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Causality Characterizations: Bivariate, Trivariate,

and Multivariate Propositions

I. Introduction

In this paper, several propositions are proved which
relate to the concept or causality or exogeneity in multivariate
weakly stationary stochastic processes. From a mathematical
viewpoint, the results concern certain projections in Hilbert
space, a fact which suggests standards for proofs—--standards
which are, lamentably, lacking in much of this literature.
([24] is the obvious exception.) Theorems about these projec—
tions would be of limited interest, however, were it not for
a natural interpretation of these concepts to causality in
multiple time series, due originally to Wienmer [29]. This
interpretation and the propositions of Granger [4] and Sims
[24] have given rise to a flourishing empirical literature,
including, but not limited to, [3], [51, [18], [21]. It is
hoped that the results proved here, which, for the most part,
give necessary and sufficient conditions for causality in terms
of structural aspects of the time series involved, will further
the understanding of this concept and these empirical results.

Propositions 1 and 2 strengthen and generalize theorems

of Granger [4] and Sims [24]: specialists may find these proofs
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of independent interest because they differ in character from
their predecessors. Proposition 3 was proved when the author
was unaware of three unpublished works (Haugh, [8], Haugh and
Box [9], and Pierce and Haugh [15]). These papers independently
arrive, via "operational methods" at what is perhaps a special
case of the present result. The difference in. emphasis between
our papers—-they stress the identification (in both the econo-
metrician's sense and the time series analyst's sense) of models
from data, whereas we stress intrinsic mathematical-logical
properties of the wide sense stationary process--is reflected

in a difference in the languages employed; this complicates a
comparison of our papers, but some comments on this subject are
made at the end of Section III.

Propositions 4 and 5 continue to deal with bivariate
systems, but set out in a new direction. Any definition of a
concept as loaded with philosophical connotations as is causality
must be able to withstand severe scrutiny. Here we inquire
about the behavior of this definition under time reﬁersal;
equivalently, is time treated symmetrically with regard to the
past and future? Specifically, assume according to the usual
definition that Y does not cause X, by which we mean that past
Y is of no additional help, given past X, in predicting current
X; alternatively, X is said to be exogeneous. 1Is it now true
that, again trying to predict the current X but now given
future X, that future Y is of no marginal value? Were this the

case, causality might be said to be neutral with respect to the



flow of time. Whether this latter property would enhance the
definition is academic, because we give (restrictive) necessary
and sufficient conditions for time neutrality to occur in
terms of the Wold (bivariate moving average) representation, a
Wold-like representation, and the population regression of
current Y on past, current, and future X. A corollary notes
that, with X exogenous, to predict current X, in general the
prognosticator will prefer the future X,Y data to the past

X,Y data-~intuitively because in the latter situation he will
find Y of no marginal use.

Next, in hopes of shedding some light on a common
criticism of this methodology, we add a third series and
consider the trivariate system § (t). The sensitivity of a
"Y causes X" finding to the undeilying data set available for
prediction has been appreciated from the start. But beyond
the presumption that conclusions in lower order systems will
be overturned in higher order systems and a suggestion by
Granger that partial cross spectra be considered ([4], p. 437),
little attention has been given to the analysis of systems of
higher order than two. Certain natural definitions are made
and a straightforward generalization to bloc-bivariate syétems
noted in Proposition 6. Then a more substantive result is
proved for trivariate and bloc-trivariate systems. Propositions 7 and

8 closely examine the relationship between the events "X is

X
exogeneous with respect to Y in the trivariate system <Y> "
Z



and "X is exogeneous with respect to Y in the implied bivariate
(%) system.”" Using previous propositions, some relationsg are
indicated so that the researcher is provided with a systematic
way of using any information about a third process Z which may
be available. Indeed, the result may be interpreted as an
infinite dimensional omitted variables theorem. We stress that
the word "finding" pertains to a condition about theoretical
regressions or projections in the "population" (Hilbert space)
which would be attained by consistent estimators; many thorny
issues involving statistical estimation procedures are not
discussed ﬁere.

Finally, some remarks on the economic significance of
causality-exogeneity relationships are offered, followed by a
conclusion and indication of some directions for further research.
II. Mathematical and Statistical Framework; Background and

Definitions; Normalization-Identification Issues

In this section the definitions and notation employed
in the rest of the paper are presented. Several very useful
facts relating these notions are stated for ready reference.

A few theorems in the prediction theory of multivariate
stochastic processes which'are important for our purposes are
explicitly mentioned. For a comprehensive treatment of this
entire topic, including proofs, the reader is referred to any
or all parts of these excellent references: Rozanov [17],
Hannan {7], and Wiener-Masani [30]. To make this part more

readable and to offer documentation for some of these



assertions, extensive use of technical footnotes is made;
these may be skimmed on a first reading.

Because the first part of this paper and most of the
related econometrics and statistics literature deal with
bivariate processes, we adopt this tack as an expository
device here. Since the major complications introduced by
the general n-variate mathematical theory are already present
when n=2, there results neither a loss of generality nor a
need for excessive repetition when multivariate situations are
encountered.

On an underlying probability space f with accompanying
d—élgebra of subsets F and probability measure P is defined a
vector family of random variables (measurable functions),
indexed by the discrete parameter t, teI = integers,

(i)(t) = (ﬁg;;),l which is the subject of our study. Following
tradition, we have already suppressed the dependence of (i)

on uef: (?)(t,w) might have appeared more appropriate. Our
notation reflects the fact that we will never investigate the
behavior of sample paths (a sequence {(?)(t,w), t=...-1, 0,
1, ... for fixed w}) in the sequel, so there is no need to keep
‘track of a second argument. We mayrequire that (?)(t) be a
weakly stationary stochastic process (w.s.s.p.),2 which means:
(i)E(i)(t) = (g), all teI; and (ii) the Gramian or auto-

covariance matrix
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X X _ _ X)X (t-k) X(E)Y(t-k)
((Y)(t)’ (Y) (t-k) = PX,Y(t’k) = E(Y(t)X(t-—k) Y(t)Y(t-k))

= <1S((k) RXY(k)>
Ry (O Ry (0O

does not depend on t, and so may be written T, (k) ( = FT (-k),
X,Y X,Y

where T denotes transpose). Here E denotes mathematical
expectation, so that one effect of (ii) is that X(t) and Y(t)
are in L2(Q, F, P), the space of all complex random variables
Z(+) such that le(w)IZdP(w) < o, This latter space is a
Hilbert space, H, with the inner product given by

- - 3
<Zl(w)’ Zz(w)> = fZl(w) Z,(w) dP(w)” and norm llZl||

= (lel(w)I2 dP(w))I/Z; these classical facts may be found

in any analysis text, e.g., [10}, p. 235. If <Zl’ 22> = 0,

we write Z1 l-ZZ’ call Zl and Z2 orthogonal elements in H,

and understand these symbols to say the random variables are

uncorrelated (if EZ. or EZ, = 0, as will always be assumed) .

1

More relevant for our purposes is a subspace4 (closed
linear manifold) of H, the space of values of the process (?),

to be denoted HX y ©°F H (-, ©). For any sets of integers

s X, Y

ses tn and any sets of real or complex

17 e+ Sg5
constants 8y5 +-- @3 bl, ces bn the finite linear combination
m n v

r a,X(s.) + I b,Y(t,) is also a random variable in H. The
g=1 1 413 3

set of all such random variables will be indicated by

( UXM))UCUYME)) or S(XA), Y(§), 1, jeI);” this is by
ieT ieI



definition a linear manifold of H, which is in general not
closed in the topology of the norm. The closure of this set
is defined to be HX,Y (or HX,Y(—w, «) to emphasize the set of
times which may be used in forming combinations). HX,Y is
also referred to as the past, present, and future of tﬂe (g)
proéess and for our purposes may be regarded as the underlying
Hilbert space, several of whose subspaces will command
particular attention.

Let us regard the present as time t, and imagine that

we possess a long data series extending into the remote past,

D(t) {(X)(s), s=t, t-1, ...} generated by the w.s.s.p.
Y

(Y), a series sufficiently representative to yield perfect
knowledge of the covariance sequence {Fs, s = ...-1,0,1, ...} .
It is natural to pose the question: What is the 'hest"
predictor of (ﬁ)(t+1) and what is the meaning of '"best'"?

Since we do not know which elementary event w has occurred,

the meaning of "best" will have to involve some statistical or
averaging criterion; by predictor, we mean Borel function
measurable with respect to the g-algebra generated by D. If

our statistical criterion is now to minimize mean square error,
the best predictor will be a conditional expectation; proceeding
to give an effective formulation for the solution will be quite
difficult and will involve hard analysis in stochastic process
theory. If, however, we restrict ourselves to linear

predictors (those in HX v (-, t); this subspace may hereafter
’

be abbreviated as HX Y(t) when no confusion will arise) and

3



if we maintain the criterion of minimizing mean square error,
then finding the optimal predictor for X(t+l) involves
projecting6 X(t+1) onto HX,Y(t)’ and similarly for Y(t+l1).
(Since so much use is made of the concept of projection,
footnote 6 provides an extensive discussion of this and
related topics.)

These (orthogonal) projections always exist and will be
denoted (X(t+1)]HX,Y(t)) and (Y(t+1)’HX’Y(t)), respectively.
Consequently, there result the orthogonal decompositions
X(t+l) = (X(t+1)|HX,Y(t)) + u(t+l) and Y(t+l) = (Y(t+l)|Hx’Y(t))
+ w(t+l), where all four of the R.H.S. terms are unique.
u(t+l) and w(t+l) are called the bivariate innovations of
X(t+l) and Y(t+l), respectively; they are the errors associated
with the optimal one-step-ahead predictors for the process.
Letting t vary through the integers, the corresponding errors
(3) (t) form a new s.p., the innovations process (i.p.),
corresponding to the original (?)(t) process: stationarity in
the latter can be shown to induce stationarity in the former
with the aid of a family of unitary operators on HX,Y
familiar to economists as Lt, where L is the backward lag
operator.7 More evident is the uncorrelatedness of (:)(t)
over time. Simce ()(t) | Hy y(e-1)° and (D) (e-keHy o (e-k)
€ Hy g(e-1), wIONE (0) (t=k) (by which is meant that

the autocovariance matrix formed from the two vectors,



\ - u u L o<u(t), u(e=k)><u(t), w(t-k)>
lu,w(k) B ((w)(t)’ (w)(t k)) - (<w(t), u(t-k)><w(t), w(t—k)>)’
vanishes for k # 0; this will happen precisely when all of
the components of one vector are_L to all of the components

of the other). 1If, as is the case here, Fu’w(k) = 50’k’L

where § = {l k=0
0,k = L0 k#0

be said to be vector white noise (v.w.n.): this said, we

1] . u
and 7§, luw(O), the process (w)(t) will

will emphasize that being v.w.n. is a characteristic but not
characterizing feature of the innovations process.

The rank of %, p(}), is known as the tank9 of the (ﬁ)
process and indicates an important structural characteristic
of the system. Some taxonomy regarding system rank follows:
(a) (?) may be perfectly predicted from its past only if
(3)(t) = (3)’ all t; in this case I is the null matrix,

p(X) = 0, and the process is said to be deterministic. (b)
p(Z) > 1, the process is nondeterministic (n.d.): it
possesses at least one "component" which cannot be perfectly
predicted from the past. The subcases are: (i) p(Z) =1 < 2,
a degenerate case in which the bivariate shock (;)(t) is
essentially univariate. We will not study this case here;
however, the description suggests an alternative modeling for
k-index models [22] in which a few aggregate shocks impinge on
several sectors of the economy.lo (ii) p(Z) = 2, the full
rank case, 1is surely the object of most interest. From now

on we deal exclusively with this case: Z_l exists, IZI # 0,

two genuine (linearly independent) shocks perturb the system
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each period.
This last development suggests the decomposition

HX,Y(t) = HX Y(t-—l) @ DX,Y(t)’ where the space DX,Y(t) is the

’

two-dimensional orthogonal complement of HX Y(t-—l) in Hx Y(t)
3 k]
(® was defined in footnote 7). It is not hard to show that

S(u(t), w(t)). This construction is canonical:

(t)

u,w(t) Hu,w(t—l) ] Du,w(t)' The v.w.n. property of -

(:)(t) immediately gives Hu w(t) z S(u(s), w(s), s<t)= 7

] Sz—m

il

%,y

I

s=t
B S(u(s), w(s)) = & @ DX,Y(S)’ll since Du w(t) = DX,Y(t)’

8=—00 >

1]

teI. At the other extreme, the space N HX Y(t)
k]

H, . (~)
tel X,¥

is called the remote past of (§); we could forecast a variable
in it, Z(t+l) say, perfectly from HX,Y(t)’ and just as well from
HX,Y(t-k) for any kel. Stationarity guarantees, of course,
that perfect forecasts are available arbitrarily far into the
future for such random variables.

By combining these subspaces, an important orthogonal
decomposition of the present and past of (ii is obtained:
Hy y (8 = By (=) O 8, () =By () & & 0D (o). "

[=~00
‘The ground work has now been laid for the most important

result in the time domain analysis of wide sense stationary

stochastic processes.

Wold Decomposition Theorem. For the w.s.s.p. (?)(t) with

innovations process (:)(t), and where the associated spaces
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are as defined above,

W @w=@  ©+C (0, vhere

l.r. d.

Y

@ © =@ @) 1 & © = (Do =)
l.r. ’ d. >

(i1) (ﬁ) (t) has the (one-sided) moving average representation
l.r.

LA (1) = a0 = 2 (PO, )N k),
k=0 k=0

and

[o-)

2 2 .
lel.r_(t)ll + IIYl.r.(t)ll = trace kEOA(k)zA (~k)

Z tr AL *¥ A'(0) < oo

X

(Y) (t) is deterministic, and, for all tel,

d.

(1id)

S((;() (), < j<t) = Hy Y(—eo)
d. i

The mnemonics l.r. and d. stand for linearly regular
and deterministic, respectively. The latter term has already
been defined; concerning the former, a s.p. (§)(t) is said to
be linearly regular (purely nondeterministic is also used) if
((ﬁ)(t)IHX,Y(s)S + 0 as s + -o; intuitively, if the effect of
the past diminishes as the 'past becomes more remote," or
equivalently by stationarity, if the distant future can be

predicted no better than by solely using the process mean
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(here, zero). Equivalent characterizations of linear
regularity13 are each of (a) the ability to express the entire
process as a m.a. involving its innovations; and (b) HX,Y(_m)
= {0}.

We may now paraphrase the Wold theorem to say that an
arbitrary w.s.s.p. may be decomposed into t&o parts,
uncorrelated with each othgr, of which one is purely deter-
ministic and the other purely nondeterministic. Since the
purely deterministic part may be perfectly predicted arbitrarily
far into the future (with no effect on the linearly regular
part because of the orthogonality), we can without loss of
generality subtract it from (ﬁ)(t) and assume that the process
we are analyzing is linearly regular.la This assumption will often
be employed throughout the remainder of the paper: (?)(t)
is a 1.r. w.s.s8.p.

Consequently, the process we study is characterized by
(ii), which requirés further discussion for reasons other than
the notation implicitly introduced.

The matrices A(k), sometimes referred to as Ak‘ are
unique, from the second identity in (ii). The convolution
" definition is given generically by the first identity, ‘the
interpretation of this infinite sum, of course, being convergence
in quadratic mean of each of the random variable-partial-sum
components. The condition that the indicated trace be finite
is necessary and sufficient for this convergence; it is

succintly expressed in terms of the (now, nonrandom) matrix
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convolution, and amounts simply to the requirement of finite
variance for X(t) and Y(t) because the autocovariance sequence
FX,Y(.) of (ﬁ) = A % (:) may easily be expressed in terms of
the autocovariance sequence Fu’v(-) as A * ru,v * AT(k),

where A'(k) = AT(—k), T indicates ordinary matrix transpose

and ' is the appropriate notion of convolution transpose, and

A* B(m) = I A(m-3)B(j) = £ A(j)B(m-j). When A(+) and
j:-oo j=-co

B(+) are one-sided, i.e., A(s) = B(s) = 0, s < 0, then these
sums are both finite and the lower limit may be replaced by O.
For the case of v.w.n. the double summation implied by the
double convolution reduces to AL * A'(k)15 or A * TAY(k);

these last formulae suggest the desirability of a representation

in which £ = I so that RX v = A * A'(k). This may be done by

1/2 | .-1/2

tucking I into the convolution, to arrive at

@) = az? 520 ) 2 8% (G (1), say (see pp. 18-19
for an elaboration of this procedure). In the new representation

(k) = B * B'(k), since Cov 2-1/2(:)(t) = E(z)(t)(z)T(t)

R,y
= I; the requirement of finite variances of X(t) and Y(t)

becomes tr B * B'(0) < o, which will occur precisely when

=] o]

2 22 2 )
Tby,(i) + I b (i) <wand I b. (i) + £ b-. (i) < «, where
1m0 11 o0 12 jo0 21 iop 22
by () by, (+)
. B(:) = b,y () by, ()" X(t) = by * e(t) + by, * n(t) and Y(t)
=b,. * e(t) + b,, * n(t).

21 22
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The last remarks show that, if we form B(z) with
typical element (j,k=1,2) bjk (2), |z| < 1 where z is now a
e o]

(z) = b, (s)2° converges pointwise

complex number, then b ik
s=0

ik

in the unit circle, and so defines an analytic function there.

On the unit circle, square summability of the sequence and

classical methods yield the representation bjk(eik)

(=]

z bjk (s)eixs, where the convergence is not pointwise but
g=0

in L2[0, 2w]. The latter function can be shown to be a radial

limit of the former; analogous results hold on lz| > 1 for
bjk(z~l). The close connection between these representations
is the study of functions of Hardy class HZ: those square
integrable functions with Fourier series involving only
positive powers of z = eix.

These considerations suggest use, at least for placeholder

purposes, of the method of "z-transforms," a principal result

of which {s: R, (2) = 3 ((i)(t), (ﬁ)(c-k))zk = B(z)

k=—co
BT(z-l), where the equality means "equality of the coefficients
of zk in the formal expansion of." In other words, the
coefficients of the convolution B * B'(s) may be ascertained
'by multiplication in B(z) BT(z-l) and checking the coefficient
of zs; nothing more is involved here than the familiar notion
that "convolution in the time domain corresponds to multiplica-
tion in the frequency domain." More significantly, however,

the theoretical importance of these analytic B(z) matrices

has been hinted at ([17], pp. 58-63).
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The discussion of the last several pages has given a
sketch of an existence proof of a very important way of looking
at the process under study. The guaranteed representation has
not been constructed, however; the problem in practice is,
éiven RX’Y(S), how to "factor" it into the B * B'(s) of the
past paragraph? There are several layers of difficulties
involved: (1) When a B(;) is found which performs the
factorization, there is the further requirement that, in
(g)(t) =B * (2)(t), the (s) process must "be in the right

space," by which is meant, H (£) = He n(t)’ all t. (This
;]

X,Y
latter notion will be abbreviated (m.s.) and taken up in the
sequel.) In other words, not just any v.w.n. process will do;
and not only must the (?) and (2) processes be defined on

the same probability space, they must each essentially be
linear combinations of each other's past and presenﬁ, or in
another (perhaps more economic) context, they must carry the
same information. The interplay between analytic properties

of B(z) and the associated stochastic properties (of the
corresponding (z)(t)) is treated in [17], Ch. 2. These remarks
will be expanded momentarily. The second difficulty is:

(2) There is an identification problem which, when (1) is
understood, is naturally solved by restricting attention to
those B(+) associated with "errors in the right space" and
imposing a normalization rule to distinguish between the
observationally equivalent structures within this appropriate

class. (3) Finally, when a theoretical understanding of the
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first two points is in hand, and even in an ideal case where
the observable data, RX’Y(S), are generated by elements which
are ratios of polynomials, a procedure for obtaining the
desired factorization is not trivial. A method which
terminates in a fiﬁite number of steps is presented in [17],
p. 44-47; since many square roots and polar decompositions may
be needed, it is not an easy exercise to generate examples
with pencil and paper. Actually, what this algorithm generates
is a B(z) matrix such that: (i) all of its elements are
rational and analytic in Izl < 1: and (ii) det B(z) has all
of its (finitely many) zeros in !z[ > 1l. Only after much more
machinery is developed (p. 88) is Rozanov able to show that
this B(z) has an agsociated errors process which is in the
right space, thereby correctly stating and proving for the
first time a result which had often been assumed true, in
various forms, and even to the present is often not adequately
appreciated.16

A concept closely allied to m.a.r. is that of auto-
regressive representation (a.r.)17 When the l.r. w.s.s.p.
(?)(t) with associated i.p. (2)(t) permits the representation

B * (i,‘)(t) : 3 B(s)(ﬁ)(t-s) = (®)(t), with B(0) = I, where the
s=0

partial sums converge in quadratic mean, then that representation
is known as the a.r. We stress that it is important that the
"errors" be the innovations, in which case the force of the

a.r. is that ((i,{)(t)]HX Y(t-l)) has the convenient representation
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) B(s)(ﬁ)(t—s) rather than the more generally necessary
1

™~ 8

8

representation as the limit of a sequence of finite sums,

with possibly changing weights.
The Wold decomposition has given us a coordinate free
representation in terms of the physically meaningful innovation

vectors for the l.r.w.s.s.p. under study: (ﬁ)(t) = 7 Ak(:)(t-k)
k=0

=a* M@®, (O®, GE)r =4 ad 2= ((D©),

(:)(t)) (so that A, = I). The parameters Ak and ¥ are of

(¢
course unique, since the formulae give them in terms of
observables or well-defined operations (projectiomns) involving
observables., We will refer to this as parameterization (I)

or the natural parameterization (n.p.); it is especially
convenient when the autoregressive representation exists,

" since its coefficients will be those in the power series

oo

expaﬁsion of A—l(z), where A(z) = £ A(k)zk. We emphasize
k=0
that the representation itself implies HX Y(t) E.Hu w(t),
]

]
and the construction of (:)(t) implies its subordination to
(ﬁ)(t); thus (:)(t) are mutually subordinate (m.s.):
H, ,(t) = H (t). It is this last fact which is crucial for
X,Y u,v
prediction theory generally and our decompositioms in
particular: Hu v(t) must represent a reasonably convenient
description of current and past (%). Other convolution
representations, say (?) = éf(%) which, like (3), are vector

white noise, also exist; as will be clearer from the ensuing

paragraphs, there will be no difficulty in normalizing these
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(%) so that their contemporaneous covariance matrix is the
identity. Yet only for &) = T(u), |T| # 0 will H (t)
¥ w u,w
[« Hx Y(t); those (5) which are not subordinate to (i) yield
lower prediction variances for (i). They are not suitable
for prediction purposes because they carry more information
about the future of the (?) process than is available from
the present and past.
For some purposes we may wish a representation (ﬁ)(t)
=D * (:)(t)’ where the v.w.n. (z)(t) is mutually subordinate
X e e e
to (()(t) and (()(t), ()(t)) = I. Rozanov terms () a
Y — °'n n n
fundamental process (f.p.) ([17], p. 56), and makes it a part
of his definition of the moving average representation of a
process. Obtaining a f.p. from the i.p. amounts to choosing
an orthonormal basis in Du w(t); since there are as many of
?
these as there are orthonormal matrices, a f.p. retains this
nonuniqueness, which may either be accepted or eliminated by
imposing additional restrictions.
Starting with the n.p. () () = A * () (), Cov ()

= 7, we arrive at a f.p. by: diagonalizing I, PIP' = A;

writing T = P'AP = (p'AM 2py (p'al/2py = 51/2 §1/2 -1/2
1/2
A, O
-1/2 1 12 [+ O
= P'A P, A= 0 and A = 1/2) 3 and finally
2 0 AZ
e _ ~1/2 ,u e
taking (n)(t) =2 (w)(t). (n)(t) has covariance matrix

the identity, and (?)(t) = AZl/Z %* 2-1/2(3)(t) = Alez * (:)(t)

is a m.a.r. with (i)(t) as f.p. Any Q, Q'Q = I results in



/2 ZUZQ' * (-Ie;)(t), so that

1

At A

@ ® Q' * () (1)

e
() (t)
nonuniqueness of the f.p. may be expressed by noting that the

1/2

zero-order coefficient in the last convolution is I Q'

/2

Q(:)(t) is also fundamental. Since A(0) = I, the

where Zl is unique, but Q' may be any orthonormal matrix.

It is a well-known result in matrix theory18 ([16], p. 191-192)
/

that any symmetric matrix (Z_l 2) may be lower (respectively,
upper) triangularized by postmultiplication by an orthonormal
matrix; the triangularization is unique if the diagonal elements
are required to be positive. We call these normalizations

IT-L and IT-U, and will actually produce them below in a way
which does not lose track, as this argument has, of the

innovations.

Let us return to the n.p.: (?)(t) = A * (:)(t),

2
u % Ouw
Cov(w)(t) = o and A(0) = I. We retain u(t), but
Cu %y

replace w(t) in our basis by v(t), where v(t) = w(t)

o
- (w(t) |u(t)) = w(t) - —E% u(t). In other words,

g
u
1 0 1 0
u -Ouw 1 u u ouw u
(v) (t) = 5 (;) (t), or (w) (t) = — 1 (V) (t).
o] o]
u u
1
X cuw 1 u
Consequently, (Y)(t) = A —5 * (v)(t) in which the m.s.
/ _
u

process (:)(t) is serially and contemporaneously uncorrelated,
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with the first element the X innovation and the second element

that part of the Y innovation | to the X innovation. Not only

1 0
w1

are the convolution matrix coefficients A(k) _— , keI,
(o}
u

well defined in terms of this physically specified basis, they
are econometrically identified under the following (classical)
pair of "zero restrictions":19 (1) That the zero order
convolution coefficient be lower triangular with ones on the
diagonal, and (ii) that the covariance matrix be diagonal. To

see this, consider the zero-order coefficient and covariance

1 0
ww 1)1
matrix of any other m.s. representation: A(Q) — T ™,
%
2
%
T 2 T'. Only lower triangular T with units on the
0 ¢
v

diagonal will satisfy (i) (recall that A(0)=I); if tyy # 0,

then the off-diagonal terms (t210u2) fail to vanish in the
transformed covariance matrix, causing (ii) to fail. Of course,
had the Y innovation been retained in the basis (as the

initial step of a Gram-Schmidt orthogonalization) the result
would have been an upper triangular zero-order matrix with
diagonal covariance matrix. We call these normalization
conventions III-L,D and III-U,D, respectively (the mnemonics
L,U are for lower, upper triangular and D is for diagonal

covariance matrix).
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We may now deduce the exactly identifying nature of the
normalizations 11-U and I(-L from III-L,D and IL1I-U,D (which
have just been shown exactly identified, via I). This procedure
involves: algebraically, normalizing the diagonals of the
covariance matrix at unity and making the corresponding adjust-
ment fo the zero-order coefficient matrix; or, geometrically,
scaling the orthogonal innovations in (3)(t) so that they have

unit variance. 1In other words, (§)(t)

1 o0 1 ] .y O 1 0
= A * (D) = A % uy o
g v o 1 v)(t)’
uw 1 uw 1 0 o] 0 —
2 2 %
g a
u u
u
or again A Ou g * o , which is in the form II-L.20
w v u
— y_
g g
u v

The point is that, starting from III-L, only lower-triangular
T will preserve the lower triangularity required by II-L;
the diagonal elements must be as above to produce unit diagonal
in the covariance matrix, and, if t21 # 0, as before, the
diagonality of the resulting covariance matrix would be
spoiled. Consequently, we have againlarrived at the II-normaliza-
tions, but in a comstructive way which has not lost sight of
the innovationms.
Of the three normalization variants, only the I2 are

fundamental; how does this square with the rightful emphasis
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given fundamental representations? Since the important part
of fundamentalness is mutual subordination, and all the
normalizations were among m.s. processes, it is not imperative
to adopt the further, underidentifying normalization convention
that fundamentalmess carries with it. We have found it helpful
in organizing thought to adopt some normalization and stick
with it, interpreting, if necessary, the results for other
normalizations at the last stage; the alternative, stating
results valid for some unspecified or all possible normaliza-
tions, is likely to leave the reader (if not the author)
frustrated and confused.

Finally, we come to define the notion of causality for
l.r. w.s.s.p. (§)(t). Y is said to cause X if, given past X,
past Y aids in the prediction of current X (notation: Y - X).
In symbols, Y will cause X when (X(t)]HX’Y(t-l)) # (X(t)IHX(t—l)).
Y is said to cause X instantaneously if adding current Y
helps predict X, given past X and past Y (notation: Y i X).

i
In symbols, Y -+ X whenever (X(t)IHx Y(t—l)uY(t)) #

(X(t)|HX Y(t—l)). Since part of Proposition 1 shows that
s

i i
Y + X if and only if X + Y, the above notion of (Wiener-

Granger) causality does not permit any distinction as regards
instantaneous causality; consequently, the definition is only
meaningful over time., Whether these are the more interesting
causality events depends on one's philosophical bent. On the
necessity of a stochastic notion of causality, see [4], p. 430;

for a comparison of this definition with other notions of
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causality, see the first section of [26].

If we now adopt the mnormalization II-L (so that.
(3)(t) is fundamental--v.w.n. with covariance matrix the
identity and a linear combination of the innovations--and

b(0) = 0) then we may state:

Sims' Theorem 1. In the l.r. w.s.s.p. (%)(t), Y does not

cause X if and only if the Wold (m.a.) representation subject
to II-L is (;()(t) = ¢ g) * () (e).

The method of proof employed in [24] is direct, uses
the characterizing features of the m.a.r., and cannot be
improved upon. A careful reader of the proof might wonder
why the u process, which by construction is part of the
bivariate innovation, is also the univariate innovation for
the X process. Since we use both this theorem and this fact,

and the reason illustrates the theoretical importance of

a(z) 0
c(z) d(z

supply an explanation. The crucial notion is that among

viewing B(z) = ( )) as an analytic function, we will
matrices.g(z) which factorize the autocovariance function, or
equivalently the spectral density matrix, that matrix which
corresponds to the desired fundamental representation, B(z),
has the maximality property B(O)BT(O) Z_iIO)ET(O) where >

here means "LHES minus RHS is positive semidefinite." ([17],
p. 60, 61). This maximality notion applies both to univariate
and bivariate factorizations, so if u weren't fundamental for

X, there would be a(z) = g(z) a(z), with g(z) g(z—l) =1 on
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|z] = 1, such that |a(0)|2 > |a(0)|2 (here a(z) is a scalar).

a(z) 0
c(z) g(2) d(z2)"’

Then if we consider a competing B(z)
B(z) still factors the spectral density and detIB(O)I2

= [a(0)|%]a(0)|? > |a(0)|?]d(0)|?, contradicting the

maximality of B(z) and hence the joint fundamentalness of
u

.

This concludes our background survey and introduction

of notation. It is time to begin work.

I1II. Bivariate Characterizations

We begin this section with a 1emha which will find
immediate use. Paraphrased, it says if Y(t) is not perfectly
predictable from the past of X and Y, it must remain so when
current and a finite number of future X are included among

the predictors, or else X(t) will be perfectly predictable.

Lemma. Assume the l.r.w.s.s.p. (?) has an autoregressive

representation with innovations process (:), and w(t) # 0.

Then for any n > 0, Y(t-n) in HX(t—l)Lij(t;n-l) = A(n)

implies u(t-1) = 0, in which case |Z] = |Cov (:)(O)I = 0.

Proof: The case n = 0 is self-evident, so we may choose

n > 1. Since Y(t-n)eA(n) is equivalent to the existence of
¢ = (cl, cessy cn) such that (*) Y(t-n) = clx(t-n)+ ces

+ ch(t-l) + z, z€HX’Y(t~n-l), ¢ # 0 or else w(t) = 0.
Relabeling if necessary, we may take e, # 0. Substituting
for X(t-1) from the a.r. into (*), dividing by c,s and

transposing all the terms on the RHS except u(t-1l) shows



- 25 -

u(t~1) to be in HX,Y(t-Z)' But as an inmovation,
u(t-1) l-HX,Y(t-Z); hence u(t-1) = 0. Q.E.D.

The time indices were chosen to accord with thei?
use below; setting t = s+n yields a form consistent with
the paraphrase above.

We waste no time in putting the machinery developed

in the last section and above to work in the proof of

Proposition 1. Assume that the l.r.w.s.s.p. (?) has the
autoregressive representation (a.r.) (?)(t) = (i 3)*(?)(t)

L a(i)X(t-1)+ I b(i)Y(t-1)
i=1 i=1

+ () (t) =

Z c(L)X(t-1)+ 2 d(1)Y(t-1)
i=1 i=1

+ () (0 with B (a(e)u(e))

o] 2 o]
= (% " =3,
wu o
w
Then: (i) Y does not cause X if and only if b(+) = O;
(11) whether or not b(+) = 0, instantaneous feeéback (or
instantaneous causality) is present if and only if O uw # 0,
this last result holding even if no a.r. exists, where then
(3)(t) remains the innovations process.
Proof: (i) Assume first that b(e) = 0. Then by the
u
definition of the a.r. ( )(t) l'H(X’Y)(t—l), so that

(X(t)IHx Y(t—l)) = a*X(t) + 0*Y(t). In general, we may form
b}
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(X(t)le(t-l)) by projecting (x(t)lﬁx‘y(t_l)) onto Hx(t-l),
a step which is not necessary here. Rather trivially the
two projections are equal, and sufficiency is established.
Now assume (X(t)IHX,Y(t-l)) = a*X(t) + b*Y(t), so that
(X(t)|HX(t~1)) = a*xX(t) + (b*Y(t)]HX(t-l)); by hypothesis

these projections are equal. This entails I b(di){¥Y(t-1i)
i=]1

- (Y(t-1) [A (e-1))} = 0. If b(+) # 0, we will have a con-
tradiction. Let n be the first index i1 such that b(i) # O.
* b(i)

Dividing by b(n) gives Y(t-n) = - T @) Y(t-n-1i)
i=1

s ba) B} -
+ I (Y(t-i)le(t 1)). The first term is in HX,Y(t n-1)

1=1 P
from the a.r. for X(t), and the second term is in Hx(t-l).
Application of the lemma above entails u(t-1) = 0, which would
contradict the full rank assumption of |Z| # 0. (ii) To

check for instantaneous feedback-causality, we compare

(X(t) [H (e=D) U H, (€)) with (x(t) [Hy ¢(£-1)) and

(Y(t)lHX(t)LJHf(t—l)) with (Y(t)IHX Y(t-l)). To compute the

<u(t), w(g)>

<w(t), w(t)> w(t) + v(t) so

former, we first regress u(t) =

o
that <u(t) - —% w(t), w(t)> = 0, or w(t) | v(t).

(o}
w

(X(t)IHX(t-l)LJHY(t)) = (X(t)IHu,w(t—l) 8 w(t))

= (X(t)lHX Y(t—l)) + (X(t)|w(t)). Thus, the marginal effect
’

of current Y is to change our forecast of X(t) by (X(t)|w(t))

o] 0]
= (e [w(e)) = =5 w(e) + (v(©) |w(t)) = w(t); the

(¢ 0]
w w
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2
g
uw

predictive variance is corpespondingly lowered by —3- These

g
w

effects are zero if and only if ouw = 0, as asserted. The

computation for predicting Y(t) shows that the predictors

2
o (e}
differ by B% u(t) and the variances differ by ——Eg, so that
g g
u u

current X is of additional help in predicting current Y if

and only if Oy # 0. The results for X and Y together establish
that instantaneous effects are present either together or not

at all, justifying the term instantaneous feedback. Finally,

no use was made of the a.r. representation in proving (ii),

as was promised. Q.E.D.

A special case occurs when the order of the longest lag
necessary in the a.r. is finite, m, say, and O = 0. Granger
called this the "simple causal model” and proved (i) of
Proposition 1 ([4], p. 436), establishing the first theorem in
the subject with no fanfare (the result modestly bears no label
whatever). We wish both to emphasize the importance of his

result and to make the following observatioms.

Remark 1. Although he asserts his result for m=» as well,

it appears that Granger's method of proof, which involves
examination of Kolmogorov's expression for the predictive
error variance, will not be easily adapted to this case,
because some statements which are "clearly" true in his proof

are not so clear when infinite products are involved (although
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perhaps the introduction of Blaschke products along the lines

of [7], p. 142-3, may be used to advantage.)

Remark 2. The fundamentalness of the (:) process and the
defining properties of the a.r. were not stressed by Granger,
although uniqueness of the a.r. certainly must be present for
his result to hold. It is pseful fo be clear that the result
is not specific to the simple causal model, as is also

evidenced in:

Remark 3. By "inverting” the m.a. and taking b(*) = 0 in
precisely those cases where Y does not cause X, the a.r. is
found, when it exists, to have all coefficients of lagged Y
equal to zero. Thus, application of Sims' Theorem 1 vields
another proof of the Granger result. Of course, as our
normalization discussion has shown, the a.r. so obtained

is not necessarily associated with a simple causal model (even
when thé a.r. is finite). A justification of this "inverting"”
procedure may be found in the second of the Wiener-Masani
references [30].

With the characterization of instantaneous causality
in hand, let us return to the Sims theorem and observe that
instantaneous causality obtains 1f and only if c(0) # O.

This is apparent, since the identification-normalization

g
discussion shows c(0) = EEE; in other words, the presence
u

of i.c. is thrust entirely into c(+), and the force of

b(s) = 0, all s consists not in b(0) = 0, which holds by
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normalization and so is always possible, but in the ability
to take b(s) = 0, s=1, 2, ... .

In a comparison of these theorems, the Sims result
has the advantage of mathematical generality, in that its
hypotheses are met for any l.r.w.s.s.p.; the Granger result,
while requiring in addition an a;r., yiel&s an Immediate
statistical test. We refer the reader to [31] for a discussion
of the estimation of multivariate autoregression; of course,
ordinary least squares, comparing X on lagged X with X on lagged
X and lagged Y may be used as well.

Our next result presents another characterization of
the exogeneity of X, which, like the earlier result in terms
of the Wold representation, has the advantage of requiring no
additional assumptions. Indeed, the remark below shows that

the l.r.w.s.s.p. assumption may even be relaxed.

Proposition 2. In the l.r.w.s.s.p. (i)(t), Y does not cause

X if and only if (Y(t)IHX(t)) = (Y(t)IHX(°“, ®)).

Proof: We prove sufficiency first, assuming equality
of the two projections. By the characterizing property of
(Y(t)IHX(—w, ®)), Y(t) - (Y(t)lﬂx(—m, ®)) | X(t+s), all t and
8, and particularly for s > 0. Hence, by the assumed projection
equality for all t, we substitute, shift, and define to arrive
at n, = Y(t-j) - (Yit-j)lﬂx(t—l)) ] x(e+k), =1, 2, ... and

all keI. If N, = U {n

1 2 j}’ we have Nl l, HX, and & fortiori

Ny i_HX(t) and Nl_l HX(t~l), since by construction each vector
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in N, has these properties. Taking a closure and using the

1
continuity of the inner product &ields ﬁi l_ﬁx(t) and

Hx(t—l) as well. This gives us license to write

(X(t)mx(c-l)uﬁl) = (X(t)lﬁx(t-l)) + (X(t) Wl),

since clearly S(X(t-j), Y(t-j), j=1, 2, ...) = S(C u X(t-j), Nl)
j=1

which by definition is HX Y(t—l). Thus,
() (X(r) [Hy y(e=1)) = (X(8) [Hy(t-1)) + (X(O) [N)).

But (X(t)lﬁi) = 0, since X(t)sﬂx(t) and we have seen that

HX(t) i_ﬁi.21 In other words, Y does not cause X. Conversely,
assume Y does not cause X. Since (*) is always a valid
decomposition, we have (X(t)lﬁi) = 0, or the countable state-
ments () X(t) | ¥(t-j) - (Y(e-3) [0y (£-1)), 3=1,2, ... . We
will use only the fact that orthogonality relations are valid
when shifted over time, a weak implication of covariance
stationarity (cf. the Remark below), in establishing by induction
that (Y(t)!HX(t+k)) = (Y(t)[Hx(t)), k=1,2, ... . Setting j=1

and shifting forward one unit yields X(t+l) | Y(t) - (Y(t)IHX(t));
- consequently by definition (Y(t)[HX(t)) = (Y(t)IHX(t+1)),
anchoring the induction. Now setting j=n yields X(t) l_Y(t—n)

- (Y(t—n)le(t—l», so that (Y(t-n)lHX(t-l)) = (Y(t-n)IHX(t)).
Shifting this last equality forward n units and employing the
induction hypothesis, (Y(t)|HX(t)) = (Y(t)IHX(t+n-1)) yields

(Y(t)le(t+n)) = (Y(t)|HX(t)). Consequently (Y(t)]HX(—m, ©))
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= (T()| U Hy(t+n)) =(¥(t) IHX(t)), using the continuity of
n=1

the projection operator. Q.E.D.

Remark. An inspection of the proof reveals that the hypothesis
(Y(t)lHX(—m, ®)) = (Y(t)IHX(t)), all te I, would have sufficed,
along with the hypothesis that the variances of X(t) and Y(t)
exist for all t. This latter requirement provides the

Hilbert space HX’Y(-N, ©) with respect to which the necessary
projections are defined. Thus, the linear regularity and
stationarity of the covariance structure of the l.r.w.s.s.p.
hypothesis may be dismissed. However, most applications will
be either to stationary processes or very special departures

from stationmarity.

Cogollarz 1. If in the l.r.w.s.s.p. (?), X(t) has an auto-

regressive representation, £*X(t) = e(t), then Y does not cause

X implies that Y(t) can be expressed as a distributed lag on

current and past X with a residual which is not correlated

with X(s), past (s < t), present (s=t), or future (s > t).
Proof: Define w(t) = Y(t) - (Y(t)[HX). Then

w(t) | X(s), all integer t and s, by construction. Using the

proposition, w(t) = Y(t) -~ (Y(t)lﬂx(t)). Since (Y(t)|Hx(t))€HX(t)

s=t

is a complete orthonormal set, we
8=; 00

= He(t) and {e(s)}
have the Fourier representation
s=t

(Y(t)|HX(t)) = I <(Y(t)|HX(t)), e(s) > e(s) = gq*e(r),

g=-oo



- 32 -

say. So (Y(t)IHX(t)) = q*f*X(t), and it follows that
Y(t) = q*f*X(t) + w(t). q*f as the convolution of two, one-
sided convolutions, is clearly one~sided, and w(t) has the

desired orthogonality property. OQ.E.D.

Corollary 2. The converse of Corollary 1 holds, even if X has

no a.r.

Proof: By assumption we have Y(t) = h*X(t) + w(t),
say, with w(t) l_X(s), all t and s. Consequently, (Y(t)le(t))
= h*X(t) and (Y(t)IHx(—w, ©)) = h*X(t). Application of the
proposition shows that Y does not cause X. Q.E.D.

The corollaries taken together provide a str‘engthening22
(and alternate proof) of Sims' Theorem 2. Thus, the Sims test
for exogeneity--testing whether "future" coefficients of h(.)
vanish--is an implication of "Y does not cause X" under the
milder assumption that only X (and not (?) jointly) possesses
an a.r. On the other hand, the presence of a one-sided f£(.),
always referring to a population or theoretical regression,
guarantees that "Y does not cause X" without any further
qualifications.

Despite the corollaries and the appealing interpreta-
tion of this result which is given in Section VIII, the main

. interest in Proposition 2 lies in its usefulness in proving:

Proposition 3. For the l.r.w.s.s.p. (?), let the univariate

innovations processes for X and Y be e and v, respectively.

Then Y does not cause X if and only if v(t), v(t-1), ... are
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uncorrelated with e(t+l1), e(t+2), ...; equivalently,

t (=]
I 8D (s) ] T @D (s).
g=—w s=t+l ©

Proof: Using the notation of the proof of the previous

sections wherever possible,

s=t s=t -
(Y(e) [H(£)) = (¥(e)| £ 8D (s)) = T (¥(t)[D (D)
S==0 S=-
and
sS=0 g=00
(Y(t)lHX) = (Y(t)|] = @ D (8)) = % (Y(t)IDe(s)).
g==00 S==c0
Thus

@ a ) - @olapil? = = |[@@p ]|
s=t+1
by the Pythagorean Theorem. But both directions of the

proposition may now be proved with the aid of
(*) Y(t) | e(t+)) all § > 0 <=> Y(t) | De(t+j), all j > 0 <=>

(Y(£) [D_(£+4)) = 0 all § > 0 <=> || (¥(e) |D_(e+i))||?

=0all §>0<=> % HY(t)lDe(s)ll2 = 0 <=> (Y(£) [Hy(t))
s=t+]1

= (Y(t)]Hx) <=> Y does not cause X, using Proposition 4
at the last step. By joint stationarity, (¥*) is equivalent
to Y(t-k) i.e(t+j), all j > 0 and all k < 0. Since

s=t ©

Hv(t) = HY(t) = % 8 Dv(s) and % @D (s) = S(e(t+j), j > 0),
g=-a s=t+l °©
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the result now follows. Q.E.D.
The scalar process X(t) whose autocovariance function is
. 2 T=20
RX(T) = {;1 T = +1, -1 may be used to illustrate a case in which
0 elsewhere
the assumptions of Propositions 2 and 3 are met while the
theoreﬁs they generalize do not apply. The reason, of course,
is that a process with moving average representation (m.a.r.)
X(t) = ;(t) - u(t-1) = (1-L) u(t) is "widely known" not to permit
an autoregressive representation (a.r.). ([28], p. 27; [14],

p. 137). The usual evidence supporting this assertion is

that the natural candidate for an inverse, (l—L)-l =1 4+ 1
n
+ L2 + ... results in the unpleasant lim I X(t-1)
n+oo 1=0

= lim{u(t) ~ u(t-n-1)}, which does not converge. This argument,
ofnzz;rse, only proves that one attempt at finding an auto-
regressive representation has failed; to show that all candi-
dates must fail is more difficult but instructive because the
precise meanings of the commonly used terms m.a. and a.r.

must be confronted. This is our excuse for proving in detail

the following:

Lemma. The process X(t) = u(t) - u(t-1), u(t) white noise with
unit variance, does not possess an autoregressive representation.
Proof: An a.r. is by definition a decomposition of the
oo

form X(t) = I a(i) X(t~1) + e(t), where e(t) is the innovation
i=1

in the X(t) process; also by definition, an m.a.r. is a
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[

decomposition of the form X(t) = I b(i) e(t-i) where, if
b(0) is normalized to unity, e(t)izg again the one-step-
ahead prediction error for X(t), or innovation. To be

more specific about the a.r. (to substitute u(t) for e(t))
thus requires showing that X(t) = u(t) - u(t-1) is indeed the
m.a.r. »Evidently, HX(t) g_Hu(t); we need to prove that u(t)
is not just any driving white noise process, but that it is
in the space from which predictors may be drawn, that it is
in the linear manifold generated by current and past X. To
show Hu(t) E_Hx(t) it suffices to get u(t)eHx(t). We do
this directly by producing a sequence of vectors in Hx(t),
{X(t) - ﬁn}, which converge to u(t) in the norm of HX(t);
completeness of HX(t) then ensures that u(t)eHx(t). We take

for ﬁn the projection of X(t) onto <X(t-1), X(t-2), ...

X(t-n)>.23 Writing out the normal equations yields
A n
X = 3 c(1)X(t-1) where the c{(i) satisfy
R 1
-1

o
0

=

(

N
1

l—l
)

|—l

, ord = Ac.

o .

f

[ and s ¥
!

N

0 .

_ - Since A is symmetric, so is A‘l; the first row or column may

n n-1 1
be verified to be (n+1 e ERE n+l) which allows the
A D atl-i
determination of c. Hence, Xn =~ I C—;;i—ﬁx(t—i). Now

i=1
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(n+1)[x(t)-§cn1 = (L)X(t) + nX(t=1) + ... + X(t-n) = (a+l)u(e)

- u(t-1) - u(t=2) - ... - u(t-n) - u(t-n-1). Consequently,
ntl _ 1 '
(n+l)2 n+l

e - %) - a@®]]? = +0asn e ult)

i1s thus fundamental for X(t) and hence X(t) = u(t) - u(t-1l)

i

is 4 m.a.r. But X_ (X(t)]Hu(t-l)) = -u(t-1) is the optimal

predictor of X(t) using the entire past, leaving prediction

error X(t) -~ X = u(t) with unit variance: This implies

(=<

() [|d*x(e)||? > 1 for any a*x(t) = T d(L)X(t-1)
1=0

with d(0) = 1 which converges. We use (¥) in concluding.

A

Because Xn + u(t) - X(t) as n > «, if an a.r. exists, say
oo n

X(t) = I a(i)X(t-i) + u(t), then lim I a(i)X(t-1) = lim Xn’
i=1 naoo i=1 <o
n
or lim X, I (a(1) +3IPX(t-1) = 0. If a(i) # -1 for some i,
-0 i=1 o

let 1i' be the first such i. We then have, after renormalizing

N — n-i ' n-i' b '
via d(i-1') = (a(d) + E;I)/(a(i ) + ) ), 1im I d(1)X(t-i'-1)
N+ i=0

= d*X(t-1i') = 0, d(0) = 1. Stationarity implies d*X(t) = O,

contradicting (+). Thus, the only possible candidate for am

(22
a.r. is I X(t-1i), but we have already seen that this does not
i=1

converge. Q.E.D. As a final tutorial comment, u(t-1)
illustrates two technical points: u(t-1) o X(t-3}) but
U
j=1

u(t-1)F U X(t-3j), showing the need for closures; and u(t-1),
j=1
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while a limit of finite linear combinations of past X, is not
an infinite linear combination of past X.
By exogenously embhedding this X process into a bivariate

system, the desired example may be constructed. Thus, if we take

X ~ ,1-L 0 u _ u
@@ = 7 7 DOE =BOIE),

(3)(t) v.w.n. with contemporaneous covariance the identity
matrix, then by the cited reference in Rozanov ([17], p. 88)
B(z) is a maximal matrix and (:)(t) thus jointly fundamental for
(ﬁ)(t). By Sims' Theorem 1, X is exogenous by the form of the
m.a.r., and previous discussion has established that u(t) is

the univariate innovation for X(t), although v(t) is not the
univariate innovation for Y(t). Proposition 2 is illustrated

by observing
(Y(t)IHx(t)) = (u(t) + v(t) - v(t-l)le(t))
= u(e) = (Y(£) [Hy (==, =));

u(t) 1is not expressible by a distributed lag on current and
past X, by the Lemma. The message of Proposition 3 is that
current and past Y, which will be 1linear combinations of
current and past u and v, will be orthogonal to all future
innovations in the X process, i.e., all future u. Of course,
the Y innovations would, if derived, enjoy this orthogonality
property as well.

We conclude this section by commenting on what may



be the independent discovery of Proposition 3 in the unpublished
works [8], [9]1, and [15]; for specificity, we will conceptrate
on Theorem 4.2.7 of [15], although the idea in one form or
another undoubtedly goes back to [8]. In any éevent, the

proof of 4.2.7 states that, in the moving average representation

5] '(B) 0..,(B)
u 11 12 a _ -
*) (v) (t) = <621(B) @22(3)> (b)(t), 911(0) = 92(0) 1,

(B here is our L, the lag operator)

since u(t), a(t), and b(t) are each white noise, it follows that
Gll(B) = 1 whenever 912(B) is a constant or zero. This i8 a
crucial step in their proof which, in this author's opinion,
represents a lacuna. Considering the case where 912(8) = 0,

let
C] = —_—t> = - 2B = I .
ll(B) 2 1 B B ceal

it is evident that 911(3), while not the identity, nevertheless
maps a white noise input a(t) into a white noise output u(t):
that |@11(eix)12 = 1 for A€[0,27] is the easiest way to see
this, but it follows by direct computation as well. Of
course, Gll(B) maps a nonfundamental "innovation" process into
a fundamental innovation process, but since these concepts

are not used in [15], the inference might be that their
operational method of proof breaks down at this point.

If this particular @ll(B) is dismissed on the grounds

of the "invertibility" assumption on lﬂ(z)l made earlier, the
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question of the burden of proof still seems open. We question
here the soundness, not the validity of the deduction; indeed,
Proposition 3 shows that the result holds without any assumption
of "invertibility," i.e., without the assumption that an a.r.
exists. Actually, this point may be important in practice,

if processes are known not to have autoregressive representations
due, for example, to seasonal adjustment procedures.

IV. The Forward Flow of Time; Symmetries and Asymmetries;
Time Reversal

In this section, we consider the effect of what may be
termed time reversal on the Wiener-Granger-Sims notion of
statistical causality. Our finding will be that, while all
of the previous theorems have natural analogues, when time
is reversed the property Y F X is itself not invariant, except
in a special case.

Situating ourselves at time t and considering X(t+1)
the classical prediction problem involved projecting into
HX,Y(t)’ because this space represented the past, the data at
hand. If time were "flowing backwards" or "reversed," we
can imagine knowing, instead, only the future,

(X(t+i), ¥Y(t+j), 1,3=1,2,...), a family of random variables
the closure of whose span is HX,Y(t+1’ ©), and trying to
"predict" X(t) by projecting onto HX,Y(t+1’ ©). Denoting
the latter space by EX,Y(t+1)’ we define "Y does not cause X
under time reversal” (notation: Y 545' X) whenever future Y

does not help in predicting current X, given future X; in
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symbols, (X(t)lB_X’Y(t+l)) = (X(t) |H (t+1)). As with the usual
definition, the LHS has in general a lower predictive variance
because the projection is onto a larger subspace; as before,
time reversal exogeneity of X with respect to Y (synonymous
with Y?lii X) indeed represents a testable hypothesis. To
avoid the use of an awkward phrase, we will throughout this
section describe "predicting the present from the future'" as
"backcasting."

The counterparts to the ordinary, Section II constructs
of prediction theory will be indicated by an underline, to
emphasize symmetry, continuing the precedent of the'preceding
paragraph. Thus, the crucial decomposition EX,Y(t)

= EX,Y(t+1) 8 QX,Y(t) leads, as before, to EX,Y(t)

(o]
= 3 Q.QX’Y(S) ] HX,Y(m), the latter term representing the

s=t
)

infinite future, sg.mEX’Y(S), which we define as EX,Y(w)' A
random variable contained in EX’Y(w) can be backcast
arbitrarily distantly, given any stretch of the future,
HX,Y(S’ ©), no matter how far removed (how large s). From
its description, it may be thought that EX,Y(m) = {0} on

-physical grounds in most applications; such processes we

" define as linearly regular on the future (1.r.£.). Processes

fof which HX,Y(—m) and HX,Y(w) both are {0} will‘be called
totally linearly regular (t.l.r.), and might be considered

the rule rather than the exception.

We recall from the discussion in Section II that,
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l.xr. or not, it was the l.r. part of a w.s.s.p. (§)(t) which
had a moving average representation; when it is understood
that the structural theorems concern this part, it is a
matter of aesthetics whether the deterministic part exists
or is the zero vector. In other words, the assumption of 1l.r.
could be made without loss of generality. So, too, it is here,
with both the concepts of 1.r.f. and t.l.r.: we state results
for totally regular processes to economize on words, fully
cognizant of the fact that the result applies to the regular
parts of non~t.l.r. processes as well.

One of the reasons so much background was presented
earlier, and the particular version of the Wold decomposition
was given, occurs at this juncture. Once the orthogonal

(o]

decomposition of the space HX Y(t, ®) = JF
> s=t
is available, a reversed version of a moving average

8D, () 8 y()

representation falls out, just as before, by prbjecting
(g)(t) onto an orthogonally decomposed subspace of which it
is an element. To do this, it is a matter of collecting
Fourier coefficients, remembering that convolutions now
extend forward in time, and noting that innovations now refer
' to optimal, one-step-bBehind backcast errors and that mutually
subordinate means HX,Y(t’ ©) = Hu’v(t, ©), Incorporating
into our definition of l.r.f. the notion of full rank of the

matrix of backcast errors, we have the, now underlined,
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Wold Decomposition Theorem. The l.r.f. w.s.s.p. (5) has the

moving average representation forward (m.a.r.f.)

o]

X u
) = kzoé(k) (E) (t+k)

A *() (£), where A(0)

-1, cov (O =z, A = (D (@, Gz,

and trace Z_é(kigé'(—k) <. He Y(t) =H v(t)’
kso > E]

so that (3) is the innovations process.

Another analogous notion is the autoregressive

representation forward (a.r.f.), which has the form

X > X u

B *((E) = T B (e+k) = () (¢), B(O) = I, Cov () = g,
Y Y w W
k=0 - -

where again (3) and (?) are mutually subordinate into the future.

© Of course, the same normalization questions and answers
arise, and the previous use of analytic function theory can be
carried over to distinguish a fundamental m.a.r.f. from a
nonfundamental one. An immediate consequence, for scalar

processes, is a symmetry between past and future (which does

not extend to vector processes).

Lemma. For the l.r.w.s.s.p. X(t) the one-step-—ahead and one-

step-behind prediction errors have the same variance. Also,

Hy (=) = {0}=>HX(+W) = {0}, so that l.r. implies t.l.r.
Proof: Since X(t) is l.r., the Wold decomposition

yields X(t) = b*u(t), where we may take oi=l. Furthermore,
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([17], p. 60), b(z) is maximal among analytic "matrices" with
components in H2 which factor the autocovariance funct;on:
RX(z) = b(z)b(z-l), and |b(0)|2 3_[5(0)]2 for any other
factorizing b(z). But X(t) =b* u(t) the same b(-) sequence)
again represents X(t), because RX(-) is a symmetric function.
Consequently, there is no nonzero element in HX(+m) either.
And the maximality condition which b(+) is known to satisfy
is precisely that which guarantees that u(t) is future funda-
mental. Thus, X(t) - (X(t) I_H_X(t+1)) = b(0u(t), Var b(0)u(t)
= [5(0)|? = Var b(0)u(t) where b(D)u(t) = X(£) - (X(t)|H (e-1)).
One-step-ahead and backward forecast errors have thus been
shown to have the same variance. Q.E.D.

We remark that the reason this result does not carry
over to vector processes is because the matrix analogue of
b(*), B(*), does not continue to factor RX,Y(') = B¥B'(+),
since the latter is not symmetric in the multivariate case.
Although it would take us off the track to prove it, we claim
that a multivariate quantity which ig invariant under time
reversal is |I], that is, |Z| = |I|: generalized variance is
preserved. |

It is now a question of substituting analogous concepts
in the straightforward and obvious way to prove the next
proposition. We begin the task where it is instructive,
mimicking the proof of Sims' Theorem 1, from which the

Granger result may be quickly derived.
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Proposition 4. Let (?)(t) be a 1.r.f. w.s.s.p. Then X is

time-reversed exogenous with respect to Y (Y £+£4 X) if and only

if:

(1)

(11)

(111)

(iv)

The m.a.r.f. is given by (?)(t) = ¢ 0) f_(g)(t),
c d -

i.e., b(+) = O; where the normalization is

2

o 0

a(0) = d(0) =1, b =0; Cov () =[ ¥, s
0o
W

(the analogue of III-L).

o O
When an a.r.f. exists, it is given by *
X 6

&) = ¢ (©), where the normalization is as
in (1), Ii;;L.

(L) [Hyp (e, =) = (Y(£) [Hyp(=o, «)).

e(t),e(t-1), ... are uncorrelated with v(t+l),
v(t+2), ... , where Y(t) =y * v(t) and

X(t) = a * e(t), u(0) = a(0) = 1, are univariate
m.a.r.f.'s.

Proof:

(i)<=: With the given m.a.r.f., X(t) lies in gu(t).

By definition of m.a.r.f., EX’Y(t) = Eu,v(t)’

and the earlier remarks in Section II show that
gx(t) = gu(t), or else, by an analagous maximality
argument, the mutual subordination of the (?) and

(:) processes would be contradicted. Now forming

T a(t)u(t+i),

the projection (X(t)lgX Y(t+1)) =
’ i=1



(4.1) X(t) - (X(t) [y (t+1))

(4.2) Y(t) - (Y(B) [E_X ¢ (tF1))

(i1)
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we note that this is in Ex(t+1)’ and hence equals
(X(t)lgx(t+1)). Consequently, future Y do not
help predict current X. =>: Assuming now the
equality of these projections, and our definition

of Y E4£4 X, we may now write

X(t) =(X(t) |§X(t+1)) = u(t)

11l

w(t).

<I'7_(t) s P_(t)>

Now we define v(t) = w(t) - g(t)

<u(t), u(t)>

so that v(t) | u(t), and, of course, v(t) | u(s),
all t and s by the construction of the projections

{(cf. Section II, and remarks around the Wold

‘decomposition). Thus, (u(s), v(s), s=t,t+l,...)

form a complete orthonormal system, EX Y(t)
3

= Eu v(t), and taking Fourier representations of

X and Y yields a representation of the lower
triangular form. Q.E.D.

By inverting the m.a.r.f., the a.r.f. is obtained,
when it exists. Since lower triangularity is
preserved, the result follows. Another proof is

available by mimicking that of Proposition 1.

(iii) and (iv) follow from Propositions 2 and 3, again

by making the obvious replacements. Q.E.D.

A symmetry carries over to time reversed processes in
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the sense that, if Y E+5’ X, then the analogous results hold,
and conversely. However, it quickly becomes apparent that

Y-++X does not in general hold up under time reversal, egcept
in the special case where (Y(t)[H (-», «)) is in S(X(t)), as

we prove for totally regular processes in

Proposition 5. Let (?) be a t.l.r.w.s.8.p. Then if and only

1 (Y(t) [Hy (-, =)) = kX(t) does Y}rX imply ¥ E45* x. The
result remains valid when Y-}+X and Y E+£' X are interchanged.
In this case, when a-l(-) exists, the m.a.r.f. and the m.a.r.

may be expressed with the same coefficients:

@3 Ow =2 P*Ow =2 DO w,
o> 0
where a(0) = d(0) = 1, cov(™M(r) = ¥ 2 =
v 0 o

w

Cov (3)(t), and k=0 if and only if X E;ﬁ' Y.

Proof: While the first two statements follow immediately
from Proposition 4 (iii) and Proposition 2, they will also follow
from the proof of 4.3. Indeed, since Y-F*X, a III-L normalized

lower triangular representation exists:
X a 0,,,u
= %
@@ = PO,

For Y E+£' X to hold, there must also be such a lower triangular

representation on the future, (§)(t) = (Z glf(s)(t), where

we have used a fact encountered in the lemma: the same a(e)
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must be present in both. But writing out the cross-autocovariance
RYX(-) for each of the representations, we see that,

-1
el el . oy,

c*a' = e'*a, or, in terms of lag operators, =
- a(l ™)

using the assumption that a-1(~) exists under convolution.

Now in this last equality, the LHS must contain no terms in

L-1 (since a(0)=1l); consequently, c(L-l) = k.a(L~1), or c(e)
=ka(*). The statement about i.c. is part of Proposition 1 (ii).
The regréssion convolution coefficients of (Y(t)IHX(-m, )

may be computed in this case as (a*a')—l*ka*a' = k.5(e).

J. e(*) = c¢(*), and RY = c*c' + d*d' = e*e' + f*f' entails

d*d' = f*£f', Maximality ensures d=f. Q.E.D.

Corollary. When Y —-b X and (i) is a t.1.r. W.S.8.p., a
prognosticator desiring to predict X(t) and, given the choice
between the future EX,Y(t+1) and the past HX,Y(t-l) will always
choose the future, although he may be indifferent.

Proof: Since X is exogenous, if X{(t) = a*u(t), oi=l,
by using only past X and by using only future X, the predictive
variance has been shown to be same: |a(0)|2. But this is
also the mean square error when using past Y as well. Thus,
future X allows as accurate a forecast as past X and Y, so
- future X and Y can do no worse than past X and Y. In the case
of Proposition 5, it does only as well; in all other cases,
the m.a.r.f. is not lower triangular, and the future will in

general dominate in these cases. Q.E.D.
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V. Multivariate Propositions
To perform the extension of the concepts of the previous
sections to n dimensions, we write (the only occasion in this

nxl
paper where X represents a vector) the l.r.w.s.s.p. X(t)

nxn nxl
= A% e(t), He(t) = Hx(t) for the m.a. and B * X(t) = e(t),

He(t) = Hx(t) for the a.r. (where it eﬁists). Since the
underlying mathematics (prediction theory) is available in

the sources mentioned in Section II, the previous bivariate
proofs may be adapted to prove results where block-triangularity

replaces triangularity. From a technical point of view it is

A(0) O )
c(0) D(0)

the theory of maximal matrix factorizations to be again used

the fact that det( = det A(0) det D(0) which allows

with the same advantage that was explained on p. 1l4. Since
block~triangularity is preserved under convolution and matrix
inverse, we expect and find the same qualitative results
present in the bivariate case. A special case occurs when
one of the blocks on the "diagonal” is a scalar: we indicate
this by writing X for a scalar and Xl for a vector. If

X -(:i) where %y is 1x1 and X2 is (n-1)xl, then we say, as

before, that x, is exogenous w.r.t. X, if

1 2

(xl(t)lel(t-l)LJsz(t-l)) and (xl(t)lel(t—l)) agree, or,
X2 does not cause (help predict) %y (notation: X2 -+ xl).

Now a new concept emerges: it may be that Xy doesn't help
in the prediction of some or all elements of XZ' In the
(&) = (Xz(t)lﬂxz(t"l))

latter case, when (X (t)]H (t-1)UH
2 X2 Xq
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we write X, —P XZ'

Generally, the notion of "does not cause" is very
dependent on the conditioning set, as the next section will
show. It will be seen that for systems with the block
triangularity of the next proposition, much freedom is
available in specifying the conditioning set. Nevertheless,

we understand Xy —P X, to mean that xi does not help predict

h|

x, when x, is added to the information set comnsisting of the

j i
past of all the other variables in the system (including xj).

If x, —h-xj for all keK, jeJ = {1,...n} K, then we write

X2 —P-Xl, where X2 contains the xk and Xlnczgtains the xj.

Thus XZ *P»Xl means that no component of X helps predict
2

; the symbol —p refers to n, *n,

n,x1

X1

any component of

1x1 Ix1
elementary causality events of the form X —h- xj. To

characterize these latter events, the a.r. is the most
convenient, as Proposition 6 (i) shows. However, in describing
- results involving one component, say X1 and (XZ’ “ee xn)T

= Xz, the rest of the system, the a.r. and m.a. again have

the same qualitative appearance, if a relation~—h is present,
as in the bivariate case; here, however, both upper and lower
triangular representations have an obvious interpretation.

We choose the natural parameterization, in which A(0) = B(Q)

= I below, deferring any discussion of instantaneous causality

until the next section. We record:
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nxl nxn
Proposition 6. For thel.r.w.s.s.p.withm.a. X(t) = A *
1x1 1x(n-1)
nxl T T T
e(t), a.r. B * X(t) = e(t), and X = (xl X2 )

(1)
(11)

(iii)

(iv)

(v)

x, > xj if and only if b,, (+) = O in the a.r.

ji
X2 —P Xy, OF X is exogenous, if and only if

either of the eqﬁivalent conditions hold:

(a) (blz(-) vee bln(-)) 0 in the a.r.

(b) (alz(-) eoe aln(-)) 0 in the m.a.
X —k-Xz, or x, does not cause any other variable
in the system, if and only if either of the

equivalent conditions hold:

(a) b21(') (b) 321(-)
. =0 . =0

bnl(') anl(-)

1x1

In the results (ii) and (iii), x, may be

nlxl (n-1)x1 nle
replaced by X ° X2 by % (nl+n2 = n)

1 2
and the conditions (a) and (b) by the upper

right and lower left matrices in the conformably
partitioned a.r. and m.a. representations.
Propositions 2 and 3, on one-sided projections

and zero correlation of future Xl innovations with
past and present X2 innovations, remain valid

when interpreted as in parts (ii)-(iv) of this

theoren.



Proof: All parts may be tediously demonstrated by
repeating previous arguments with scalars replaced by vectors.
Part (i) is proved in exactly the same manner as part (i) of
Proposition 1.

The only new features are: recognition of the
éupremacy of the a.r. for the characterization of basic
causality events in terms of zero lag distributions; the
observation of an interpretation for zeros in the lower left
blocks; and the choice of the particular parameterization to
simultaneously allow the statements (ii) and (iii).

We will make use of this proposition in intérpreting the
results of the next proposition.

VI. Trivariate Systems and Bivariate Causality; Notions
of Instantaneous Causality-Feedback

In Section IT we remarked that all of the mathematical
complexities of general, n-variate prediction theory are
present for n=2. This does not mean that statements made as
if the universe were bivariate will necessarily retain their
validity when embedded in the natural way in a higher
dimensional setting. Indeed, the presumption has been that
findings of bivariate systems will generally be found spurious,
and consequently overturned, when referred to the properly
specified, larger system. Here, we propose to venture beyond
the safety of the truism that '"in general, everything depends
on everything else" and to investigate what can go wrong

(and right) in the simplest system of dimension higher than two.
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Notions of instantaneous causality are first discussed.
Although they don't enter into the main results, they 40
provide an understanding of a useful triangular normalization,
which is then discussed. Next, a new (different from the
specialization of Proposition 6 to n=3) characterization of
"Y does not cause X in the trivariate system'" is given along
with the evident statistical test for its implementation.

The remaining major issue discussed is, if Y does not
cause X in the trivariate system (§) but the investigator

VA

instead examines the exogeneity of X in the bivariate system
(§), when will this implied bivariate system inherit the
exogeneity of X? And conversely, what is the meaning of a
finding of bivariate exogeneity relative to the higher order
system of which it is a part? We first present a decomposition
which provides both insight into the general case and immediate
proof of some parts of our last proposition. A lemma pertinent
to the subspaces emphasized by this decomposition is given.
Then the last proposition, which gives two conditions, either
of which bring bivariate and trivariate exogeneity into
concordénce, is proved. A discussion and interpretation of
this result, and a suggestion of cases where the proposition
is not likely to be helpful, conclude this section.

Logically prior to issues of normalization are notions

of instantaneous causality; intimately related to any

particular parameterization is the manner in which instantaneous
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causality; if present, will manifest itself.

Peghaps the most natural definition of instantaneous
(trivariate) causality is to say Z(t) causes X(t)
instantaneously (notation: Zii X) if and only if the error

in predicting X(t) given Y(t) and all past X, Y, and Z

declines when Z(t) is added; equivalently, in symbols, if

(6.1) (X(t)|H, v,z(E-DUYE) # (X(t)IHX,Y’Z(t—l)uY(t)UZ(t)).

Alternatively, we may delete Y(t) from the previous definition,
i
and define Z -g X as occuring when the addition of Z(t) to

HX v Z(t—l) helps lower the predictive variance: in symbols, if
b} >

(6.2) (X(6)[Hy y ,(t-1)) # (X(t) |H , (=D UZ(ED).

As in the bivariate case, both relations are symmetric (that

‘ i1 (or 12) il (or 12)
is, X - Z if and only if Z -+ X). Consequently,
il (or 12)
the notation X > Z will be adopted when symmetry is

proved. And, as in the bivariate case, the covariances between

X and Z provide a handy criterion:
1 4

# 0 <=>X <> 2 and o ¥ # 0 <=> X <+ Z,

%%z XZ.

The technique of proof is the same as was used in

" Proposition 1, (ii), so the treatment here is terse. We take
X

a m.a. to be <Y> (t) = A*e(t), A(0) = I, Cov e(t) = I. Since
Z

the forecast error of X(t) given the joint past is el(t), and
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ei(t) J-HX,Y,Z(t_l)’ i=1,2,3, adding Y(t) is equivalent to
adding ez(g). The second moment of the error from forei
casting with the LHS of (6.1) is the variance of el(t)

- (el(t)]ez(t)); from the RHS, the mean square error is the

variance of el(t) - (el(t)lez(t)LJe3(t)). Solving, the two

o ‘
forecast errors are e, (t) - 12 e (t) and e, (t)
1 022 2 1
%2 %23\ o,
- (ez(t) 83(t)) Oyp  Ogg (c ) = el(t)
13
O gFq0=00nC
= (ey(8) eg(r)) — 21— (_033012+G32013> . Thus, it is
022033-023 2312 ~22713
i (o] (o}
clear that 2Z & X iff Cof o,, = 12 13 # 0. Analogously,
31 e} (e}
22 23
i1

X +» Z iff, since the relevant forecast error is e3(t)

g -0 g
= (o) () e,y(r)) — 32— (_ 22 12) (°h, cof o, # 0.

(e} g (o}
911927912 21 11 32
4
The symmetry of I thus entails symmetry of <+». As in the
1, |
bivariate case, Z «> X if and only if 019 # 0, as a computation
i
2

above shows; symmetry of I thus extends to <++. Only in the

0,, = 0 will there necessarily be agreement
12723 1 i

1 2
between the within period notions <+ and <+ for X and Z:

case where g

simple and multiple correlations needn't be in agreement,
unless additional conditions are in force.

We now proceed to derive a normalization of the a.r.,
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which is analogous to III-L,D, in order to understand the
meaning of certain zero-order coefficients being zero or
nonzero; information about both variants of i.c. will be

seen to be present. If the a.r. in the natural parameterization

(n.p.) is
X 3 by & X e
izf () = a, by, ¢, ] * Szf (¢) + e, |(t)
33 b3 ¢4 €3
®1
where Cov e, (t) = I, and all terms in the convolution start
€3
©0
at i=1 (e.g., I al(i)X(t—i), etc.), then we: retain the first
i=1 '
equation; replace the second equation, (Y(t)IHX v Z(t—l))
s >

+ e, (t) by (Y(t)|H.x’Y,Z(t—l)uX(t)) + e,(t) where

gz(t).l HX.Y z(t~1)LJX(t); and, replace the third equation by
9+

(z(t) |1-IX v,z (EDUXE) UY(E)) + e,(t), where

EB(t) l_Hx - z(t-l)L)X(t)LJY(t). The reader who has pursued

. matters to this point should not be confused by the presence

of the same lower bars that denoted backwards innovations in

.Section IV; further, he will have no trouble showing that:

X(t) 0
ag
(6.3) Y(t) - gz—]-”-X(t)
11 +

Z(t) rlX(t)+r2Y(t)
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a1 b1 cl X
g a ag
9 = 2L a, b2 - ——z-l-bl c, - 21 ¢y * 1y (t).
11 11 11
a3-r1al-r2a2 b3—r1bl—r2b2 c3—rlcl-r2c2 Z
gl(t)
+ | e,(t)
e,5(t)
Cof o ~Cof ©
where 1‘l = ng—zr—lg- and r2 = "E(—)'E-O—ZB .
33 33

It seems reasonable to name this III-L,D, although it
is autoregressive rather than moving average in nature., By
bringing the contemporaneous vector on the RHS into the matrix
convolution, new convolutions are naturally defined; e.g., the

coefficient on X(t) in the second equation might be named
o

a.(s), s=0,1 ... and a_,(s8) would be 21 for s=0,
=2 =2
11
91
az(s) -5 al(s) for s=1,2, ..., etc. No confusion will arise
11

if we drop the _ and reuse the previous notation: 815895 oeo

Hence, what is important to notice in this representation,

X a; by ¢y X &
= ' *
(6.4) Y Kt) a, b2 c, Y [(t) + e, (t),
VA a b c Z e

3
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e1 01 0 0
e 2 _ _ _
Cov e, () =¥ = o 99 0 ,bl(O) = cl(O) = cz(Q) 0,
€3 0 0 o2
o] Cof o -Cof o
21 13 23
is that a.(0) = —=, a_(0) = =———, b_(0) = ————,
2 011 3 Cof 033 3 Cof 033
)

Consequently, the assumption az(-) = 0 rules out X ++ Y, while
the assumption bl(-) = 0 does not have any implication for
instantaneous causality. However, for a3(°) = 0 in the new
parameterization to correspond to X not causing Z, as in the
natural parameterizaéion, we must have both rl and r, = 0,

a severe instantaneous causality assumption.

As in earlier sections, we have provided the algebraic
normalization with a physical, innovatioms-related interpreta-
tion. And, as before, the natural parameterization is best
suited to proofs exploiting the geometric nature of the spaces
under consideration, as the next development shows.

The extension of the bivariate exogeneity results of
the first three sectioms to the block-triangular systems of
the previous section has been treated by investigators as
sufficiently obvious that proofs are unwarranted; indeed, the
statement of the proposition is itself often implicit. The
natural analogue of Proposition 2 for part (iii) of Proposition

6 is that when Xy h X2 the (two-sided) projection of the

scalar xl(t) on the past, present, and future of the vector
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Xz(-) will in fact. be one-sided on the current and past. We
pove this as a corollary of the next proposition which provides
a multivariate characterization which would not be formally
deduced by such playing with blocks. The earlier remark after
Proposition 2 concerning the relaxation of the assumptilon of
stationarity remains in force and will not be repeated. The
dimensions of X, Y, and Z below may be taken ag 1, 1, and n-2,

although obviously block generalizations of this result hold

also.
X

Proposition 7 1In the vector process {Y ), Y P X if and only
Z

1f (7(t) [Hy , (==, =D UX(EH)) = (Y(1) [Hy , (-, t+-1)),
all integer k > 1. When the projections are expressible

as distributed lags, the result may be paraphrased as: if

Y(t) is regressed on the past and any finite number k of future

X and Z, then the next X will, if permitted, never enter the

regression.

Proof Y b X is equivalent to (X(t)[Hy v,z (t-1)eH, (t-1)) = 0,

or (X(t)| U {Y(t—j)—(Y(t-j)lHX z(t=1)}) = 0: the notion of 8
i=1 ?

as an inverse to # is discussed on p.126. This in turn is

equivalent to X(t) | Y(t-k) - (Y(t—k)lHX ,(t-1) for any

integer k > 1. Because orthogonality relations (although not

necessarily the covariances) are assumed invarient to time

shifts, shifting the last relation forward k units yields the

equivalent (*)X(t+k) | Y(t) - (Y(t)IHX 7 (==, t+k-1)), all k > O.
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But by definition (Y(t)[H, ,(-=, t+k-1) U X(t+k)) is the
b

vector whose residual is orthogonal to HX z(-w, t+k-1) u X(t-k),
and (*) indicates that (Y(t)IHx Z(—w, t+k-1)) meets the
necessary qualifications; so the two projections are equal.

Conversely, assuming the two projections to be equal leads

immediately back to (*), which is equivalent to Y p X. Q.E.D.

Corollary If Y} X and Y p Z, then (Y(t)IHx,z(-w, ©))

= (Y(2) [Hy , (==, £)).

Proof Simce Y b x, (Y(t)IHX’Z(-OO, t)u X(t+l)) = (Y(t)IHX’Z(—m, t)).

Using the obvious multivariate analogue of the proposition

for Y p Z, Z now a vector, yields (Y(t)IHX z(-w, t)u Z(t+l))

= (Y(£) [Hy ,(-=, ©)). Hence, (Y(t)]nx,z('-oo, £) U Z(t+1) U X(t+1))
= (Y(t)[Hx’z(-M, t+1)) = (Y<t)|HX,Z(—m’ t)), and the bootstrap
method of proof is so clear that the formal induction argument
is omitted. Continuity of the projection operation ensures that
establishing the result for every finite k allows the passage
to Hx,z("”’ ®). Q.E.D.

The corollary indicates that a test of "'Y not causing
any other variable in the system (g) follows from regressing

Z

Y on the past, current, and future of all other variables,
(g) together, and checking for one-sidedness of this joint
regression on the past and present. Pairwise Sims tests of Y

on the variables in (ﬁ) are inappropriate to test the hypothesis

Y k (g) and rightly so, since they weren't designed for this
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purpose. As the proposition indicates, the appropriate test
of Y h X involving regressions with future values asserts
vanishing single coefficients in a sequence of regressions
rather than a vanishing sequence of coefficients in a single
regression. Finally, it is the former rather than the latter
concept which corfesponds to the notion of econometric
' exogeneity in multivariate time series regressions.

We now begin the Investigation of the relationship
between bivariate and trivariate exogeneity. As the last

paragraph showed, trivariate exogeneity, is a misnomer, but

nevertheless preferable to the ponderous trivariate lack of
b

t
feedback. The symbol Y # X (respectively, Y P X) indicates Y

does not cause X in the trivariate (respectively, implied
bivariate) system. Of course, the reader may interpret X, Y,
and Z as vectors or scalars, as before.

It is instructive to develop a direct sum decomposition
of the principal Hilbert spaces under consideration which
gives one perspective from which to view the problem. By
projecting X(t) onto this decomposition, vectors result which,
if zero, are equivalent to the desired elementary bivariate
and trivariate exogeneity (or causality) events.

~

The decomposition is

(6.5) [HX’Y’Z(t-l)QHX’Y(t-l)]Q[Hx Y(t-l)GHX(t-l)]

= [HX,Y,Z (t—l)eﬁx’z (t-1) ]Q[HX,Z (t-l)gﬁx(t_l) 1,
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or

(6.6) 83 8 S4 = S2 8 s

1
The spaces Si in (6.6) appear below the terms which define
them in (6.5), and the symbol for © is defined in the standard
way from #. Thus, for example, S3 @ HX’Y(t-l) = HX,Y,Z(t_l)'

Hence (X(t)[Sy) + (X()[H, ,(t-1)) = (X(t)[Hy y ,(t-1)), so

t
that (X(t)|S3) = 0 if and only if Z P X. Since similar remarks

apply to the other three subspaces, the equivalence in the
previous sentence makes clear the importance of the Si.
By projecting X(t) onto (6.6) and interpreting the

results, we arrive at

(6.7) (X(t)|s)) + (X(B)]S,) = (X(t)]s,) + (X(t)|S))
t b t b
zpx Y b x Y b x zpx
An event 1s true if and only if the projection immediately
above it is zero.
First, assume Y ; X, so that (X(t)|S4) = 0, Since the

remaining projection is the orthogonal direct sum of the other

two, the Pythagorean theorem yields

6-8) [l &@|sy|l* =[x sy |+ |xw sl

: t
Then if Z |» X, both terms on the RHS of (6.8) must be zero, so

both projections are zero. This one auxiliary hypothesis thus
' t b
implies Y |» X and Z { X, of which the first is likely of most
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interest. We thus have one situation in which bivariate
exogeneity implies trivariate exogeneity.
t
Second, assume Y F X so that (X(t)lSz) = 0. If we

make the same auxiliary assumption, that (X(t)[S3) = 0, we

learn
(6.9) (X(t) [0y ((t-1) 6 H (t-1)) = (X(£) |H, ,(c-1) & H (t-1)).

But S4 n S1 = {0}, since a non-empty non-trivial intersection
would make the system degenerate by arguments analogous to those

used previously. Hence the only way for equality in (6.9) to

b b
obtain is if both terms are zero, or if Y b X and Z $ X.
t
Combining the last two paragraphs, under Z F X, the

b t
relations Y } X and Y $ X each imply the other. Yet the

indispensability of this additional assumption indicates that
the bivariate and trivariate relations aren't equivalent in
general. The natural question is, are there other assumptions
which bring the exogeneity concepts into concordance?

The last question, coupled with the fact that
projections behave like conditional expectations with regard
to nested subspaces,ISuggests the study of S4 and Sz. When

t b

§,CS 8, YPX=>YpXK.

Some insight into the relation between S4 = HX Y(t—l)
8 Hx(t-l) and 82 = HX,Y,Z(t-l) 2] HX,Z(t-l) is provided by the
lemma below. Results for the relation between S3 = Hy ¢ (t-1)
*
2] HX,Y(t-l) and Sl = Hx,z(t-l) 2] HX(t-l) follow immediately,

and the decomposition 83 @ S4 = 82 ) S1 is responsible for



- 63 -

the equivalences between the even-and odd-subscripted sub-

spaces.

Lemma (i)

(i1)

(iii)

(1)’

(i1)!

(ii1)’

H,(t-1) | Hy y(t-1) => 8§, = S,(<=> 5, = §;)

H,(t-1) | S, <=>5, CS,(<=> 8, C5,)

S, = S, ‘and H,(t-1) | H (t-1) => H,(t-1) | Hy ¢(t-1)
B (e-1) | HX’Z(t-l) => S, =5,

H (t-1) | Hx,z(t—l)QHX(t-l) <=>8§, C§; <=5, Cs5,

S; = S5 and H,(e-1) | H (t-1) => H,(t-1) | Hy ,(t-1)

Proof (i) Thu hypothesis is equivalent to HX ¥ z(t—l) = Hz(t—l)
> 3

o Hx,Y(t'l) .

¢ 1 Hz(t—l),

Let ¢eS,, so ¢eHX’Y(t—l) and ¢ | Hx(t-l). So

hence ¢ l-HX,th-l)’ so ¢eS,. If ¢eS,, ¢ l_HZ(t-l),

so by hypothesis¢€HX‘Y(t—1). Since ¢ | Hz(t—l), ¢ES4T Hence

S, =8,. (ii) Let ¢eS,, so ¢5HX,Y(t—1) CH .

4 2

¢ | H (e-1).

hence ¢eSz.

X Y,Z(t-»l) and

By hypothesis, ¢ l_Hz(t-l), so ¢ 1_Hx’z(t—l),

Conversely, let nst(t—l);since (n]SZ) =n-n

= (n[sy), n 1 s,. Hemce H,(t-1) |s,. (i1i) Since S, cs,,

by (ii) Hz(t-l) 1_84. Since S4 ) Hx(t-l) = Hy Y(t-l), the

result follows. The primed results follow from the unprimed

counterparts by interchanging Y and Z. Finally, assume

Sy

c SZ’ so that §, 8 S l-= SZ’ where 841 is the orthogonal

4 4

complement of S4 relative to the space SZ' Hence S3 o S4

= S4 @ S4 @ Sl’ so that S

3='=Sl$S4 andSlSS3. By
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symmetry the last equivalence (ii)' is proved. Q.E.D.

It would be interesting to characterize the equality
of 82 and S4 since this would give a sufficient condition for
(X(t)IS4) = (X(t)lsz). (i) produces 84 = SZ’ but at the too
stringent assumption that the Z process is completely orthogonal
to the X and Y processes. It turns out that (ii) is a just
right condition which brings Y ﬁ Xand Y ﬁ X into concordance;
the symmetry of the lemma suggests that this same condition
also matches up Z ; X and 2 ? X, and a repitition of the proof
shows this to be so.

Motivated by the lemma, we are now able to prove, from
a different perspective, all that has been shown, and more, in

X

Proposition 8 Let (Y) be a nondegenerate discrete stochastic
Z

process with finite variances at each time.

Without additional assumptions, there is no logical
t b
relation between Y p X and Y }» X. However, maintaining either
t
(or both) of the assumptions (a) Z p X: (b) H_(t-1) | {HX (£-1)
bz £ 4

] Hx(t—l)}; makes the exogeneity events Y f X and Y X logically

equivalent.

Proof The first assertion is evident from (6.7) and the

freedoms of choice in specifying properties for projections to
t
obey. We have seen that Y §» X is equivalent to (*)Oc(t)IHX v.z(t=1))
t b s
= (X(t)IHX z(t—l)) and Y p X is equivalent to (**)(X(t)lHx Y(t—l))

= (X(t)IHX(t—l)). We may write the LHS of (*) uniquely as
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a + B + Y, where aeHX(t—l), BeHY(t—l), and ycHz(t—l). This
followé from the (not necessarily orthogonal) decomposition
Hy y z(t-1) = Hy(e-1) + H,(t-1) + H,(t-1), where the
directness comes from the same kind of nondegeneracy
argument used previously; that is, nonuniqueness would imply
that a vector could be perfectly predicted from curtent and
lagged values of the other variables. (*) is equivalent to
a+B+ y=o+ y+ (BIHx,z(t'l))’ or, 8 = (BIHX,Z(t'l))’ or
BEHX,Z(t—I). This, the non-degeneracy argument has shown, is
possible if and only if B = 0. Now forming the LHS of (*%),
(X(t)IHX’Y(t»—l)) =a+ B+ (y[H(t-1) + H(e-1)) =a+ B+ v
+ Yys where Yy eHX(t—l) and Y, EHY(t-l) are unique, although
again not necessarily orthogenal. In this language, (%%*)
holds if and only if B + Y, = 0. That Y, is not in general = 0
is the first assertion, and the conditions (a) and (b) provide
sufficient conditions to ensure Yy = 0, in which case 8 = 0
and B + Y, = 0 are in concordance, being true or false together.
Condition (a) implies y = O (by the same argument as established
the equivalence of 8 = 0 and Y ﬁ X), & fortiori Y, = 0. To
show that condition (b) implies Y2 = 0, we write Yi + 72
= (v[H, (e-1) 8{H, ((t-1) 8 H (t-D}) = v, + (v|S,) using a
previous definition and uniqueness. Subtracting yields
Y, = (YISA)' But yeH,(t-1) which is orthogonal to 8, S0
yé = d. Q.E.D.

The question of the interpretation of these results is

a difficult one for several reasons. Since the meaning of
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causal orderiﬁgs within a given system is itself an unsettled
subject ([25] may be profitably consulted in this regard),
there appears little hope for a universal explanation here.
To make matters worse, issues of scientific method and
philosophy inevitably enter any such discussion. With great
trepidation, then, we contend that an investigator reporting
the acceptance of bivariate exogeneity as a null hypothesis
has found an "unusual" occurrence which requires an explanation.
To be satisfactory, the explanation must show how a "believable"
model, usually of dimension higher than two, could generate
the observed ordering. Our proposition gives two such
mechanisms, both of which are considerably weaker than the
assumption that the omitted variables Z are orthogonal to the
(?) system. If neither condition is found acceptable, the
mechanism must be more sophisticated, and the investigator
must return to the drawing board in search of some other
explanation. Bivariate causal orderings imply severe
limitations on the higher order system that could have
generated it, notwithstanding the many-one nature of the
mapping between these systems. Our proposition offers some,
per force incomplete, understanding of these restrictions.
Needless to say, applications will specisalize the
satting to stationary processes where truncated distributed
lags represent the projections. Condition (a) is then self-
explanatory; condition (b) requires that the information in

the omitted variables' histories be differént from the
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information in Y2 but not X2 history.

Examples in which Y]ﬁ X, yet ¥ ﬁ X are easily cqnstructed
in the following manner. Adopt the normalization III,L,D
discussed earlier in this section, and take bl(-) = 0, so that
Y ﬁ X. Now take cl(-) # 0 and let the trivariate system be
first order autoregressive. Use the result (Y(t),HX(-m, «))
= RXX—l * Roy * X(t) = u * X(t) and compute a few coefficients
of u(+), say u(-1), u(0), p(l) for trivial choices of the
other coefficients in the system. It would take incredible
ingenuity to produce a one-sided u(-); any two-sided u(-)
provides the desired example.

On the other hand, examples of models in which Y ﬁ-x,

t
yet Y P-X, are hard to generate by adopting an autoregressive

representation and parameterization for the trivariate system.

VII. Further Remarks on Applications in Economics

The interpretations of findings of exogeneity in
economic data is a delicate and unsettled matter, even at the
theoretical level, as recent contributions by Sargent [18],
[19], and Sims [26] show. At the very least, owing to the
sheer unlikelihood that two economic time series stand in a
unidirectional causal relationship, such phenomena represent
facts for theory to explain.

More fundamentally, however, the notion of a "structural
relation invariant to manipulation of controlled processes

which enter it" or "an intervention into the system," which
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represent causality in the everyday usage of this term, must
be distinguished from causality in the Wiener-Granger-Sims
sense. That the two concepts are logically distinct is an
important message of [18], in which money creation causes
hyperinflation in the "intervention" sense, yet hyperinflation
causes money in the sense of this paper; examples in which
equations other than the structure show the causal ordering
may be found in [26].

Nevertheless, in an important class of cases there
may be not only consistency, but a mutual reenforcement, as
the follﬁwing interpretation of the money-income example shows.
Suppose that money causes income, but not conversely (as
found in [24]). Lety=a*y+b*m+uandm=c *m+ v
represent the model and exhibit the causal ordering (m + y,
y pm). The "intervention" sense of causality refers to a
stable relation involving y and m which allows the computation
of y whenever an m process is inserted in it. Provided the
coefficients a and b are invariant to changes in the m process,
the first equation will be such a structural relation, which
will yleld y = (1-a) > % b * m + (1-a)"} * u. While both
variants of causality are present, there are two caveats.
First, the empirical finding of causality during a sample is
no guarantee of the invariance of a and b to changes in regime,

as the '"'rational expectations" literature has emphasized.
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Second, if the second relation were replaced by m = ¢ * m

+d * y + v but the first relation remained invariant to
“interventions" which violate the second equation and determine
m, then again the concordance is spoiled, since only the
causality in the "intervention" sense would be present.

From another point of view, to the extent that the
results presented here involve innovations and optimal
prediction (a form of optimizing behavior), they ﬁre likely
to find use in, and enter structurally into, any theories in
economics where stochastic elements enter in an essential way.
Since the Hilbert spaces projected onto have the natural inter-
pretation of information set, the possibilities for applica-
tions are virtually unlimited.

Finally, from an econometric point of view and as
emphasized originally in [24], efficient estimation techniques
(which are asymptotically the equivalent of generalized least
squares) for a regression of Y(t) on X(t), X(t-1), ... require
exogeneity of X precisely in the sense of this paper. Thus,
the propositions here may be of interest solely on econometric

grounds.

VIII. Conclusions and Comments on Future Research
Since the introduction offers a summary statement as
well, we confine ourselves here to a very brief paraphrasing

of the results.
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First, a minor generalization of Granger's first
causality result is given in Proposition 1. The technigue of
proof is one which naturally allows the treatment of the more
general cases of statistical causality in multivariate time
series, the subject of Proposition 6.

Two characterizations of exogeneity in bivariate, or
Block—bivariate, systems are given next. In Proposition 2, °
it is demonstrated that the exogeneity of X with respect to Y
is equivalent to the statement that future X be of no additional
help in predicting current Y, given only current and past X.
Despite its statement in prediction language, which brings to
mind the original causality definition, a special case of this
result yields Sims' important Theorem 2. Proposition 3
presents a characterization for X being exogenous in terms
of univariate innovations of the X and Y processes; such a
statement contrasts markedly with the previous results, which
all stress bivariate characteristics. This result states
that Y does not cause X precisely when past innovations of
Y are all orthogonal to current, and by stationarity, all
future X innovations. The relation of this result to the
unpublished work of others is commented upon.

Proposition 4 is in the nature of a meta-theorem; it
asgerts that, when the definitions are altered so as to effect
a time reversal (we backcast the present from the future) all

existing theorems have natural analogues. A sample proof is
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provided for the reversed version of Sims' Theorem 1. What
is not symmetric, however, is the property of exogeneity
itself; specifically, Proposition 5 shows that, only in the
special case where the regression of Y on current, past, and
future X has all coefficients, except possibly contemporaneous
X, vanishing will X be exogenous according to both definitioms.
The next result gives a new characterization of
trivariate exogeneity of X with respect to Y given Z, in
terms of projections of Y onto the past and future of X and Z.
The form of the result provides a ready statistical test.
Finally, Proposition 8 offers conditions in the presence
of which bivariate and trivariate exogeneity events are
logically equivalent. This result may provide explanations of
bivariate findings in terms of the multivariate models thought
more apt to characterize the process under study. Unfortunately,
not all models will meet the assumptions we found necessary
to obtain this result,
Despite the fact that Proposition 3 puts the
characterization of the exogeneity of X, in terms of its
own and Y's own innovations, on the same theoretical (Hilbert
space) underpinning as the Sims and Granger results, it is
cursed result. As several writers have noted ([25] is most
’ forceful), the natural estimation procedure which it suggests
does not have the asymptotic validity of the other two tests.

Whether this problem is amenable to correction by some fancy
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footwork with distribution theory (thereby validating the
procedure used in [5], [9], and [15], to name just three
adherents of the "prewhitening school'") or whether the
difficulty is more deepseated remains an issue on which
present opinion is divided.

At the theoretical (population) level, it may be too
early to assert with any confidence that all of the interesting
characterizations of exogeneity have been discovered. More
important, however, will be a better understanding of economic

mechanisms which give rise to causal orderings.



- 73 -

Footnotes

1The symbol = will frequently be used to indicate that
the object on the left-hand side is being defined.

2These abbreviations (here, w.s.s.p.) which follow
technical definitions will often be used to retain precision
and economize on space in the sequel.

3When the range of Z1 and 22 is complex, it is necessary
to take the complex conjugate of 22, as the notation indicates.

Even though we deal with real processes, their representation
in the frequency domain requires this treatment. Since there
is essentially no use of the frequency domain in this paper,
we will hereafter suppress the conjugation notation.

4Because its usage is not uniform, we emphasize that
all subspaces for us will be closed (equivalently complete,
because a Hilbert space 1s a complete metric space; [13],
p. 116 proves this equivalence).

5The set S may be taken as a mnemonic for the span of
the elements in the parentheses, or the linear manifold
generated by them. Its closure may also be shown to be the
intersection of all subspaces containing the generators.

6To define orthogonal projection, several related
concepts are needed. The first is finite direct sum:

n
X = Ml + M2 + ... + Mn = iilMi

means' that any xeX may be uniquely written

n
x= I x,,
{=]1 &

where xieMi. When the subspaces Mile’ all i#j (any element

. of one orthogonal to all elements of the other), the direct
sum decomposition is said to be orthogonal, and is indicated

n

X = M1 @ M2 ... 98 Mn = izlﬁMi.

Secondly, if H is any Hilbert space and M is any linear manifold,



- 74 -

the set Ml: = {er:me, all meM 1is a subspace; and if M is
itself a subspace, it follows that H = M&M-., ([1], p. 172).
Applying this last result,

- 1
Hx,Y(‘“’ ®) = HX,Y(t)MHX,Y(t)] ;

for zeHX,Y(-w, ®),
z=u+v, u J_v, usHX Y(t), Ve[HX Y(t)]'l‘.

Now the projection operator which maps HX Y(—m, «) onto the
3’
subspace HX,Y(t)’ ('IHX,Y(t))’ is defined by (ZIHX,Y(t)) =y,

The special cases of interest in the text involve z = Z(t+l)
and z = Y(t). This operator enjoys many important properties:
linearity, idempotency, continuity unit norm, self-adjointness,
and positivity--none of which are heavily exploited in this
paper. That the projection minimizes the mean—-square error
follows from 5.8(6) of [30].

7L‘Hx,Y(‘°°’ ®) + Hy (=, =) is defined by L[X(t)]

=  X(t+l) and L[Y(t)] = ¥Y(t+l), all t, and extended by
continuity ([16], p. 14, 15). L is useful not only in
proving plausible implications of statiomarity, but also in
deriving spectral properties of the process, which flow from
the spectral properties of a unitary familg of operators (cf.
Stone's Theorem in [16], Section 137). {L!}, teI is such a

family, when Lt is defined as the composition of L with itself
t times.

8The notation is so natural that it should cause no
confusion, although strictly speaking we should write

@ | Hy y(t = 1) x Hy o(e - 1)

and proceed to extend all concepts to product spaces like
these. Such extensions are helpful where extensive proofs
are involved, as the Wiener-Masani [30] article demonstrates.
. Of course, by saying that a vector (:)(t) is | to a subspace,

we mean that each component of the vector is orthogonal to all
elements of the subspace.

9This definition and the assertion of the multidimensional
Wold decomposition theorem appears due to Zasuhin [33] who
announced the result without proof ([30], p. 136). The first
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proof of the full rank case is Doob's ([2], p. 597); the general
rank case was treated by Wiener and Masani [30]. Another
definition of the rank of a process as the a.e. (Lebesgue)

rank of its spectral demsity function ([17], p. 39) is present
in the literature but needn't concern us in this paper.

loThe testable restrictions which must be in the
data for this treatment not to be rejected are quite--perhaps
too--severe. For example, X(t) must be perfectly predictable
from (current) Y(t) and the joint past. Of course, the
finite length of real world data series compromises any
strict test, but in principle the same objection applies to
all theory.

11These claims may be made good by use of the uniqueness
of the orthogonal complement and 6.10(a) and 5.11(b) of [30].

12This is 6.10(b) of [30].

136.13(b) of [30].

14It might be argued that in most applications there is
no perfectly predictable component in the original series,
again leaving us with a linearly regular process to analyze.

15 I s=0
In this case, Pu,v(s) = Le6(s), where &8(s8) = {0 540

is the convolution identity (A * § = § * A = A for all
sequences A(+*)). Thus, A * Pu v * AT(K) = A * T« 8% A'(k)

= AL * A'(Kk). ’

©
16Thus, one sees expressions like X(t) = I a(j)e(t-3)
o j=0
where I |a(j)]| < = is imposed, and vague, unmotivated references
j=0

to "invertibility" made. First, no covariance stationary
process with a discontinuous spectrum can be so represented,
so the first assumption is overly strong. Second, no
"invertibility," even with a finite order m.a.r., is necessary
for Hx(t) = He(t), although if the process were "invertible,"

the desired result would follow immediately from stationarity
considerations.

17The author is not aware of necessary and sufficient
conditions for a process to have an a.r. A very natural
conidition on the spectral density matrix, that there exist

0 < ¢y < <, < o guch that clI < F'()) < czl where F'()) is

the spectral density matrix of the (i) process, has been

used in [17], [30], [27] to arrive at an a.r. This condition
is not, however, mecessary for an a.r. Like the outright
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assumption of existence of an a.r., it is in the nature of a
regularity condition which, depending on one's axiomatic
point of view, may be preferable.

The fact is, moreover, that this boundedness condition
on the spectral density also guarantees that the process has
an a.r., and more: the set {X(t), Y(t), tel} forms a "basis"
for Hx Y(-w, «), g0 that all elements in HX Y(—m, «), not just
’ 3

projections, may be expressed as convergent infinite linear
combinations.

18The result referred to in the text reads: for any
real square matrix A there exists a real, orthogonal P such
that PA = T, where T is upper (real) triangular, with diagonal
elements nonnegative. The desired application follows, upon
transposition, for the II-L normalization; an analogous theorem
for T lower triangular could be proved (by induction) and
transposition would again give the II-U normalization; uniqueness
is immediate.

19This fact is the crux of the statement that a Wold
causal-chain simultaneous equations model is exactly identified
by its requirement of lower triangularity (which embodies the
direction of causality in the chain) and diagonal covariance
matrix. The situation must be carefully distinguished from a
lower triangular Wold decomposition in a time series, which,
if imposed, would be a vastly overidentifying restriction.

2
ag
20Since 03 = Gé - —%H and recalling the definition of
0u
u
(V), we have u
ag
u
g
w- —¥
2
Oﬁ
o 0 - 1
u 2\ 5= | ©=zam /ZQ()(t)
X 2 uw g -0
(Y)(t) A O g, - 02 W _%g
o u [0}
u u

in the terminology of p. 18. We may verify directly that the
1/2

Q works and that ( ) has covariance
£

proposed candidate for I

matrix the identity.
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21'I‘his follows by standard manipulation of the inner
product. X(t) - (X(t)INl).l N1 by the characterization of

(X(t) [N)). But (X(t) IN)) is in N, so that <X(t),
(X(t) ['ﬁl)> - <) [N)), (X(2) ]'ﬁl)> = 0, and the first term
is zero since X(t) l_ﬁz'by assumption. This leaves
@ [T []% = 0, so that (x(t) T = o.

22Actually, Sims modestly proves a little more than he
states. He proves the "only if" part, that Y(t) = h*X(t)+W(t)
=> Y does not cause X, without the assumption that (?) has an

autoregressive representation. This, of course, is what
our Corollary 2 gave. So, we only have a strengthening in
the "if" direction, if this change in Sims' statement of
Theorem 2 is made.

23The author wishes to acknowledge his gratitude to
Christopher A. Sims not only for suggesting the pursuit of
this projection, but more generally for stressing the importance
of fundamentalness.
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