributionf 0 0 0 0 0 1 3 5 24 27 - - 38 39

a. Based on a simulated sample of 1000 people.

b. EMAX = E max(V1,vZ,v3,v4.

c. One-step ahead forecast.

d. MAXE = max(EV!, EVZ, EV3, EV%).

e. Maximum number of periods

f. Maximum number of periods

40.

39.



Table 5.3
Number of Periods Chi-Square Fit Test Rejects
Approximation for Alternative Approximations

and Data Elements: Data Set Three?

No. EMAX DrawsP 2000 1000 250 2000 2000 2000¢ MAXEd

No. States All All All 2000 500 500 All
Significance .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05
Level

Choice

Distribution® ) 0 0 0 4 5 ) 0 2 3 5 6 40 40
Schooling

Distributionf ) ) ) 0 28 31 26 30 35 36 - - 39 39

Occupation One

Experience
Distributionf 0 0 0 0 ) ) 11 21 35 37 - - 38 38
Occupation Two
Experience
Distributionf ) ) 0 ) 0 0 6 9 22 24 - - 39 39

a. Based on a simulated sample of 1000 people.

b. EMAX = E max(v', v, v3,v4.

d. MAXE = max(EV!, EVZ, EV3, EV4).

¢. One-step forecast.

e. Maximum number of periods 40.

39.

f. Maximum number of periods
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Table 7.1

Monte Carlo Estimation Results:

Data Set One?

Standard Dev. Mean of
True Mean t-statistic of Estimated Estimated
Parameter Value BiasP Mean Bias® Parameter Standard Erro

Q1o 9.21 .0025 9.92 .0016 .014
oy 0.038 .00022 8.73 .00016 .0015
Qg2 0.033 .00037 16.0 .00014 .00079
o3 ~0.0005 ~.000035 -19.5 .000011 .000019
Qg 0.0 -.00062 -3.52 .0011 .0024
o5 0.0 .0000009 0.10 .000058 .000096
oz 8.48 .0023 7.59 .0019 .0123
olaq 0.07 .000007 0.4% .000095 .00096
022 0.067 .00031 13.6 .00014 .0010
a3 -0.001 -.000029 -23.1 .000008 .000030
7 0.022 -.00040 -6.24 .00040 .00090
oo -0.0005 -.000035 -5.46 .000041 .000070
Bo 5000 -67 4.24 100 459
B4 5000 147 6.42 145 410
Bz 15000 =207 -4.15 317 660
Yo 17750 -111 -4.40 159 1442
ayf 0.2 -.0014 -3.10 .0030 .0056
azq 0.0 -.0017 -0.70 .016 .023
azy 0.25 -.00029 -0.41 .0044 . 0046
aszq 0.0 .270 6.56 -261 -413
azp 0.0 -.037 -1.05 .224 .379




Table 7.1 (continued)

Standard Dev.

Mean of
‘True Mean t-statistic of Estimated Estimated
Parameter Value BiasP Mean Bias® Parameterd Standard Erro
ass 1500 -424 -12.3 218 350
a4 0.0 .042 2.1¢9 .123 .911
a4 0.0 .210 3.27 .406 .624
a3 0.0 -.103 -1.10 .588 .870
as, 1500 -467 -8.20 360 786

a. Based on 40 sets of 100 individuals. EMAX simulation uses 500 draws, interpolation uses
200 points, and likelihood simulation uses 200 draws.

) b y: ]
b- —0, = ir
29

40
a o= L ;(a,--a)z

40
1
e. i oz
40 Jz,; b
£. e = apmqe
€2t = a21Mt ¥ azMat
€3t = azMe + azaNpe + azznze
€4t T @4Mt t AaM2r t A43M3r * Q44741

e ~ N(O,1), k=1,.,4.



Table 7.2

Monte Carlo Estimation Results:

Data Set Two®

Standard Dev. Mean of
True Mean t~statistic of Estimated Estimated
Parameter Value BiasP Mean Biag® Parameterd Standard Erro
a10 9.21 .00076 2.58 .0019 .0041
o1 0.40 .000079 2.63 .00019 .00051
o2 0.33 .000059 2.43 .00015 .00030
o043 -0.0005 -.000022 -10.0 .000014 .000012
014 0.0 -.00017 -3.29 .00033 .00050
o15 0.0 -.000032 -4.55 .000044 .000036
0iag 8.20 .00023 0.70 .0021 . 0054
021 0.08 -.000058 -1.87 .00020 .00060
022 0.067 .000017 0.61 .00017 .00060
03 -0.001 -.000036 -7.53 .000030 .000026
oy 0.022 .000039 1.62 .00015 .00040
025 -0.0005 -.000023 ~-5.77 .000025 .000017
B 5000 -223 -2.31 610 906
B4 5000 218 1.89 732 999
B2 15000 -114 -0.67 1064 2565
Yo 14500 =392 -5.03 493 1601
af 0.4 -.00028 -0.40 .0044 .0057
asq 0.0 .0051 1.55 .021 .022
ass 0.5 ~.00039 -0.62 .0040 .0076
azy 0.0 -.394 -3.20 .778 .971
0.0 .421 2.71 .982 793

a3z




Table 7.2 (continued)

Standard Dev. Mean of
True Mean t-statistic of Estimated Estimated
Parameter Value BiasP Mean Bias® Parameterd Standard Erro
asz 6000 106 1.24 541 1034
a4 0.0 -.065 -.059 .699 1.02
E 0.0 .070 0.49 .903 .641
asz 0.0 .117 0.59 1.26 .658
244, 6000 89 -0.85 660 955

a. Based on 40 sets of 100 individuals. EMAX simulation uses 500 draws, interpolation uses
200 points, and likelihood simulation uses 200 draws.

] 6 3 b
b. - 0, = ir
2 0

c. [9 -6 ] V40
r)
40 ‘
1 2
d. 05 = |-= 5-—9)
j
39 £ (
40
1 ~
e. p— [
40 =4 %
. e¢¢ = ayme
€t = Mt t* 2Nt
€3¢t = aziMe + azaze * azzn3e
€t T @41Me * QM2 A43M3¢ T Q444

me ~ N(0,1), k=1,.,4.



Table 7.3
Monte Carlo Estimation Results:

Data Set Three?

Standard Dev. Mean of
True Mean t-statistic of Estimated Estimated
Parameter Value BiasP Mean Biag® Parameterd Standard Erro

a1 8.00 .00032 2,72 .00075 .012
aq 0.070 ~.000047 -2.47 .00012 .00038
a2 0.055 .000020 1.29 .000097 .00023
o3 0.0 -.0000018 -0.69 .000011 .0000079
o4 0.0 -.00034 -2,60 .00083 .0016
a5 0.0 .00014 2.95 .00031 .00021
Cizg 7.90 .00021 1.74 .00076 .0068
oin4 0.070 .000026 1.07 .00016 .00037
a 0.06 -.00013 -3.00 .00027 .00049
€33 0.0 -.000064 -4,93 .000082 .000032
oy 0.55 .0000078 0.64 .000077 .00026
025 0.0 -.0000086 -3.66 .000015 .000011
Bo 5000 71.0 1.18 381 1073
Je 5000 489 4.45 695 1208
B> 20000 243 1.59 962 2004
Yo 21500 -0.78 -0.26 19.2 25.3
agqf 1.0 -.000033 -0.25 .00082 .011
azq 0.5 .00051 1.95 .0016 .0059
asa 0.866 .000086 0.40 .0013 .0082
aszq 0.0 -.321 -4,37 .465 .756

az; 0.0 -.110 ~0.75 .927 .630




Table 7.3 (continued)

Standard Dev. Mean of
True Mean t-gtatistic of Estimated Estimated
Parameter Value BiasP Mean Bias® Parameterd Standard Erro
azs 7000 182 2.69 4286 725
as 0.0 .055 1.00 .346 .518
asz -4250 12.3 0.11 735 579
a4 7361 -1.11 -0.01 6985 519

a. Based on 40 sets of 100 individuals. EMAX simulation uses 500 draws, interpolation uses
200 points, and likelihood simulation uses 200 draws.

) 6 3 6
bo - 0' = ir
2 0

o |1 ( oV
do 0’0 - —3—9— jz gj 9)
40
e. i a;
40 = %
f. e = apme
€t = My * azMae
€3t = azMme * azpiee + azznzg
€t = auMe * as0Mar t as43Mze t 2444t

%t -~ N(O0,1), k=1,.,4.
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Figure 1.1

Actual and Predicted
EMAX - MAXE
3500 T
O Actual EMAX - MAXE
A Predicted EMAX - MAXE

3000+

2500+

1500+

1000 4

500+

0 7 I ] I \ 1 Vo
10000 15000 20000 25000 30000 35000 40000

a. Dataset one, points 415 through 442 in the state space in period 40. At these points,
V1 =20,619.63, V3 =-4000.0 and V4 =17,750.0.



Actual and Predicted

Figure 1.2

EMAX - MAXE
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a. Dataset two, points 415 through 442 in the state space in period 40. At these points,

V,=22,337.01, ¥, =-10,000.0 and ¥, = 14,500.0.



Actual and Predicted Figure 1.3

EMAX - MAXE
15000 1
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a. Dataset three, points 415 through 442 in the state space in period 40. At these points,
V;=19,148.89, V,=-15,000.0 and V, =21,500.0.



Figure 2.1

Actual and Predicted
EMAX
40000
O Actual EMAX
O MAXE
A Predicted EMAX
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10000 15000 20000 25000 30000 35000 40000

a. Dataset one, points 415 through 442 in the state space in period 40. At these points,
V1 =20,019.65, V3 =-4000.0 and V,, = 17,750.0.



Actual and Predicted Figure 2.2

EMAX
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a. Dataset two, points 415 through 442 in the state space in period 40. At these points,

Vl =22,337.01, \73 =-10,000.0 and v4 = 14,500.0.



Figure 2.3

Actual and Predicted

EMAX
100000 +

O Actual EMAX
O MAXE
900001 A Predicted EMAX

80000 A

70000 +

50000 -

40000+

30000 +

20000 T T 1 T ) T T | Vz
10000 20000 30000 40000 50000 60000 70000 80000 S0000
a. Dataset three, points 415 through 442 in the state space in period 40. At these points,

\71 =19,148.89, ‘\73 =-15,000.0 and V 4 =21,5000.



