Federal Reserve Bank of Minneapolis
Research Department Staff Report 172

June 1994

Dynamic Bargaining Theory

Melvyn Coles

University of Essex

Randall Wright

Federal Reserve Bank of Minneapolis
and University of Pennsylvania

ABSTRACT

The goal of this paper is to extend the analysis of strategic bargaining to nonstationary environments,
where preferences or opportunities may be changing over time. We are mainly interested in equilibria
where trade occurs immediately, once the agents start negotiating, but the terms of trade depend on when
the negotiations begin. We characterize equilibria in terms of simply dynamical systems, and compare
these outcomes with the myopic Nash bargaining solution. We illustrate the practicality of the approach
with an application in monetary economics.

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of
Minneapolis or the Federal Reserve System.



Dynamic Bargaining Theory

Melvyn Coles Randall Wright

University of Essex University of Pennsylvania

May 19, 1994

Abstract

The goal of this paper is to extend the analysis of strategic bar-
gaining to nonstationary environments, where preferences or oppor-
tunities may be changing over time. We are mainly interested in
equilibria where trade occurs immediately, once the agents start nego-
tiating, but the terms of trade depend on when the negotiations begin.
We characterize equilibria in terms of simple dynamical systems, and
compare these outcomes with the myopic Nash bargaining solution.
We illustrate the practicality of the approach with an application in

monetary economics.

1 Introduction

The approach to the bilateral bargaining problem introduced by Nash (1950)
is inherently static, or timeless: it specifies preferences over a set of possible
agreements and over failure to reach agreement, and establishes that there

exists a unique outcome satisfying a number of axioms. By way of contrast,
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the strategic bargaining model developed by Rubinstein (1982) is dynamic:
it specifies a sequence of moves, and preferences over the time of agreement
as well as the terms of agreement. The model has a unique subgame-perfect
equilibrium, in which there is immediate trade (i.e., the first offer is ac-
cepted). Moreover, as shown by Binmore (1987) and Binmore, Rubinstein
and Wolinsky (1986), as the time between offers in the game vanishes, the
equilibrium outcome converges to an appropriately specified Nash bargaining
solution.

Although the Rubinstein model is dynamic in the above sense, it is sta-
tionary in the sense that the horizon is typically assumed to be infinite and
the specification time-invariant. The goal of this paper is to extend the
analysis of strategic bargaining to general nonstationary environments. For
example, the payoffs implied by settlement may change over time, or the
payoffs implied by a breakdown in the negotiations may change over time,
because either preferences or economic conditions change (a special case of
this is when the horizon is finite). Additionally, the probability of a break-
down may change over time, or the bargaining power of the agents (in terms
of who gets to make the next offer) may change over time, for any number

of reasons.!

We do not mean to suggest that no one has thought of these issues before. Some
authors, going back to Stahl (1972), do consider finite horizons, which can be handled
relatively easily using backward induction. Another source of nonstationarity that has
been considered in some of the search and bargaining literature is the fact that when
traders leave the market, if they are not replaced, the arrival rates for the remaining
agents can change; see the survey in Osborne and Rubinstein (1990). Finally, Merlo and
Wilson (1993a, 1993b) analyze models where the payoffs and bargaining power both follow
discrete-time stochastic processes; however, they do not pursue the main issue of interest

here, which is the limiting case when the time between offers goes to zero. In this case, we



We would argue that there are many situations of economic interest where
these dynamic considerations are relevant. A trivial but illustrative example
concerns bargaining with a scalper over the price of a ticket while an event
is in progress. One consideration is simple time preference: you may prefer
to see the entire event sooner rather than later. But a different and poten-
tially more important consideration is that your utility from going to events
changes as events transpire. We are mainly concerned here with situations
where trade takes place immediately. Nonetheless, the terms of agreement
should depend, in general, on when negotiations begin. Thus, it is not that
real time elapses while bargaining with the scalper, but rather that the price
of a ticket will generally be a function of the time at which you locate him.

As is standard in strategic bargaining theory, even if there is immediate
trade, it is the threat of delay that drives the solution. Since things are
changing over time, our agents have to be forward looking when evaluating
the effects of delay, and therefore an equilibrium in our model is the solution
to a dynamical system. We think the assumption of forward looking agents
is superior to the alternative of simply imposing the myopic Nash bargaining
solution at each point in time, as has been done in some applications in the
past. Although this alternative delivers the same steady states as our forward

looking solution, the dynamic paths will generally be different.2

are able to characterize equilibria in terms of simple differential equations, and we are also
able to provide a general discussion of the realtionship between equilibria and the Nash

bargaining solution, things Merlo and Wilson do not attempt.
2Examples where the myopic Nash solution is imposed in dynamic models inlcude

Pissarides (1987) and Trejos and Wright (1994); see also Mortensen (1989) and Drazen
(1988). In some of these models agents’ utility functions are assumed to be linear, in
which case we will actually show that the myopic Nash solution coincides with the forward

looking solution along the entire path, and not just in steady state. However, it is not
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At the same time, we show that there does exist a time-varying Nash
representation of equilibria in our forward looking model. This Nash repre-
sentation generally differs from the one suggested by Binmore et al. (1986),
unless we restrict attention to steady states. Restricting attention to steady
states, we derive Nash representations for a fairly general class of environ-
ments and demonstrate how several results in the literature (including those
in Binmore et al.) emerge as special cases.

We then illustrate the practicality of the approach with an application in
search theory. In particular, we analyze the model of search and bargaining
in a monetary economy studied in Trejos and Wright (1994) and Shi (1994).
Those papers focus on steady states, or, when dynamics are discussed, impose
the myopic Nash bargaining solution. Using our forward looking bargaining
solution, we find that in some cases the set of equilibria is qualitatively the
same but quantitatively different. In other cases the nature of the equilibrium
changes qualitatively. For example, there can exist limit cycles in the price
level if we adopt the forward looking solution, but not if we impose the
myopic Nash solution.

The rest of the paper is organized as follows. In Section 2 we present a
simple version of the model in order to make the key points. In Section 3
we present several extensions and discuss Nash representations. In Section
4 we take up applications. The final section provides some brief concluding

remarks. The Appendix contains proofs of some technical results.

only interesting to consider nonlinear utility, it is sometimes essential. For example, in
the monetary model in Trejos and Wright (1994), there does not exist a steady state with

valued fiat currency unless we allow nonlinear utility.



2 The Basic Model

Time proceeds as an infinite sequence of discrete periods of length A >
0; eventually, we will consider the limiting case where A — 0. There are
two agents, labeled ¢ = 1,2. Agent 1 has an indivisible good and agent
2 has a divisible good, and they are potentially interested in trade. We
could interpret the indivisible good as an action; for example, agent 2 may
want agent 1 to enter into some sort of relationship, such as employment or
marriage, and is willing to pay some amount of his divisible good in order to
achieve this end.

If at time ¢ agent 1 trades the indivisible good to agent 2 for ¢ units
of the divisible good, their instantaneous utilities are u;(q,t) and wu2(g,1).
Additionally, they discount the future at rate r, so that the payoff from this
trade for ¢, discounted back to the present, is e™"u;(q,t). Assume u; € C*,
Ouy/0q > 0 and Ouy/0q < 0, for all £. Assume that u; and u, are concavein g
for all £. Also, agents derive some utility from not tradiﬁg at all, normalized
to 0. For all ¢, assume that u;(q,t) > 0 for some ¢ > 0, so that there exist
gains from trade, and that v;(¢,t) < 0 for g sufficiently small (potentially
negative) and uz(q,t) < 0 for ¢ sufficiently large.* We also assume that
u;(g,1) is bounded in ¢, and that the time derivative du:(q,t)/t exists, and
is bounded, for all (g, ).

The agents meet at some time ¢, at which point nature chooses one of
them at random to propose a value of ¢, to which the other can respond by

either accepting or rejecting the offer. If he accepts, exchange takes place,

3This insures that g is bounded. In principle, we could also impose constraints on the
amount of the divisible good that can be traded, say ¢ € {0, §]; but we simply assume that

such constraints are not binding in most of what follows.



the payoffs are realized, and the game ends. If he rejects, they realize no
instantaneous utility that period, and the game moves on to the next period
where nature again chooses a proposer at random.? This continues until
an offer is accepted. The original Rubinstein (1982) model is a special case
where u1(g,t) = ¢ and uy(q,t) = 1 — ¢; the extensions to nonlinearity and
nonstationarity can both be important.

Our goal is to characterize subgame-perfect equilibria in strategies that
are history independent, although potentially nonstationary. By definition,
history independent strategies do not depend on offers made at previous
points in time. However, offers can depend on time because, in general,
preferences or opportunities do. We focus here mainly on the case where trade
occurs as soon as the agents meet - that is, the first proposal is accepted - an
outcome we call an Immediate Trade Equilibrium, or ITE. Although there is
considerable interest in the literature in conditions under which there may
be a delay in reaching agreement (see, e.g., Merlo and Wilson [19934, 19938],
or the models surveyed in Osborne and Rubinstein [1990]), our objective
is different. We are interested in the case where agreement is immediate,
but the nature of the agreement may depend on when the agents meet and
negotiations begin.

Generally, immediate trade requires that the present discounted value of

the surplus over which the agents are bargaining is decreasing with time. Let

A(t) = {q: ui(q,t) > 0,: =1,2}. (1)
4Actually, the Rubinstein (1982) model assumed that the identity of the proposer
alternated deterministically between periods, rather than being determined randomly each

period. We can consider alternating offers as a special case of the generalized version of

the model in Section 3.



By assumption, .A(t) is nonempty. Then suppose that e~"u;(qg,t) is decreas-
ing in £ as long as ¢ € A(t) for all ¢, and strictly decreasing for at least one
agent. We call this the “shrinking pie” assumption, and show below how it
is used to guarantee immediate trade. First, we describe the features of an
ITE assuming that one exists.

In any equilibrium with history independent strategies, if 1 is willing to
accept ¢ at ¢ and ¢’ > ¢, then 1 must also be willing to accept ¢’ at ¢.
Similarly, if 2 is willing to pay ¢ at ¢ and ¢’ < g then 2 must also be willing to
pay ¢’ at t. Hence, there exist reservation values, ¢:(¢) and go(t), such that
at time ¢ agent 1 accepts any ¢ > ¢:1(t) and agent 2 accepts any ¢ < g(t).
Moreover, given an agent wants to trade, the best he can do is to propose
the reservation value of the other agent. This implies that we can identify an
ITE strategy profile with [g:(2), g2(t)], where at time ¢ agent 1 proposes (%)
if it is his turn to make an offer and accepts any ¢ > ¢;(¢) if it is his turn to
respond, while agent 2 proposes ¢;(¢) if it is his turn to make an offer and
accepts any g < gy(t) if it is his turn to respond.

In any ITE, therefore, the reservation values satisfy the following recursive

relations:
uifq:(2),t] = ] +17-A {%u, [t + A),t 4+ Al + 2us[ga(t + A), t + A]} (2)
uz[qa(t), ] = 1 +17.A {%“2[‘11(1 +A)t+ Al + Jufga(t + A), 1 + A]} (3)

For example, (2) says that agent 1 is indifferent between accepting his reserva-
tion value at ¢, or delaying until £+A when a new proposer will be determined
at random. These equations are forward looking, in the sense that reservation
values today are defined in terms of reservation values next period.

In a model where nothing changes over time, (2) and (3) determine a pair
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of numbers (gi,qz). Here, they constitute a system of difference equations
which determine paths [g:(¢),q2(t)]. Of course, generally there are many
solutions to these difference equations, and so we need to discuss appropriate

boundary conditions. We begin with some preliminary technical results.
Lemma 1 In ITE, u;[q(t),t] = 0 and ¢:(t) is bounded in t.

Proof: First, u:q:(t),#] > 0 because 7 can always reject all offers. Then ¢;

must be bounded, since otherwise u;[g:(), ] becomes negative for one z. O

Now consider the average of the two offers,

q(t) = 1 {a:1(t) + q2(2)].- (4)

The next result indicates that, as A — 0, ¢;(¢) and g,(¢) both approach ¢(2).
Hence, as is standard in the sequential bargaining framework, the advantage

to being the proposer vanishes with the time between offers.

Lemma 2 In ITE, for all t, as A — 0, ¢1(t) and go(t) converge to g(t) at
rate A.

Proof: See the Appendix. O

The next step is to describe the behavior of the average offer ¢(t), which,

by Lemma 2, may be regarded as an approximation to g:(t) and g(%).

Theorem 1 In ITE, in the limit as A — 0, q(t) satisfies the following

differential equation:

1 [rui(q,t) — Ouy(q,)/0t] | 1 |rua(q,t)— Oua(g,t)/dt
‘5[ Fur(0,1)/04 ]*5[ G Do T O




Proof: Let &(t) = q1(t) — ¢(t) = q(t) — g2(£). Then a first order Taylor

approximation allows us to write (2) and (3) as

Qui[q(1),t] _ wmlg(t+A),t+A]

uafq(t), t] + &(2) 3 TTA +0o(A)
uafq(2), 2] - 5(t)au2[g((]t)’t] = usfg(t+4),¢ + A +o(A)

1+rA
where o(A) denotes any function with the property that Q(AAJ —0asA—
0. If we multiply the first of these by Ous[q(t),t]/8¢ and the second by
dui[q(t),%]/dq, then add the equations and rearrange, we have

e T
(6)
| +{m[q(t>,q_ uag(t fﬁ.)j“”} am[ggt),t] N

Now multiply by 1 4+ rA, divide by A, and take the limit as A — 0 to get

"y _3u1._3u1 3u2+ _ _Bug._auz 6u1_0
1T B¢ T T ot )9 T\ T 5¢ " et ) B T

where for ease of notation we drop the arguments of u;[¢(t),t]. Solving for ¢,

we arrive at (5). O

Equilibrium condition (5) may be contrasted with the solution to a static

or myopic Nash bargaining problem,®

q(t) = argmax u;(q, t)u2(q, t). (7

5This particular Nash problem — with equal bargaining power and zero threat points
-- is the appropriate one for the setup at hand if we restrict attention to steady states.

We shall discuss this in detail in Section 3.



The solution to (7) is characterized by

3112(‘1, t) 3“2((13 t)

u( ) tulg,t)—— =0,

which generates a time path for ¢ that differs from the solution to (5), except
in special cases (see below). However, if the functions u; settle down over
time, then in ITE g converges to a steady state that coincides with the myopic

Nash solution.

Theorem 2 Suppose u;(q,t) — @:(q) ast — oo, ¢ = 1,2. Then, if an ITE

ezists it is unique, and ¢ — § as t — oo, where
g = argmax @1(q)(q)-

Proof: If u;(q,t) = @i(q) then (5) becomes
s 1Tt T T
g 2<ﬁ5+u2) (9)-
The solution to T(g) = 0 is §. Moreover, T(¢) > 0. This implies that if
g(t) > G in the limit then g¢(t) increases without bound, and if ¢(f) < g in
the limit then ¢(t) decreases without bound. But Lemma 1 says that ¢ is
bounded, and so it must converge to §. Given ¢ — §, there is a unique

solution to differential equation (5) and therefore a unique ITE. O

A more general discussion of the relation between steady states of forward
looking equilibria and the myopic Nash solution will be provided in Section
3. First, we show that there is a special case in which the equilibrium ¢
agrees with the myopic Nash solution along the entire path, and not just in

steady state.
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Theorem 3 Suppose ui(q,t) = n:q + pi(t), where ;1 > 0 > 7, and i(t) is
bounded for all t. Then, if an ITE exists it is unique, and g satisfies the
myopic Nash condition (7) for all t.

Proof: With no loss in generality, normalize 7; = 1 and 5, = —1. Then

the equilibrium condition (5) reduces to
§=3(rg+rer—é1) = 3 (-rq+ 102 — é2),

which implies

§—rg=3l(¢2— é1) —r(¢z —@1)].

Solutions to this equation are of the form

q = 3(¢2 — 1) + noe™,

where 7 is a constant. Since ¢ is bounded by Lemma 1, we have 5o = 0 and
qg= %(cpz —1). In the case under consideration, this is also the myopic Nash

solution. O

Up to now, we have been analyzing ITE under the assumption that it
exists. The next step is to discuss the conditions that make this valid.

To this end, let I1;(2) = e~ u;[q(t), t] be the discounted payoff to ¢, given
a solution ¢ to (5). Then immediate trade at ¢ for all ¢ constitutes an

equilibrium if and only if
O:(¢) 20 and () <0 (8)

for all ¢ and ¢ = 1,2. The first inequality says the agents always want to

trade, while the second says they always want to trade sooner rather than
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later. In any application, given a path ¢ that solves (5), one must check that
(8) is satisfied in order to verify that ¢ constitutes an equilibrium.
Rather than verifying (8) directly in each application, note that IIi(Z) <

0 in general if and only if

(ru1 - %?—) %%2 - (rug - %—?) %l;l <0. (9)
The “shrinking pie” assumption guarantees that (9) holds. Furthermore,
although a general existence proof is beyond the scope of this paper, under
the “shrinking pie” assumption we easily can guarantee that a subgame-
perfect equilibrium exists and entails immediate trade, at least as long as
ui(g,t) — (q) and A = lim A(2) # 0, where A(f) was defined in (1).
Existence follows because Theorem 2 implies the unique limiting solution
satisfies § € A, and continuity plus the “sl1rinkiug pie” assumption guarantee
that (8) holds along the entire path.

Even if there exists a unique ITE, there could in principle exist other
subgame-perfect equilibria, even given the “shrinking pie” assumption.® How-
ever, uniqueness is straightforward in one special case, which is the case in
which there exists { such that ui(q,t) = @;(q) for all £ > £, i = 1,2. Then
there is a unique subgame-perfect equilibrium for ¢ > # by standard argu-
ments (see, e.g., Binmore [1987] or Shaked and Sutton [1984]). Backward
induction then yields the desired result. In any case, we are more concerned
here with characterizing ITE, rather than either the general existence or

uniqueness of subgame-perfect equilibria.

$Binmore (1987) constructs a discrete-time example with a “shrinking pie” where there
may be multiple equilibria. However, if we consider his example in the limit as A — 0, it
can be shown that multiplicity can only arise if (in our notation) u;(¢,t) has an unbounded

time derivative, which we have ruled out by assumption.
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We close this section with an example. First, suppose u;(g,t) = ¢*,
with 0 < p < 1, so that agent 1’s utility is stationary but nonlinear. Then
suppose u2(g,t) = 7% — g. One interpretation is that the indivisible good is
depreciating at rate §; or, if § < 0, it is appreciating, but as long as r > 0,
the agents may still want to trade sooner rather than later. Since the u;
functions settle down over time, Theorem 2 implies ¢(¢) — g, where in this
case g = 0.

For these functional forms, equilibrium condition (5) can be written

. _ (1 +p)g— p(r + §)e®
q - 2p -

The solution to this differential equation subject to the boundary condition

q(t) — 0 is easily verified to be

. pPlrtée
7 r(1 + p) + 26p’

and the implied payoffs are

mn, = l: P (7' + 5) Jp e~ (r+od)t
r(1+p) +26p

(r+6) _
I, = (r+6)t.
’ r(1+p) +26p"

r+ 6> 0 then II{(¢t) < 0, which guarantees that immediate trade is an
equilibrium.

By way of comparison, with these utility functions, the solution to the
myopic Nash problem (7) is
-6t

14+p
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Observe that
¢ —q" = 6[)(1 — p)e-—ﬁt
(1 +p) [r(1 + p) + 26p]
Hence, ¢* > ¢® if and only if 6§ > 0. The intuition is that II; falls more

slowly than II,; along the equilibrium path when § > 0, effectively making
agent 1 less averse to delay. The myopic Nash solution ignores this, while the
forward looking solution takes it into account and therefore gives a bigger

payoff to agent 1.7

3 Generalization and Discussion

In this section we analyze some extensions to the basic model, and pursue the
relation between the equilibria of strategic bargaining games and the Nash
solution. We incorporate several generalizations at once, including different
rates of time preference, different probabilities of getting to make the next
offer, and exogenous breakdowns.

Let r; be the discount rate of agent z. Let 7; be a flow utility that ¢ gets
while bargaining is in progress. Let A; be the Poisson arrival rate with whichz
believes exogenous breakdowns in the bargaining will occur, and b; his utility
in this event (we do not necessarily impose A\; = Az). If there is no breakdown,
the next offer is made by agent ¢ with probability x;, where m; + 7, = 1. Note
that we allow r;, v;, m;, A;, and b; to depend on time, although to save space

we do not make this dependence explicit in the notation.?

“These results hold for p < 1. If p = 1, then ¢” = ¢*, as predicted by Theorem 3.
8In particular, in discrete time, we can allow 7,() to equal 1 at one date and 0 at the

next date, which is the original Rubinstein (1982) assumption of alternating offers.
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Theorem 4 In ITE, in the limit as A — 0, q(t) satisfies the following
generalization of (5):

’('l'] -+ /\1)‘U1 -1 — )\11)1 - Bul/at-
Ou,y /0q

g =

(10)
(12 4+ Ao)ug — y2 — Agby — Bu /8t ]

Ou,/0q '
Proof: The generalized versions of (2) and (3) are

1-XA

ufqi(t),t] = TN {miuifga(t + A),t + Al + moua [ (2 + A), 2+ A]}

+

’Y]A -+ /\]Ab]
+ 1 + 1'1A + O(A)
1—-XA
uzfga(t),t] = N {muilg2(t + A),t + A} + maua[qa (2 + A), £+ A}

’)’2A + /\gAb-g
+ 1 -+ 7'-2A + O(A),
where o(A) appears because A\;A + o(A) is the probability of a breakdown,
by the Poisson assumption. For any ¢, let ¢ = 701 + 72¢2 and € = @3 — ¢o.
Notice that q; — ¢ = 7€ and ¢ —q = —me. Then, as in the proof of Theorem

1, approximate the above equations around g:

Suilq(t), t 1—MA
ul[q(t)vt] + W1€UI_[g((I‘)"‘]' = m:z'ul[q(t + 1),t + 1]
"71A -+ /\IAbl
1 +1"1A + O(A)
Ou,lq(t),t 1— XA
walg(e), )= mae 2L - L0040y, 0]
’)’2A+ /\gAbz
+-——————1 N + o(A).



Multiply the first by m,0u2[q(t), ]/ 8¢ and the second by 1 du,[q(t),t]/dq,

then add these equations to get the following generalization of (6):

_ ")’1A + /\1Ab1 _ 1-— /\1A- 6&2[q(t),t]

ma{unlg(t), ]~ BT — T e+ A), 1+ Al RS S
_ ’)’zA + /\2AZJ2 1— /\-zAn aul[q(t),t]
mi{unlg(t), ) - BRI gt A) £+ AL
= o(A).

(11)
Finally, multiply (11) by (I + mA)(1 + r2A), divide by A, let A — 0, and

simplify to arrive at the differential equation (10). O

There are several reasons for considering these extensions to the basic
model. One is that, in some applications, things like different probabilities
of making the offer or breakdowns can be interesting.' Another is that we
can provide a general discussion of the relation between the equilibrium of
the dynamic bargaining game and the myopic Nash solution.

Suppose we are interested in representing ¢(¢) at each point in time (and
not just in steady state) for arbitrary u(g,t) (and not just for special func-

tional forms), by the generalized Nash bargaining problem
q(t) = argmax [ul((bt) - Tllo[u2(q7t) - T2]1_9: (12)

where T; is the threat point point of of agent ¢ and € is the bargaining power
of agent 1. Note that T; and § may depend on time, in general. Then we

have the following result.
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Theorem 5 Suppose we have an ITE, and consider the case where A is
small. If we want a Nash representation for the equilibrium path for q that
applies for arbitrary utility functions, the unique choice for the threat points
and bargaining power at each date t is given by:

YA + NAD + (1 = LA ulq(t + A),t + A]

T 14+mA

G(t) = 7.

Proof: A necessary and sufficient condition for ¢ to solve the generalized
Nash problem (12) is

(1 = 0)[ur(q, 1) — m%‘z + 6lus(q, 1) - Tﬂ%—’f; = 0. (13)

Comparing (13) and (11), the result is immediate. O

Theorem § has the natural interpretation that the bargaining power of an
agent is the probability that he gets to make an offer, and the threat point
is the continuation payoff he can expect to get by rejecting an offer: the flow
%A, plus the probability of a breakdown times b;, plus the probability of
no breakdown times the equilibrium utility from settling next period, appro-
priately discounted. Although it is the only interpretation that applies in
general, we can come up with an alternative Nash representation if we re-
strict attention to the linear functional forms used in Theorem 3. Recall that
these utility functions imply the equilibrium ¢ agrees with the myopic Nash
solution along the entire path in the simple model of the previous section;

the next result extends this to the generalized model of this section.
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Theorem 6 Suppose we have an ITE, and consider the case where A is
small. Assume u;(q,t) = m:q + @:(t), where 1 > 0> 52 and ¢;(t) is bounded
for all t. Without loss of generality, let 91 = 1 and 52 = —1. Then, if 7; does
not depend on t and v; + A; = r + A does not depend on ¢ (but could depend
on t) there is an alternative Nash representation for the equilibrium path g,

given by -
Tt) = [ &R pu(r) + M(r)bi(r)] dr

H(t) = T,
where R(t,7) = [[[r(c) + A(o)]do. In particular, if v;, X;, b;, and r; do not

depend on t then
¥i + Aib;

Ty = TS,

Proof: Normalize 7 = 1 and 52 = —1. Then for these preferences the

solution to the myopic Nash problem (12) is

q=0(p2 = T3) — (1 = 0)(¢1 — T1). (14)

By virtue of (10), the equilibrium path satisfies

g — [mar1 + A1) + mi(r2 + A2)lg = m2f(r1 + A)er — ¢4
(15)

—m1[(r2 + A2)p2 — @2] — mofm + Aibi] 4+ w72 + Azb).

We want to know when we can find a solution to (15) of the form (14).
Notice (15) is linear and first order, and can be integrated using an inte-

grating factor. In general, such a solution will be a complicated integral of

future values of ¢ and . There is a special case, however, where this does

not occur: when 7; does not depend on ¢, and ¢, ¢; and 2 have a common
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integrating factor. Since m; + 73 = 1, a necessary and sufficient condition for
this to occur is r; + X; = r + ) for both 1.

In this case, (15) simplifies to

¢ = (r+Xg=ml(r+ N1 — ¢1] = m(r + Npz — ¢2]

— o[y + Ay + Ti[y2 + Azbs].

Integrating, applying Lemma 1, and using the assumption that 7; does not

depend on t yields

g = T2 — T2 '!-/]t e~ RN [y (1 + Mib1) — w1 (2 + Aobs)] dr,

where ER(t,7) is defined in the statement of the theorem. Comparing this
with (14) yields the desired threat points and bargaining power. The special

case where the parameters are time-invariant follows from simplifying T}. O

In the Nash representation of Theorem 6, the threat points are the pay-
offs from disagreeing forever, appropriately discounted. This has an ad-
vantage over the representation in Theorem 5, in that T: depends only
on the exogenous parameters and not the endogenous continuation values
u;[q(t + A),t + A]. A similar result emerges if we allow general functional

forms, but restrict attention to steady states.

Theorem 7 Suppose we have an ITE, and consider the case where A is
small. Assume the parameters and utility functions settle down with time.

Then, in steady state there is a Nash representation for the equilibrium given
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no= Xt Aib;
i+ A
0 = T1(r2 + A2)

mi(re + A2) + m2(rs + A1)’
Ifri 4+ X; =7 4+ A does not depend on i, as in Theorem 6, then

0=7T1.

Proof: In steady state, u;(q,t) = #(q) and ¢ is constant. Inserting this

into equation (11) and rearranging yields:

_nthb . _ 2t Aeba) L,
R )uz+7r1(1-z+/\2) (uz merval 2 =0 (16)

Comparing this with (13), the desired result follows immediately. O

7l’2(7'1 —+ A]) (‘l-lq

With Theorem 7 in hand, it seems worth mentioning that several results in
the literature can be obtained as special cases. For example, set A; = v4; = 0;
then T; = 0 and 8 = mry/(mre + 72ry), which is the Nash representation
derived in Binmore et al. (1986) for what they call their time preference
model. In particular, if 1 = 7y and r; = ry, this is the equal weight Nash
solution with zero threat points we used in (7). Now set r; = 7; = 0 but relax
the assumption A; = 0; then T; = b; and 8 = w1 A2/(7m1 A2 +72A1), which is the
representation in Binmore et al. for their model with exogenous breakdowns.

An important case is the one where after a breakdown agent : may meet a
new partner, as in many models of search and bargaining. Let the arrival rate
of new partners for ¢ be «;; then the usual dynamic programming equation

from search theory implies that (in steady state)
r;b; = a;(ﬁ,- - b;). (17)
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In this case, it is useful to rewrite (16) as
T2 [(re + M) (@ = by) 4 r1by] B + 1 [(r2 + A2 ) (B2 — b2) + r2bo] 7] =0, (18)

where purely for simplicity we have set v; = 0.

Inserting (17) into(18), we have
71'2(7‘1 -+ A] <+ al)(ﬁl bl b])ﬂ'z + 7y (7‘2 -+ A2 -+ al)(ﬁz -_ bg)ﬁ; = 0. (19)

This implies that ¢ has a Nash representation with T; = b; and

0 — 71'] (7‘2 + 02 + A2) (20)
T(ry + g+ X)) + mo(ry a1 + A1)

Alternatively, we can eliminate b; entirely from (18) and write

7["2(7‘1 + /\1 + vy )7'1 I 7('1(1‘2 + Az + 01)7'2 - ey
. 9%, = 0. 21
T+ st ¥ T2 + a2 2 1)

This implies that ¢ has an equivalent Nash representation with 7; = 0 and

g — mira(r1 + g )(r2 + @ + Ag)
Tira(ry + aq)(r2 + o + A2) + mori (v + @) (r1 + o1 + Aq)

(22)

A special case in much of the search and bargaining literature is the one
where the only source of breakdowns is that new agents may arrive during the
bargaining, and when a new type ¢ agent arrives he replaces the incumbent
(see, e.g., Rubinstein and Wolinsky [1985], Wolinsky [1987], or Binmore and
Herarro [1988]). Hence, the breakdown rate for type 1 is the arrival rate for
type 2 and vice-versa: A; = g and A\; = ;.

To pursue this case, let r{ = 7, and 7y = 7 in order to reduce notation.
Then for the representation with T; = b; and 8 given by (20), it is easy
to check that 6 = 1 even if &y # ay; in this case, different arrival rates

show up in terms of different threat points but the same bargaining power.
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Alternatively, in the representation with T; = 0 and @ given by (22), we have
0 # 1 when a1 # ay; in this case, different arrival rates show up in terms
of different bargaining power and the same threat point. This illustrates
how features of a model like different arrival rates can be captured either
by different bargaining power or by different threat points, at least if we are
interested only in steady states.

To close this section, suppose that agent ¢ has the choice of whether to
enter into the bargaining game at £, and let ®; be his payoff if he declines.
This may be interpreted as the utility he derives from autarchy, or, in a search
context, the expected utility of waiting for another bargaining opportunity in
the future. As with all of the other parameters, ¢ can vary with time. Then
¢ is always willing to bargain if and only if the following condition holds for
all ¢:

uifq(t), 1] = u(t). (23)

In applications where there is some utility associated with not bargaining, it

is important to check that this constraint holds in order for our solution to

constitute an equilibrium.®

SIt is possible for our bargaining solution to violate (23) for one or both agents. If it
violates it for both agents, there are no gains from trade, and they will not bargain. If
it violates if for one agent i, then there are gains from trade, but ¢ will not accept the ¢
implied by our bargaining solution. In this case, the best the other agent can do is to offer
i the g that solves (23) with equality, in which case i gets none of the gains from trade

but is still willing to agree.
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4 An Application in Monetary Theory

In this section, we apply our bargaining solution to a version of the monetary
model described in Shi (1994) and Trejos and Wright (1994). The model has
a large number of infinitely lived agents who meet in an anonymous random
matching process, where all exchange is bilateral and quid pro quo. There
are k types of agents and k goods, £ > 2, with the property that type j
only consumes good j and only produces good j + 1 (modulo k). This rules
out direct barter. Also, goods are nonstorable. This rules out commodity
money. Hence, if trade occurs at all in this economy, it requires the use of
fiat currency.l®

At ¢ = 0, a fraction M € [0,1] of the population are each endowed with
one unit of fiat currency, and the rest with production opportunities. For
simplicity, it is assumed that when agents spend their money they spend all
of it, and, except for those initially endowed with production opportunities,
no agent can produce until after he consumes. This implies that at every
point in time there will be M agents with one unit of money (called buyers)
and 1 — M agents with production opportunities {called sellers).

If a buyer trades his unit of money to a seller for ¢ units of output, the
nominal price is p = 1/q. Consumption of ¢ units of one’s consumption good

generates utility U(q), while production of one’s production good generates

10Versions of the model that allow direct barter, commodity money, and other compli-
cations are contained in Kiyotaki and Wright (1989, 1991, 1993), although those papers
only consider steady states, and impose simplistic bargaining rules. A somewhat related
paper by Casella and Feinstein (1990) studies bargaining when the aggregate price level is
changing. In that model, however, buyers are in the market for a finite number of periods,

and so the solution is easily computed using backward induction.
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disutility ¢(g). With no loss in generality, assume that U(q) = ¢. Also assume
that 0 < ¢(0) < 1, ¢'(g) > 0 for all ¢ > 0, and ¢(g) < ¢ for large ¢g. For
now, assume c¢(0) = 0, although we consider a fixed cost below by allowing
c(0) > 0.

Agents meet randomly according to a Poisson process with arrival rate a,
so that the rate at which a seller meets buyers is aM and the rate at which
a buyer meets sellers is «(1 — M). When a buyer meets a seller who can
produce his consumption good, if they trade then the buyer becomes a seller
and the seller becomes a buyer. A random seller produces the consumption
good of a buyer with probability 1/k. We normalize time so that ak = 1,
with no loss in generality. Then, if we let V}, and V, denote the value functions
for sellers and buyers, we have the usual dynamic programming equations of
search theory

Vo= (1= M)(g+ V.= Vi) + Vb (24)

rV, = Ml-c(q) + Vi — VJ] + Vi, (25)
given that each meeting results in immediate trade at ¢ (see Trejos and
Wright [1994], e.g., for a derivation).

The goal is to determine the time path of ¢ as the equilibrium of sequential
bargaining when the time between offers is small. For now, we assume there
are no breakdowns in the bargaining (but see below). We can then apply (10)
directly, with ry =r, m =1, i =1 =0, u; = ¢+ V;, and uy = —¢(q) + Vi
This yields

._rg+rVe=V, -re(g)+rVi—Vi
=7 2(q)
We also have to impose the constraint (23) for both buyers and sellers, which

in this context means ¢+ V; > W, and —c(¢q)+ V;, > V..

(26)
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We can reduce this model to two dimensions by letting ¢ = V, — V,. Then

the constraints can be written (¢, z) € B, where

B ={(g,2):¢(q) <z < g}

By subtracting (24) and (25), & can be expressed as a function of ¢ and z.
By inserting (24) and (25) into (26) and simplifying, ¢ can also be expressed
as a function of ¢ and z. The end result is that the model reduces to the
dynamical system

rg+ Mz —c(q)] , re(g) + (1 — M)(z —q)

B 2 2¢(q) 27)

& T ()= Mc(q)- (1 - M)

An (immediate trade, perfect foresight) equilibrium is defined to be solu-
tion to (27) that stays in B and also satisfies the conditions for immediate
trade: I, = e™™(q + V;) and II, = e™™[—c(g) + V3] decreasing in ¢. A spe-
cial case is a steady state, which is an equilibrium with the property that
¢ =z = 0. We also distinguish between monetary and nonmonetary equilib-
ria, where the latter entails ¢ = 0 for all £.

Shi (1994) and Trejos and Wright (1994) study steady states by imposing

at the myopic Nash solution,
q = argmax [q + Vi][—c(q) + V3], (28)

consistent with the discussion in Section 3. Additionally, Trejos and Wright
(1994) study dynamic equilibria by looking for solutions to (24) and (25)
that satisfy (28) at each point in time. While (28) yields the same ¢ as

our forward looking solution in steady state, it does not yield the same ¢
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outside of steady state.!! To the extent that one thinks of the Nash solution
as a reduced form for strategic bargaining, imposing (28) is subject to the
objection that agents ought to be forward looking in the bargaining game, as
they are in other aspects of the model. Hence, we regard using the forward
lc;oking solution as superior to imposing the myopic Nash solution.

First we look for steady states. It is obvious that (g,z) = (0,0) is a
nonmonetary steady state. The next result says that whenever a monetary
steady state exists it is unique, and it exists if and only if ¢/(0) is below some
threshold é&.

Theorem 8 If a monetary steady state ezxists, it is unique. It exists if and
only if ¢(0) < ¢, where & is the smaller root of the quadratic

2 2rt M) (+M(I-M)_,
M Mir+1=-M)

Proof: From (27), § = & = 0 is equivalent to ¥(g) = 0, where

V(g) = (r+ M)[(1 - M)q — (r+ 1 — M)c(q)]
(29)

=(r+1=M)[(r+ M)g— Mc(q)]c(q)

Moreover, a necessary and sufficient for (¢,z) € B is that ¢ < §, where § is
defined by (1 — M)§ = (r+1— M)c(g). Note that § > 0 as long as ¢/(0) < &,
where ¢ is defined in the statement of the theorem. One can show ¥(0) = 0,
¥(§) < 0,and ¥'(q) < 0 at any g € (0, §] such that ¥(gq) = 0. One can also
show that ¥'(0) > 0 if and only if ¢/(0) < é. Hence, if ¢/(0) < ¢ then there

11The myopic Nash solution does coincide with the forward looking solution if we assume
both the utility of consumption and the disutility of production are linear, by Theorem 3;

unfortunately, however, a steady state monetary equilibrium does not exist in this case.
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is a unique ¢* € (0, §) such that ¥(¢*) = 0, and therefore a unique monetary

steady state; otherwise, there is no such g and no monetary steady state. D

For the remainder of the analysis we impose ¢’(0) < &, so that the mone-
tary steady state (¢*,z*) exists. We now proceed to consider dynamic equi-
libria. By way of comparison, when we impose the myopic Nash solution,
we have the following results. The monetary steady state is a source and
the nonmonetary steady state is a saddle point. All orbits eventually leave
B, and therefore cannot be equilibria, except for the steady states and the
saddle path that begins at the monetary steady state and converges to the
nonmonetary steady state. Hence, the complete set of equilibria consists of
the two steady states, and orbits starting on the saddle path, which converge
monotonically to the nonmonetary steady state (see Trejos and Wright 1994).

Consider now the model with forward looking bargaining. The Jacobian

of (27) is

M 1M [ret(1I-M)(z—g)l’ M 4+ =M
2 2

r 2! 3(c')2 el

~Md —(1— M) 147

It is routine but tedious to show that det(J) = —¥’(q)/2¢(q) in steady state,
where ¥ is defined in (29). Since ¥/(0) > 0 by the argument in the proof of
Theorem 8, det(J) < 0 at the nonmonetary steady state, and it is a saddle
point. Since ¥/(¢*) < 0, det(J) > 0 at the monetary steady state, and it is
either a sink or a source. After some algebra, it is also possible to show that
at any steady state

1-M-MI?P-V

ir - .
race(J)=1+4+r+ EY
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Since ¥'(¢*) < 0, trace(J) > 0 at the monetary steady state, and it is a
source.

One can also show that along the boundary of the set B the flow is
outward; thus, as shown in Figure 1, orbits never enter B from outside of
B. Since (0,0) € B, the saddle path leading to the nonmonetary steady
state lies entirely in B, and so any orbit beginning on the saddle path is an
equilibrium. Furthermore, since it cannot come from outside of B, the saddle
path must either emanate from (¢*,z*) or from a cycle surrounding (¢*, z*).

It is easy to construct examples where the saddle path emanates from
(¢*,2") and converges monotonically to (0,0), and examples where it em-
anates from (¢*,z*) and spirals before converging to (0,0). We have not
been able to construct an example of a limit cycle in the model as described,
and neither have we been able to rule out limit cycles. However, we can
construct an example with cycles by introducing a fixed cost, ¢(0) > 0. As
shown in Figure 2, if the fixed cost is not too big, it shifts the ¢ = 0 and
z = 0 curves so that the intersection at the origin moves to (¢°,z°) € nt(B).
Hence, there are now two monetary steady states, (¢° z°) and (¢*,z*) (as
well as a nonmonetary steady state at the origin, not shown in the figure).

With a fixed cost, if we impose the myopic Nash bargaining solution, it
is still the case that (¢*,z*) is a source, (g% z°) is a saddle, and the saddle
path converges monotonically from the former to the latter. That is, there
are no spirals, let alone cycles. This, if we find cycles in our model, it must
be due to the forward looking nature of the bargaining solution.

Our strategy proceeds as follows. First fix M, and set r = 7. Then
let ¢(g) = ap + a1g + a2¢® in the neighborhood of (g*,z*), and choose the
coefficients a; so that (¢*,z*) €iné(B) and trace(J) = 0 at (¢*,z*). Note
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that this is impossible when ag = 0, as we argued earlier that trace(J) > 0 at
the monetary steady state under the assumption ¢(0) = 0; but it is possible
if ap > 0. Now for a range of values of 7 in the neighborhood of 7, one can
study the system numerically (we used the program PHASEPLANE).

For r < 7, (¢*,2*) is a source and (¢° 2°) a saddle, exactly as with
myopic bargaining (or as in the model with no fixed cost). See Figure 2. The
important thing about the global dynamics in this case is that the unstable
manifold of (¢%, z°) loops around the branch of the stable manifold connecting
(g*,z*) and (¢° z°). As we increase r, these branches of the stable and
unstable manifolds get closer together, until at some 7 < 7, they coalesce
to form a homoclinic orbit that starts at (¢°, z°), loops around (¢*,z*), and
returns to (g% z°).

For r > #, the branch of the unstable manifold lies inside of a region
formed by the two branches of the stable manifold and the vertical axis in
Figure 3. Notice that orbits that start in this region cannot escape. Hence,
the branch of the unstable manifold in this region must either converge to
(g%, z*) or to a cycle around (g7, z7). But for» < 7, we havetrace(J) > 0, and
(g*,z*) is a source. Applying the Poincare — Bendixson Theorem (see, e.g.,
Guckhenheimer and Holmes 1983), there exists a stable limit cycle around
(¢*,z*) for all » € (#,7). The size of the cycle is decreasing in r, and for
r > ¥, it collapses into (¢*,z*), as shown in Figure 4.

The essential point is that for all » € (#,7) any orbit that starts in the
region formed by the stable manifold and the vertical axis depicted in Figure
3 converges to a limit cycle. To argue that such a path is an equilibrium, we
need to verify two more things: that it stays within B, and that it satisfies
the immediate trade condition, I1{(¢) < 0 for all £. Since (¢*, z*) € int(B), at
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least for r near 7, the cycles are sufficiently small they must stay in int(B).
We then verified numerically in examples that ITi{(¢) < 0 along the cycle.
Hence, there exist stable limit cycles that satisfy all of the conditions for

monetary equilibria.

Theorem 9 There exist monetary equilibria that converge to limit cycles in
the model with forward looking bargaining, at least in the presence of a fized

cost. The same model with myopic Nash bargaining does not admit cycles.

Proof: This is clear from the preceding discussion. O

To close this section, we briefly discuss the monetary model with exoge-
nous breakdowns caused by the potential arrival of new agents during the
bargaining. With breakdowns, the forward looking solution satisfies (10)
withr=r, m=1,v=0, =M, A=1-M,b =V, and b, = V,. This
vields

. _(r+M)g—Mc(q) (1—M)g—(r+1—Mec(q)
= 2 2¢(q) '

Meanwhile, & satisfies the same equation as in the model without breakdowns,

(30)

= (14+7r)r—Mc(q)— (1 - M)g. (31)

As one can see from (30), ¢ does not depend on z. In the (g,z) plane,
this means that the § = 0 curve is vertical at g*. As in the model with no
breakdowns, the & = 0 locus goes through the origin and is upward sloping.
The monetary steady state (¢*,z*) is a source and the nonmonetary steady
state (0,0) a saddle point, with a saddle path that converges monotonically

from the monetary to the nonmonetary steady state.
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By the results in Section 3, in steady state, a Nash representation for ¢

is provided by
¢ = argmax [g+V, — W][-c(q) + Vi - V2]. (32)

If we impose (32) as an equilibrium condition instead of the forward looking
solution, the set of equilibria is qualitatively the same but quantitatively
different. In particular, (32) impliés z = [e(q) + ¢c(g)]/[1 + ¢(q)] for all ¢,
which is the actual equation of the saddle path. If we differentiate it with
respect to ¢ and equate the resulting expression for £ with (31), we see that
d = g(q)f(q), where f(q) is the formula for ¢ from the model with forward
looking bargaining given in (30) and g(q) < 1. Thus, |¢| is smaller in the

model with myopic Nash bargaining than in the forward looking model.

5 Conclusion

This paper has extended the analysis of strategic bargaining to environ-
ments where preferences or opportunities vary over time. We concentrated
on situations satisfying a “shrinking pie” assumption, so that we can look
for equilibria with immediate trade. Although trade is immediate, dynamics
are important in that the terms of settlement depend on when the parties
meet. As in stationary models with strategic bargaining, as the length of
time between a rejection and the next offer shrinks toward zero, the offers of
the two agents converge to the same value, ¢q. As a function of time, g can
be characterized in terms of a simple dynamical system.

One can always construct a time-varying Nash representation of our for-
ward looking equilibrium. Naive application of the myopic Nash bargaining

solution, however, will not generate the right path for ¢ outside of steady
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state, except in special cases. Even in steady state, the analysis sheds light
on the appropriate Nash representation in a variety of circumstances, and
several results in the literature emerge as special cases.

We applied these ideas in the search and bargaining approach to mon-
etary theory and demonstrated how the myopic Nash solution compares to
the forward looking solution. In particular, we constructed an example with
stable price cycles in the forward looking model, something that cannot hap-
pen if we impose the myopic Nash solution. Search and bargaining theory
is applied in a variety in other areas, like macro and labor economics (e.g.,
Diamond [1982], Mortensen [1982], Pissarides {1987, 1990], Mortensen and
Pissarides [1993]), in which many interesting questions are inherently dy-
namic. Our solution to the forward looking bargaining problem potentially

has application in these areas too.

Appendix

We prove Lemma 2, which says that for all ¢, for small A, ¢;(¢) — q:1(t) =
O(A®) where a > 1. By way of contradiction, suppose that at some ¢ we have
¢2(t) — 1(¢) = O(A®) with @ < 1. Notice that ITE requires ¢:(t) > q:1(2),
while Lemma 1 requires @ > 0. Now let 2 = hgA®, where ko > 0 and
a < b < 1, and consider the time interval T}, = [t,f + k]. By construction,
h— 0 as A — 0. Also, if N denotes the number of A time periods in T}
then N — oo as A — 0.

The following result sets up the required contradiction.

Lemma 3 Fiz A>0andk > 0. Letn=1,2,..., and let M be the number
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of time periods in an ITE where t + nA € T, and

u1{g2(t + nA),t + nA]
(1+rA)m

Then, as A — 0, ¥ — 0.

Proof: Let P;(t) be the expected payoff to player 1 at £ if agreement is not

reached at . Player 1 can always use the following strategy in the subgame:

1. Always reject player 2’s offer;
2. In period t + nA, propose ¢ > g2(t + nA) if (33) does not hold;

3. In period t + nA, propose q¢ = ¢:(t + nA) if (33) holds.
Given player 2’s strategy in ITE, this strategy implies

Pi(t) 2 {ulan(®), 8+ kY [1 = (3)"]. (34)

Settlement occurs in the third contingency in the above list; the probability
)M

that this never occurs is (1/2)", in which case u; > 0. Now ITE requires

Py (t) < uyqi(t),1]. This and (34) imply

B)> s
2 T wq(2), 8]+ kA’

or, equivalently,

log(uy + kA) — log(kA)
log(2) '
Now consider the limit as A — 0. If u; = 0 then M = 0. If u; > 0 (but
bounded) then, noting that N = O(A'~?), we have

% < O(—A'tlog A).

M<
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Hence, % —0. 0

By symmetry, the same result holds for player 2. Hence, as A — 0, most

time periods ¢ + nA € T}, are characterized by

ui[ga(t + nA),t + nA]

TR < wiqi(t), ] + kA (35)
uz[qx(f(f:fi’;f Al < walaa(t), 8] + kA (36)
By concavity, (35) implies
= [qZ(t(T-f 7A-4)3’)i+ i < wg(t+nA),i]
Han(t) = quft + na) 2l 08N | p

0q
This can be rewritten as
@t +nA) < qi(t) + Ri(t,t + nA, A),

where R;(t,t + nA, A) is defined to make the statements equivalent.

We know ¢; is bounded, u; is continuous with a bounded time derivative,
u1/8q > 0, and n < N = O(Ab?). Hence, it can be shown that |R;(¢,t +
nA,A)| — 0as A — 0 for all ¢ +nA € T), and the rate of convergence is at

least order b. Similarly,
q1(t +nA) > q(t) + Ra(t,t + nA, A)

where |Ry(t,t + nA,A)| — 0 as A — 0, and the rate of convergence is at

least order b. Subtracting,
@(t+rA)—q(t+nA) < —[q(t) - a ()] + Ri(t, t+nA, A)— Ry(t, t+nA, A).
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But gz(t) — qi(t) > 0 and is O(A®), where a < b. Hence, as A — 0, there
must exist many time periods t+nA € T}, where g2(t+nA)— g (t+nA) <0,

which is a contradiction. This completes the proof. O
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Figure 1: Monetary and nonmonetary steady states (source and saddie].

Two monetary steady states, one source and one saddle.
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Figure 4:Cycle collapses into steady state, which becomes 8 sink.



