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ABSTRACT

This paper derives a variance bounds test for a broad class of
linear rational expectations models. According to this test, if
observed data accord with the model, then a weighted sum of auto-
covariances of the covariance-stationary components of the endoge-
nous state variables should be nonnegative. The new test rein-
terprets West's (1986) variance bounds test and extends its appli-
cability by not requiring observable exogenous state variables,
covariance-stationary exogenous or endogenous state variables, or
a zero initial value for the endogenous state variable. The paper
also discusses the possibility of the new ftest's application to
nonlinear models.
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1. Introduction

West (1986) derived a variance bounds test for a linear
rational expectations (LRE) version of the production smooth-
ing/buffer stock model of inventories. He hypothesized that the
covariance-stationary components of production, sales, and inven-
tories are consistent with the optimal policy of the underlying
dynamic maximization problem. Then he showed that the uncondi-
tional expectation of the difference between the value of the
objective function under the optimal poliey and its value under a
policy with inventories identically zero is equal to a weighted
sum of variances and covariances of production, sales, and inven-
tories. Thus, he tested whether the nonnegativity of this sum is
satisfied by the covariance-stationary components of the observed
data.

My purpose here is to reinterpret and generalize West's
variance bounds test for a broad class of LRE models. I show that
the unconditional expectation of the difference between the values
of the objective function of the underlying dynamic problem under
an optimal policy and under any feasible poliey, such that the
difference between the corresponding state paths is a covariance-
stationary process, is a weighted sum of autocovariances of that
process. Thus, this sum must be nonnegative for any covariance-
stationary difference between an optimal state path and a feasible
state path. Two implications of this result stand out. One is
that, if observed data accord with the optimal policy (that is,
the theory), then their covariance-stationary components should

satisfy the above condition. For, as shown below, the nonstation-



ary components of the endogenous state variables qualify as the
state path associated with a feasible poliey. This is the rein-

terpretation result. The other noteworthy implication is that,

unlike West's condition, the one derived here does not require
observable exogenous state variables, covariance-stationary exoge-
nous or endogenous state variables, or a zero initial value for

the endogenous state variable. This generalization result is a

consequence of the fact that the condition derived here exploits
some of the other necessary conditions while West's does not.
Three sections follow. Section 2 sets up a general LRE
model and reviews the standard necessary conditions for its solu-
tion. Secfion 3 derives the new condition, interprets it, and
discusses its extension to nonlinear rational expecEAtions mod-
els. Section 4 illustrates the economic importance of the new
condition in the context of West's inventory model. All proof's

are in an appendix.

2. A General Linear Rational Expectations Model

Let {g(t):teN}, N = {0,%1,...}, be a stochastic process
on a probability space (0,2,P), where g(t) is an (ngx1)-dimen—
sional vector of exogenous state variables at the beginning of
period £. Also, let Q. be the o-algebra generated by the sequence
of random variables (...,g(t-1),£(t)), t ¢ N. The term @, repre-
sents the information available to the system at the beginning of
period t. Clearly, @ c 2,17 <9 ¥t eN. The term E(-) denotes
the unconditional expectations operator with respect to P. That
is, for any integrable function (-) with respect to P, E(-) =

fO (+) dP = IO (+)P (dw). The term Et(-) denotes the conditional



expectations operator with respect to P, given Q. That is, for
any integrable function (-) with respect to P such that E(:) < =,
fA (+)P (dw) = IA E(+)P (dw), ¥ A& < @_. The {e(t):telr,t+1,...1,
reN} process takes values in £§, that is, the space of sequences
£ = (g(1),5(t+1),...), € = (E(1),E(t+1),...), and so on, such that

85 TEE(£)'E(t) < =
T

I ~18

£
where 8 € (0,1) and is the discount factor in all periods. Also,
let x(t) be an (ngx1)-dimensional vector of endogenous state
variables at the beginning of period t. Then a variety of LRE

models can be stated as a problem (P) of this form: '

T
(1) max lim E_ y Bt-Tf[g(t),x(t),u(t)]
fuy}y T

subject to the following:

(2) u(t) is @ -measurable

(3) x(t+1) = g[g(t),x(t),ult)]
(1) x(1) = X (given)

(5) {x(t)}"t"=T ¢ ﬁf

where u(t) is an (nux1)—dimensional vector of control variables in

period t,
1 1
. b g(t) g(t) b Pex ey g(t)
(6) FI7 = o, | |®(E)] + F|x(t) bge ®xx ®xu x(t) |,
’ o, | [ult) uCEd ] |oye Oux by |{u(E)



¢i and ¢ij are appropriately dimensioned vectors and matrices,

respectively, such that

(7 oLy by

(8) g|®

ngi(t) + ¥, X(E) + YXUU(t),

Yxi @re appropriately dimensioned matrices, such that there exists

an (nuxnx)-dimensional matrix 8% with the property

(9) § v =1

ux xu

and ﬁf is the space of sequences x = (x(t),x(t+1),...), % =

(2(t),&(7+1),...), and so on, such that
v t—T [t
) B T TER(t)'R(E) < =,
t=1

This formulation implies that x(t+1) is 2 -measurable
¥t e {r,t+1,...}. Thus, decisions at time t depend only on the
history of the {g(t):teN} process and %.

Note that no a priori curvature restrictions have been
imposed on flt. Also, no explicit law of motion for the
{g(t):teN} process has been postulated. But condition (5), that
{x(t)}:=T € ff, can be relaxed. All that is necessary here is
that BT-TIETX(T)'X(T)I ~0as T »w® VX eR'x. Moreover, (9)
can be eliminated. Its implication is, of course, that the system.
has, at most, n, controls. Effectively, this excludes all these

models which have a solution that cannot be characterized by Euler

conditions.



Now, for convenience, I will transform (P) as follows:

Fact 1. Given (7) and (9), problem (P) is equivalent to this

problem (P'):

T
(10) max lim E_ ) 8" h[&(t),x(t),v(t)]
{x(t+1)}::T Toe bt

subject to the following:

(11) x(t+1) is 0, -measurable
(12) v(t) = x(t+1) - x(t)
(13) w0 = i
(14) {x(t)}z=T € £f
where
(15) n|t - o | §§§§ v} §§§§ 1o a R §§§§
m| [v(t) v(t)| [P'" R S|{v(t)
(16) N'* =N, Q' =Q, and S' =S
o= ¢x * (I-Yxx)'sax¢u
m = 8 xtu
U= ¢gx - Yégséx * dDtsxé;ux(l—yxx) - Yégsﬁx¢uu6ux(1_yxx)
P = d)gusux - Y}'Q;suxd)uusux

- - rg! -
Q= 0py * (1 Yxx) Sux®ux ¥ Pxudux(! Yex)

t 1
M (I-Yxx) 6ux¢uu6ux(I—Yxx)



= - 18t
R = ¢xu6ux + (1 Yxx) 6ux¢uu6ux

[#2]
1

1
- 6ux‘buusux'

Then this is well known:

Fact 2. If {x(t+1)}:_T is an optimal policy for (P), then these

conditions must hold:

Euler condition

(17) (S-R)Etx(t+2) - [Q-(R+R')+(1+3-1)S]Etx(t+1)
+ 6_1(S-R)'Etx(t)

1

-+ (B -1)m + (U-P)'E g(t+1) + 87 P'E E(%)
¥V E£e {r,t+1,...}.
Legendre condition
(18) Q - (R+R') + (1+B'1)S is negative semidefinite.

3. The New Condition

N

Now I can state and prove the necessity of the new

condition.
Lemma 1. If
(19) s(t) = g¥(t) - x7(t)

where {x+(t+1)}:=T is an optimal poliecy for (P) and {x_(t+1)}:_T
is any feasible policy for (P), that is, satisfies (11)-(14), then

the following condition must hold:
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T
(20) 1im E } 8% T[28(t+1) " (S-R)6(t+2)
Tre t=t1

+6(t+1)'(Q—R—R'+(1+B_1)S]6(t+1)] < 0.

(The proof is in the appendix.)
Then this condition follows:

Theorem. If &(t) is defined as in Lemma 1 and {s(t):teN} is a

covariance-stationary process, then

(21) E[26(t+1) ' (S-R)&(1+2)

#8(t+1) ' (Q=(R+R")+(1+8” )S)s(x+1) ] < 0
V.T € N.

Several comments are in order. First, condition (21) is
indeed new. In particular, it is not the other second-order
(Legendre) condition or implied by that condition. Actually, (21)
has an interesting economic interpretation. From the proof of

Lemma 1 (in the appendix) it can be shown that

368°* 17T E_[26(t+1) ' (S-R)8(t+1)

+5(t+1)'(Q'R—R'+S+6_1S)6(t+1)]

is the conditional expectation of the benefit associated with any
deviation {S(t)}:=T from the optimal plan in period t. Thus, (21)
simply states that the expectation of the benefit associated with
any covariance-stationary deviation {s(t)}:=T from the optimal
plan in any period should be nonpositive.

Second, what makes this result useful 1is that if ob-

served data accord with the optimal poliecy, then their deviations



from their nonstationary components should satisfy (21), for these
nonstationary components trivially satisfy all the requirements
for a feasible solution (as I show below). Or if the maintained
hypothesis is that the covariance-stationary components of the
endogenous variables are generated by the optimal solution of the
model and a 2zero feasible solution is meaningful (as in West's
inventory model), then, again, (21) should be satisfied by the
covariance-stationary component of the endogenous state vari-
ables. Thus, (21) provides a natural and easily implementable
test for the validity of the hypothesis that observed data accord
with the optimal solution, a test that does not require strong
curvature festrictions or a specification of the law of motion of
the exogenous state variables. Third, tracing the steps of the
proof of Lemma 1 will easily verify that not imposing (9) produces
a similar result.

Also, when h is twice differentiable but not necessarily
quadratic and a transversality-like condition holds, (20)'s coun-

terpart is

T-1
. t-1 8,t+1 8 t+1
%ig Ettzre [sCe+D v, 0717 v 0" 16 (te2)

+8(t+1)'[v he|t+1-v h6|t+1
xx XV

-v__n®| 1 Hlseen] < 0

-1 )
vx +(1+8 )Vvvh |

where
R®1% T = nleCes1),x8(be1),v0 (ke ) ]

x2(t+1) = ox"(t+1) + (1-8)x"(t+1)



and
vO(te1) = ovt(t+1) + (1-0)v (t+1)

for 8 ¢ (0,1). To reduce this condition to something like (21),

t+1 t+1] and E[Vxxh9|t+1 t+1 elt+1+

E[v, n°** -y K| SN Rl
(1+B'1)vvvhe|t+1] must be constant matrices. This may be true
after an appropriate transformation (for example, after multipli-
cation by a positive random variable) if {xe(t)};=T is a station-
ary or steady state and {x'(t+1)}:=T is obtained as (1-8)~1x8(t+1)
- 9(1-9)'1x+(t+1) for an appropriately chosen 6. Then note that
s(t1) = x*(t+1) - x7(b+1) = (1-0)"[x"(t+1) -x°(t+1)] implies
that (21)'s counterpart is effectively independent of 8. So to
evaluate the new condition, all that is needed is the covariance-
stationary deviation from the steady state.

It remains to show how to construct observable covari-

ance-stationary {&(t):teN} processes and thereby check for (21).

Let ¥(t) = g(t) - Ez(t). Suppose that

(22) ¥(tE+1) = A¥(t) + e(t+1)

where

(23) {ze¢:det(1-Az)=0} n {ze¢:|z]|<1} = @
(24) e(t) ~N(0,2), ¥teN

(25) Ee(t)'e(t') = 0, ¥t =t',

!

Then {¥(t):teN} is a covariance-stationary process. Assume that

(26) det (S-R) # 0
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and let J1(J2) be a Jordan matrix with the eigenvalues of
2 -1 . -1 -1 -1 .
E(z) = Iz - (S-R)™ (Q-R-R'+S+8~ 'S)z + B8~ (S-R)”™'(S-R)

Wwith modulus less (greater) than B'%. Also, let H1(H2) be the
matrix with the eigenvectors and the generalized eigenvectors of

E(z) corresponding to J1(J2), and add these regularity restric-

tions:
(27) {ze¢:det[E(z)]=0} n {ze¢:|z|=s"%} =0
(28) rank (Hi) =n, i=1, 2.

Then the policy for (17) subject to (4) and (5) is given by2
(29) X (t+1) = Kx"(t) + M¥(t) + N(t), x'(x) = X
where

K., = H.J.HT1
i 17171

- K£1(S-R)'1B'1P'

1
=
t

+ j§1K5j[(S_R)‘1(U_P)|+K51(S_R)—1B—1P']Aj
-1

) = (1-k3H 7K s-r) T a7 - 1))

+ k5" (s-r) 87 P EE(t)

. Kéj[(S-R)'1(U-P)'+K£1(S-R)'1B_1P']Eg(t+j).
51

Consider, now, the deterministic problem that results from (P) by

substituting Eg(t) for g(t) in (1) and (3). Under the regularity
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conditions mentioned earlier, any optimal policy for this problem
should satisfy
(30) X (t+1) = K1x'(t) + N(t), x (1) =x.

Obviously, {x‘(t+1)}:_T is a feasible policy for (P). This pol-

icy, sometimes referred to as the open-loop policy, and (30) imply

that
t-T .
(31) ¥ (ert) = KSR o ) KM (t-1)4N(E-1) ]
i=0
t-T .
(32) ¥ (b)) = KT R Y kN1,
i=0
Hence,
£-T .
(33) §(t) = x°(t) - x(t) = K}Mw(t-i).
i=0

Thus, since 6(t) can be obtained as the finite sum of covariance-
stationary processes, it is itself covariance-stationary. This
result can be easily extended to account for moving average

components in the law of motion of the {¥(t):teN} process.

4. Comparison With West's Variance Bounds Test

Now I will illustrate the economic importance of the new
condition in the context of West's inventory model. One way to
look at West's model is to consider a firm that takes as given its
sales of a single homogeneous good and seeks a production schedule
that will minimize its expected discounted future stream of real

costs:
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(34) c[{ae)};_,,H(-1),0]

£=0°
= By J 8"{aglace)-ace-1]%+a, [a(8) ]
£=0

+a2[H(t)—a3S(t+1)]2}

subject to
(35) Q(t) = S(t) + H(t) - H(t-1)
(36) H(-1) = 0O

where E, and B8 are as in section 2, Q(t) is production in period
t, H(t) is inventories at the end of period t, and S(t+1) is the
covariance-stationary component of sales in period t+1. The term
aO[Q(t)-—Q(t—1)]2 represents adjustment costs brought about by
changing production levels. The term a1[Q(t)]2 represents produc-
tion costs, and the term a2[H(t)-a3S(t+1)]2 represents inventory
holding and backlog costs. In this model, firms hold inventories
for two reasons: to smooth production in the face of randomly
fluctuating sales and to avoid sales backlogs. Neither the cost
minimization hypothesis nor any particular market structure hy-

pothesis is crucial here.

4,1 Deriving West's Test

To derive West's variance bounds test, I hypothesize
that the optimal production plan {Q*(t)}:=O and its associated
inventory plan {H*(t)}::O are covariance-stationary processes.

The production plan {Qo(t)}:_o, where production is set equal to

sales, is
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(37) Qo(t) =S(t), ¥te N,
so that no inventories are held:

0
(38) H(t) =0, V¥ te N, .

Since that production plan is feasible, this must be true:

(39) E(C[{Qo(t)}::O,H(-1),OJ-C[{Q*(t)}::O,H(-1),0])

E(E, ) Bt{aO[S(t)-S(t-1)]2+a1[s(t)]2
t=0
+a2[-a3S(t+1)]2} - E, ) Bt{ao[Q*(t)-Q*(t-1)]2
t=0

+a1[Q*(t)]2+a H*(t)-a3S(t+1)]2})

!

] 8%(a,{E[S(t)-5(t-1) |2-E[Q*(t)-a*(t-1) ]2}
t=0

+a1{E[S(t)]2-E[Q(t)]2}-a2E[H*(t)]2

+2a,2 E[H¥(£)S(t+1) ])

) Bt{ao[var(AS)—var(AQ*)]+a1[var(S)-var(Q*)]
t=0

-a var(H*)+2a_a cov(H*,S+1)}

2 273

(1-6)-1{aO[var(AS)—var(AQ*)]+a1[var(S)-var(Q*)]

- * *
a,var(H¥)+2a 2 cov(H ,S+1)}

3

v
o

where
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var(Q*) = E[Q*(t)]°, ¥t e N
var(aq*) = E[Q*(£)-Q*(t-D]%, ¥t e N
cov(Q¥,Q* ) = E[Q¥(£)Q*(t+1)], V¥ t e N

and so on. The first equality in (39) follows from (35)-(38).
The second equality follows from the fact that EEO(~) = E(-). The
third and fourth equalities in (39) follow from the assumed covar-
iance-stationarity of {S(t)}zzO, {Q*(t)}zzO, and {H*(t)}:=0‘
Finally, the inequality in (39) follows, simply, from the fact
that {Qo(t)}zzo is an optimal plan for (34)-(36), but a feasible
plan for this problem. Thus, based on the hypothesis that the

covariance-stationary component of observed production is part of

t=0’
(39). Based on this test, he rejected the model for a number of

the optimal plan {QO(t)} West developed a simple test for
nondurable manufacturing industries "even though the model does
well by traditional criteria" [West (1986, p. 374)1].

To compare the new condition to (39), I must map West's

model in the (P') format. Let

g(t) = (S(t+1),S5(t),8(t-1))" =(t) = (H(t-1),H(t-2))"

[ 2 r .
a2a3 0 0 -a2a3 0
N/2 = 0 ao+a,I --aO U/2 = -a ao
] 0 0 a i a —ao_J
—axay r;10+a2 -ao1
P/2 = |a.+a Q/2 =
01 -2, a
0
-a, L N
L
-a_.+a a.+a,+a 0
02 0 _ 01 2
R/2 = a 0 S/2 = 0 0
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Now the new condition (21) gives

61(t+1) ! -(2a0+a1) 0 61(t+1)

Ej2
62(t+1)4 aq 0 62(t+1)
8 (t+1)~ (4+s"1)a +(1—B-1)a +8 la, -2a
+ 1 0 1 2 0
82(t+1)J -2ao a,
§,(t+1)
Nooteeny| [ 2 ©
) +
or
-1 -1 -1 2
(40) E{[(5+87 )ay+(1+87 )a,+8 a,|[H(t)]
—2(Hao+a1)H(t)H(t-1)+2aOH(t)H(t+2)} > 0.
Lemma 2 clarifies the relationship between (39) and (40):
Lemma 2. Given H(-2), H(-1), H'(d), «e. = 0, (39) holds if and

only if (40) holds.

(The proof is in the appendix.) Thus, (39) is essentially identi-

cal to (21) or (40) when it is applied to West's inventory model.

4.2 Relaxing West's Assumptions
I turn now to juxtaposing (39) to (21) or (40) when some

of West's assumptions are relaxed.

Case 1. Unobserved Exogenous State Variables
Suppose that production technology 1is subject to a

random shock such that production costs are given by

y(£)Q(t) + a,Q(t)°
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where {y(-)} is a covariance-stationary process observed by the
firm but not by the econometrician.’ It is straightforward to

show that in this case (39) should be changed to

(41) {ao[var(AS)—var(AQ)]+ cov(y,AH)+a1[var(S)—var(Q)]

- *
agvar(H)+2a,a cov(H ,S+1)} > 0.

However, since cov(y,AH) is not estimable, (41) becomes inopera-

tive." Clearly, no such problem arises with (40).

Case 2. Nonstationary Exogenous State Variables
Suppose that sales follow a nonstationary process such

that there exists S > 0 and s « (0,3_%):

J
EtS(t+j) < Ss ¥ tj € N+.
(See Figure 1.) Clearly, then,
2
E[S(t)]

is not independent of t and hence the third equality in (39) is

violated. Nevertheless, (21) and (40) remain valid.

Case 3. Nonstationary Endogenous State Variables

Suppose that ag = az = 0, a; > 0, and -(B-%-—1)a1 < ap
< 0. Further, suppose that sales are governed by S(t) - pS(t-1) =
e (t) for |p| < 1 and {es(-)} is a white noise process. Now, the

Euler condition (17) reduces to

1

(42) EtH(t+2) - (1+s_1+a;1a2)EtH(t) + B EtH(t-1)

1

=8 EtS(t) - EtS(t+1).
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The characteristic polynomial associated with (42) is

1

12 1+ a;1a2)x + 8 .

- (148"

1
The smallest modulus root of this polynomial is A € [1,8 2). (See
Figure 2.) Therefore, (18) and (26)-(28) are satisfied and the

unique solution to the Euler condition is
H(t) = AH(t-1) - (1-8xp)” 'A(1-80)S(t).

Clearly, {H(t)}:_o is not covariance-stationary. Thus, the third
equality in (39) is violated. But (21) and its specialization,

(40), remain valid.

Case 4. A Zero Initial Value for the Endogenous Variable

Clearly, if H(-1) = 0, then (38) should be replaced by
0
H (t) = H(-1), ¥ ¢t ¢ N,

which violates the first equality in (39). But, again, (21) and

(40) remain valid even when H(-1) = O.

These four cases are, of course, possible extensions of
West's inventory model, extensions in which (39) is no longer
valid but (21) and (40) are. Nevertheless, (21) clearly applies
to all linear rational expectations models and to several non-
linear ones. The applicability of (21), that is, does not rely on

the existence of a zero feasible solution.
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Notes

'For examples of LRE models, see Hansen and Sargent
(1981) and Sargent (1982, 1985).

For a proof of this, see Kollintzas (1986a,b). The
regularity conditions (26), (27), and (28) are discussed in
Kollintzas (1985, 1986b). Condition (27) is somewhat stronger
than necessary. These conditions are not sufficient for (29) to
be a solution to (P).

*This cost shock plays a major role in a variety of
inventory models. See, for example, Eichenbaum (1984) and
Kollintzas and Husted (1984).

‘A similar result occurs when inventory holding costs
are subject to a random shock as in the studies mentioned in note

3.
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Appendix
Proofs of Lemmas

Proof of Lemma 1

Since hlt is quadratic, Taylor's theorem implies that

T
(a1) Az = E_ ) Bt'T(h+!t_h‘|t)
t=t
Tt-r +, b7 + - s tr o+ _
= B, ) 8 v P[0T (0) v h " [V (8) v () ]

T

w0 ] a] = (6)-x7(6)]

(8- () ], ] [V () -v ()]

v ) v 'y, b F[x(6)-x7 () ]

-3[v e)-vT(8) ] b Pl (e)-vT(e) ]}

where vxhlt stands for the gradient of h with respect to x evalu-
ated at h[g(t),x(t),v(t)], vXXh|t stands for the Hessian of h with
respect to x evaluated at h[E(t),x(t),v(t)], and so on.

Since v(t) = x(t+1) - x(t) and &(t) = x7(t) - x(t),

T
T t- +,C +. t +, &
(a2) A = ETtZTs Lo h"[-v b7 ls(e)+v b7 e (te1)

£

t £ t
-38(t)" [V h|"-v h|"-v h|"+v h|"]s(t)

XX XV

~38(6)'[v, h|%v_ n|"]s(t+1)
~ts(e+1) [vn|®-v b|®]s(te1)

' t
-38(t+1)'v  h| s(t+1)}.
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Since both {x+(t+1)}:_T and {x'(t+1)}:_T are assumed to be feasi-
ble, (13) implies that &(t) = 0. Then a change of time indexes

produces this:

T-1
T _ t+1-1 +E+1 +E+1
(A3) so=E ()8 {{v b7 v 07 s (ee)

t=t
£+1_ t+1
~38(t+1)" [v Y vl

-V _h

It+1
vX

t+1
+Vvvhl ]6(t+1)
-s(e+1)' v, by 0% M s(te2))

Bt'T{Vvh+|t6(t+1)-%6(t+1)'hvv|t6(t+1)})

+
ct
113
A

T-1
_ Loty -1 +t +1t+1 +E+1
= ET(B ETB [8 v h'| "+ b -v b Js(t+1)

8 (v n" | To (e D) -gs(Te ) h_[To(T41)}

-38 2 st Has(een) v 0] v 0T s(es2)

t=1

t+1 t+1 E+1

+8(t+1) " [v_ h| -V 0w

+(1+B'1)vvvh|t+1]6(t+1)})

or, in the (P') notation,

T-
(A4) AZ E (8 Z Bt T[(S-R)x™(£+2)~(Q-R-R'+S+8™ 'S)x* (£+1)
=T

(S-R)'x (t)-z—(s' -1)m-(U-P)'£(t+1)

=87 TPrE(£) ] 5(t+1)

8 T [Sx*(Ta1)+(R-5) k¥ (T)+meP ' £(T) | ' 6(T41)

-38(T+1)'S8(T+1)}
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-1,
-38 ) B T {28(t+1) ' (S-R)6(t+2)
t=t

+6(t+1)'(Q-R—R'+S+s-1s)5(t+1)}).

Now, y  @¢,q, ¥t e N, 50 E (+) = E (B (), ¥ t e {r,t+1,...}.
[See, for example, Billingsley (1986, Theorem 34.1).] Since
{x+(t+1)}:=T and {x_(t+1)}::T are assumed to be o -measurable,
(12) implies that &(t+1) is Qy-measurable. Therefore, E.8(t+1) =
8(t+1) and Et[(-)s(t+1)] = [Et(-)]s(t+1). [See, for example,

Billingsley (1986, Theorem 34.3).] These facts imply that

(85) E_[(S-R)x*(£+2)-(Q-R-R'+5+8” '8)x™ (t+1)+8™  (S-R) 'x*(t) -2

{87 e m=(U-p) ' }(te )-8 "B (L) | 8 (E41)

= ET{[(S—R)Etx+(t+2)—(Q—R-R'+S+5"1S)Etx+(t+1)

+s'1(S-R)'Etx(t)-z+(s'1-1)m-(U-P)'Etg(t+1)

-B“1P'Etg(t)]'s(t+1)}.

Therefore, since {x+(t+1)}z_T is assumed to be an optimal policy
for (P), (17) implies that the first term on the right side of
(44) is  zero. Furthermore, since ({g(t)}:_r,{x+(t)}:_T),
@ - © g X e q s

({g(t)}t:T,{x (t)}tzr) € ﬁf.x £, each of the bilinear and qua-
dratic forms of the second term on the right side of (Al4) goes to
zero as T + =, Therefore,

T T-1 £
(46) lim A7 = -38 lim E_} 8" "[28(t+1)'(S-R)s(t+2)

T+eo T t=1

+6(t+1)'(Q—R-R'+S+B°1S)6(t+1)].

Now since E(-) = E(Et(~)), ¥ t e N, it follows immediately that
if {x+(t+1)}:=T is an optimal policy for (P) and {x_(t+1)}:=T is

any feasible policy for (P), then (20) must hold.
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Proof of Lemma 2

Since {Q(t),S(t),H(t):teN} is a covariance-stationary

process and E[EO(-)] = E(-),

(AT) )

(1-8)""E(a, {[S(t)-s(e-1) 2= [a(t)-act-1) ]2}
+a, {[s(6)]%-[a(t) ]} -a, [H(1) ]2

+2a2a3H(t)S(t+1))

EE,, Zost(aO{[S(t)-S(t-1)]2-[Q(t)-Q(t-1)]2}
t=
+a1{[S(t)]2—[Q(t)]2}-a2[H(t)]2

+22,3H(t)S(t+1)).

S(t+1) !
S(t)

= S(t-1)
H(t-1)
£=0 H(t-2)
H(t)-H(t-1)
| H(t-1)-H(t-2) |

(222 0 0 -aja; 0 -apa
ap*ay -apg -ag ag  agray
ag ag -a, -3,
X ‘ ag+tay -ag -ag+ap
ag ag
ag*ai*ay

©O O O O ©o ©o o

[ s(t+1)
S(t)
S(t-1)

y H(t-1)
H(£-2)
H(t)-H(t-1)
| H(t-1)-H(t-2)
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g(t) ['|{N U Plle(t)
- mE, J 8% |x*(t)| |ur @ r||xt(e)].
Ot-O + +
- v (t)| [P' R' S||v (t)

Also, as in the proof of Lemma 1, it follows that

1

(48) X = -1801-67 DE{[ (5+87 Nay+ (146 a +87"a, | [H(E)?]
-2(4ay+a ) H(E)H(t-1)+2a H(t)H(t-2)}
- BOREEERIECE
= E{E, ] e [x"(t)] [ur @ Rr||x*(t)
£=0 + ' D1 +
—v (t‘,)f _P R S:j _v (t)4
[ece) T v p]fece)
-1 x(E)] |U'Q R|lg (t)
v (t)| |P'" R' S{|v (t)
L A
Thus, if H(-2) = H(-1) = H(t) = ... = 0, then ¢ = X. Hence,

since 8 ¢ (0,1), (39) holds if and only if (40) holds.
Q.E.D.
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Figure 1

Nonstationary Exogenous State Variables
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Figure 2

Nonstationary Endogenous State Variables
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