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ABSTRACT

The consequences of a straightforward monetary targeting scheme
are examined for a simple dynamic macro model. The notion of
"targeting" wused is the strategic one introduced by Rogoff
(1985). Numerical calculations are used to demonstrate that for
the model under consideration, monetary targeting is likely to
lead to a deterioration of policy performance. These examples
cast doubt upon the general efficacy of simple targeting schemes
in dynamic rational expectations models.
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1. Introduction

A topic of considerable policy interest 1is whether
monetary targeting improves upon or detracts from the overall
performance of monetary policy. The theoretical debate on this
subject has been quite intense, particularly after the Federal
Reserve's 1979-82 targeting "experiment." While this debate
continues to rage on many fronts, lately it has focused on strate-
gic issues.1 That is, Can monetary targeting improve the perfor-
mance of monetary policy by improving the Fed's credibility? -

A recent paper by Rogoff (1985) strongly suggests an
affirmative answer to this question. In the context of a static
macro model, Rogoff demonstrates that various intermediate target-
ing schemes may be useful in overcoming the credibility problem
inherent in a discretionary policy environment.

The present paper is a first attempt to examine the
generality of Rogoff's r‘esults.3 In the analysis that follows,
the consequences of a simple monetary targeting scheme are traced
through for a dynamic macro model. Although analytical character-
izations of policy performance are difficult to obtain, numerical
results suggest that for the model under consideration, targeting
is likely to lead to significant deterioration of policy perfor-
mance. Nor does targeting lead to improved credibility of mone-
tary policy. Instead, the imposition of targeting often leads to
erratic short-term fluctuations in both the money stock and the
brice level.

The examples below should not be construed as a general

condemnation of all monetary targeting schemes. Indeed, recent



work by Whiteman -(1985) suggests that policy performance can
always be improved by implementing some targeting mechanism.
However, the examples considered here suggest that simple, intui-
tively appealing targeting mechanisms can easily have the opposite

of the desired effect.

2. ‘The Model
The model considered here can be derived from Cagan's

(1956) demand function for real balances:
(1) log (M/P)t = am + gy, + b o+ Ut’ a <0, >0

where M is the demand for nominal balances, P is the price level,
7. 1s the exﬁected inflation rate, Yy 1is the log of real income, ¥
is a constant term, and Ug is a stochastic errér term. Following
standard practice, the values of all variables are interpreted as
deviations about perfectly forecéstable trends. In addition, the
analysis below abstracts from all real effects by taking gyt + P
to be identically zero. The process {Ut} is assumed to follow the

stationary first-order autoregressive law

(2) U, = +0

£ 0 <y <A

- Qg

t£-1 t’

where ey is Gaussian white noise. Both private agents and policy-
makers are assumed to know the values of current and past realiza-
tions of U.. The money demand shock U, is the only source of
uncertainty in the model.

By imposing the rational expectations hypothesis and
some relatively innocuous side conditions, the money demand equa-

tion (1) can be rewritten asl+
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(3) Py = -0 jZO o Et(mt+j + ut+j)

where E. denotes the expectation conditional on current and past
U.'s; py is the log of the price level; my = log (M. )/a; ug =
-Ui/a; and o = (a-1)/a. Equation (3) reveals the dependence of
the price level on current and all expected future values of
nominal money demand. It is this dependence that causes the
problem of setting monetary policy to be a dynamiec one.

Throughout this paper it is assumed that the Fed can
completely control the nominal money stock, which will always
equal the nominal money demand in equilibrium. The Fed's objec-
tive is taken as to minimize a weighted average of the discounted
sum of current and future fluctuations in the logarithms of the
money supply and the price level. That is, at time t the Fed's

objective is given by
J = E ai 83(1/2p2 .+ a/2m> ), 15>8>0, 2 >0
(2 320 b+ 3 t+j! ! :

The objective of the Fed is thus taken as to stabilize the fluctu-
ations of the money supply and price level about their long;term
trends, taking equation (3) as given.

The setup of the model described here differs somewhat
from most others found in the literature on targeting. A super-
ficial difference is that the price level, rather than some aggre-
gate quantity measure such as GNP, is taken as the target vari-
able. This difference could be resolved by incorborating a real
sector for the model, but for reasons of analytical convenience,
this is not done, A more important difference 1is due to the

positive weight ) attached to fluctuations in the poliey instru-



ment my. . Analytically, this term is important in generating a
policy tradeoff for the model. If this term were to vanish, the
Fed could always attain a value of zero for J. by completely
offsetting money demand shocks. When 1 > 0, the stabilization
benefits of such interventions must be weighed against their
costs. However, at the level of abstraction assumed by the model,
it is difficult to assign an unambiguous economic interpretation
to these costs. Still, the inclusion of these costs in the Fed's
loss funetion is justified on an intuitive level, since their
exclusion would imply that the Fed is completely indifferent to

fluctuations in the policy instrument mt.5

3. Policy Rﬁles Under Precommitment and Discretion®

As in virtually éll rational expectations models, deriv-
ing "optimal" policy rules for the model just described requires
that the bolicy authority's degree of precommitment be speci-
fied. To begin, consider the case where the Fed -can credibly
commit itself to an infinite sequence of policies. In this case,
monetary policy 1is determined once and for all at time t = O,
conditional on a given sequence of shocks {et}. This sort of
policy environment is sometimes referred to as a precommitment or
open loop policy environment.

The optimal precommitment monetary policy for this
problem can be found using techniques outlined in Hansen, Epple,
and Roberds (1985). Setting the Fed's discount factor B8 equal to
one for convenience,7 the appropriate Lagrangian for the time

t = 0 policy problem is
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© -1 =< -'
£ = B, tZO[VZ(pi wam)] w0 [p + 07 E, g o I (my, ; + ug,,)]

where {et} is a sequence of random Lagrange multipliers. First-

order conditions for the precommitment problem are
1 t .
(1) am, + 0 Y 48 =0
(5) pt+9t=0.
Equations (4) and (5) hold for t 2 0. Solving for m., we obtain

(6) m

-1

-1 -1
(7) mo=p om o+ (xp) P, t > 0.

The time inconsistency of the optimal precommitment
policy is manifested in the fact that the representation for mj in
equation (6) differs from that for m, for positive t in equation
(7). Equation (7) requires that my. "feed back” on me_4 after the
initial period in which policy is set. If optimal policy were to
be reset at some time s > 0, however, equation (6) would require
that m,_; be ignored in setting mg. Thﬁs, without some mechanism
to guarantee that the Fed would always stick to its original plan,
the precommitment policy is not credible. Nonetheless, it is
useful to solve for the precommitment policy as a benchmark
against which to compare other policies. Appendiz A shows that in

equilibrium the sequence of optimal policies follows the law

(8) m = e.m 4o+ Cul, £t =20



where 1 > ¢y > 0 and g < 0, subject to the initial condition
m_q = 0.

We next consider a policy environment of pure discre-
tion. In a discretionary policy environment, optimal policies are
recomputed in every period, so that announcements about time t
policy that are made before time t are not credible. Given this
sort of policy environment, one could think of policy as being set
by a sequence of Fed policymakers. The policymaker at time t has
the authority to set time t poliey only. A policymaker may pre-
dict what future policymakers will do, but cannot commit them to
any predetermined course of action. Accordingly, the appropriate
Lagrangian for the time t policymaker is

ﬁt = Etjzo[1/2(p§+j+Xmi+j)] + et[pt+p-1EthOp—j(mt+j+ut+j)]
where again 8 = 1 for convenience. First-order conditions for the

time t policymaker are given by
(9) kmt +p 6, =20
(10) pt + et = 0.
Solving equations (8) and (9) for my in turn yields
(11) m = (1) 'p
t £

The time consistency of monetary policy in this environ-
ment is manifested in the fact that the representation for optimal

policy given in equation (11) holds for all t. In Appendix A,



equation (11) is shown to imply the following feedback rule for

policy:

(12) m_ = f*u where f¥ = -[1 - xp(y-p)]~1.

t t’

Since f* lies between 0 and -1, optimal monetary policy in a
discretionary environment consists of accommodating some frac-
tion--but not all--of the current (normalized),moﬁey demand shock
Ut |

As is true for most policy problems in a rational expec-
tations setting, the performance of the discretionary policy rule
given in equation (12) will be dominated by the performance of the
precommitment poliey rule given in equation (8). That 1is, the
value of the Fed's loss function J. will be greater under discre-
tion than under pr'ecommitment.8 However, as Kydland and Prescott
(1977) point out, there is no way to recoup this difference given
the disecretionary policy environment assumed above. To improve
the performance of policy, some sort of mechanism must be intro-
duced that will augment the credibility of the policy authority.
One candidate for such a mechanism is described in the next sec-

tion.

4. A Simple Targeting Scheme
There are two major reasons for considering the target-
ing scheme described below. First, this targeting scheme consti-
tutes a reasonable dynamic generalization of one proposed by
Rogoff (1985) in the context of a static model--a generalization
made expressly to overcome a ''policy credibility" problem similar

to the one described in Section 3. Second, the targeting scheme



we consider 1is designed to mimie, within the confines of the
idealized model of this papef, several of the important aspects of
monetary targeting as historically practiced under the Humphrey-
Hawkins Act.

We should begin by explaining what is meant by targeting
in a strategic policy environment. By requiring the Fed to target
some aggregate variable, we mean to alter the Fed's objective
function J. so that the Fed is penalized when that aggfegate
deviates from its preannounced target value. The idea behind this
definition is as follows: altering the Eed's incentives may
somehow compel the Fed to take policy actions more closely ap-
proximate to the precommitment policies that minimize its true
objective J..

The targeting scheme we consider proceeds as follows.
For convenience the duration of the time period in the model is
taken as a half year. Each year has two months, January and
July. In January of each year (i.e., in every even-numbered
period), the Fed is required to submit a target value of the
nominal money stock for July (i.e., in the subsequent odd-numbered
period). In even-numbered periods the Fed is free to set the
nominal money stock as it wishes, and its one-period loss function

is the same as the one given above:
2 2
L.(p,,m) = 1/2(pt + Amt).

During odd periocds (i.e., in July of each year), the Fed feels
some pressure to meet its preannounced money supply target, so

that its one-period loss function becomes
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+ t(m, _- m*)zl, T > 0.

1/2[p§ £ Ame .- mF

t

th

Lo(pt,mt,mz]

where mt represents the logarithm of the preannounced monetary
target, divided by the parameter a.” The Fed's objective(s) is

taken as to minimize

k. =E ) 8lL_.
t t =0 t+J

where Lt+j = Lo(-) for t+j odd, and Lt+j = Le(-) for t+j even,
taking into account the private sector's reaction function given
by equation (3). In even periods, the Fed minimizes Ky by choos-
ing two poliey instruments: the current value of the logged money
stock m, and the monetary target for the next period, m§+1. During
odd periods, the Fed‘can only set one instrument,ithe current
value of the money stock.

Several features of this targeting model deserve discus-
sion. First, it should be emphasized that under this model, the
Fed still operates in a policy environment of pure discretion,
although its objective function is changed. The monetary targets
mg cannot be interpreted as either binding promises or optimal
predictions. Except in the limiting case where t = =, there is no

constraint that targets must be met exactly. Nor is there an

explicit requirement that m¥*

h must represent an optimal time t

prediction of mg,q; i.e., it is not required that Etmt+1 = m§+1.
Some pressure to target accurately does exist, however, because
the Fed wishes to diminish ?he penalty term r/2(mt+1- m*é”)2 asso-
ciated with deviations from the targeted money stock. The exact
nature of this penalty is left to the reader's imagination, while
the parameter t is assumed to be exogenously determined by the

institutional setting under which monetary policy is set.
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Another 1important feature of the targeting model is that
deviations from target are only subject to penalty at midyear,
i.e., in the odd-numbered periods. As will be seen in Section 5,
this feature is important methodologically, since it allows the
model to be solved using a simple recursive algorithm. More
importantly, this featu-e is meant to reflect the conical shape of
the target bands historically announced for monetary‘aggregates.
The notion of conical target bands is captured in an abstract
setting by imposing positive costs to such deviations at midyear,
while assigning zero costs to deviations at the beginning of each
year. In the terminology of Broaddus and Goodfriend (1984),
annual "rebasing" of the money stock carries no explicit penalty.

Finally, it should be emphasized that under targeting,
the true or "social" objective of the Fed is still Ji, although
its operating objectives are now summarized by the function K.
As discussed above, the purpose of using targeting to alter the
Fed's operating objective would be to attain lower values of the

true loss funection Jt‘

5. Equilibrium With Targeting

A computationally convenient way of deriving equilibrium
policies in a discretionary policy environment is to use the
notion of feedback or recursive equilibrium of dominant-player
dynamic games, as defined in Kydland (1977). Before using this
equilibrium concept to solve for equilibrium policies under tar-
geting, it is perhaps instructive to reconsider the problem of
setting discretionary policy without targeting, i.e., the case

when t = 0,
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We begin by noting that for -the model without targeting,
there is only one dynamic state variable: the money demand shock
Ug . We wish to consider feedback policies for the Fed that take
the form my = f(ut). Given the linear-quadratic-Gaussian setup of
the model, we can restrict our attention to linear feedback rules
of the form me = fut. Let fo be our initial guess for the value
of the optimal feedback parameter f¥. If, at period t, private
agents believe that policy in all future periods will be set
according to the rule m = fOut’ then equation (3) may be evalu-

ated as

(13)  py = [+ 07 Nvgg)/y = o) ]uy - o7Mm

Now define the Fed's Qalue function V(ut) as the value-
of the Fed's objective Ji when the optimal feedback parameter f¥
is used in the current and all future periods. In equilibrium,
the optimal feedback parameter f* must satisfy, for any value of

Uy, the requirement that m

m, = f*ut, where m,_ solves

t

(1) min [1/2(pi + kmi) + BEtV(ut+1)]
m

t
subject to equations (2) and (13) and where in equilibrium, f* =
fo. As shown in Appendix B, solving program (14) and imposing the
condition that f¥* = fy yields a feedback rule f¥ identical to that
in equation (12).
For more complex models, it is often difficult to solve
for eéuilibrium feedback rules directly. However, the recursive

character of feedback equilibrium suggests a natural algorithm for

numerical computation of feedback rules. That is, given an ini-
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tial guess fjy for £#*, find the feedback rule f, that solves pro-
gram (14), then take £y as the next guess for £*, and so on. The
recursive nature of feedback equilibrium also guarantees that
equilibrium policies will be time consistent: in solving the
program (14) at time t, note that the Fed is constrained to take
all future policies as given.

We now consider the problem of setting discretionary
policy under the targeting scheme described in Section 4. Under
targeting, it will be important to distinguish between January
(even) and July (odd) periods. In even periods, as in the model
without targeting, the Fed's one-period loss function is influ-
enced by only one state variable--the shock u.. In odd periods,
however, the previously announced logged money stock target mt
must be added to the list of state variables. Two decision vari-
ables, the current logged money stock m. and the midyear target
m§+1, must be set in even periods, while only the current money

stock is set at midyear. Consequently we consider policies of the

form
(15) mt = fOU.t
for even t
* -
(16) meeq = yug
and
- %
(17) m = gyu, + gmf, for odd t.

Appendix C shows  that when equations (15), (16), and (17) hold,

equation (3) may be evaluated as
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(18) Py for t even

. %
dOut + d1mt + d2mt+1’

(19) p, = byu, + b,m, for t odd

where the b's and d's are complicated functions of f5, £y, gq5, g9,
X, p, and ¥. Under targeting, equilibrium feedback rules are

determined by a 4-tuple [fg, f?, gg, g?) such that when t is even,

- * * - *
(20) m = fo uy and mf g = f1 uy

and when t is odd,
- ok * ¥
(21 Tg T 8 Y T BT Tg

where the m_'s in turn solve the program

t

. . «
(22) o {Lolpym) + BEt[m;“ Lo (P, qome, omE )]
£+ t+1
2
+ B EtW(ut+2)}’ for t even

sub ject to constraints (2), (18), and (19), where W(u.) represents
the value of Kt for t even when optimal policies are in effect and
the b's and d'é in (18) and (19) are evaluated at
(fg, £%, g¥, g?]. The equilibrium feedback parameters can be
numerically determined, given values for A, po, and vy, by the
iterative procedure outlined in Appendix C. Basically, this
procedure takes an initial guess (fo, f1, g1 g1) for the feedback
parameters, uses these values to obtain equations (18) and (19),
and then solves program (22). The feedback rules implied by the
solution are in turn used to generate updated versions of equa-
tions (18) and (19), and so on, until an approximate fix point is

reached.
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6. Numerical Examples

Because of the somewhat complicated nature of the pro-
gram (22), analytical chafacterizations of the targeting equilib-
rium are difficult to obtain. For this reason, some numerical
examples were calculated to obtain an idea of policy performance
under targeting. The results of three representative sets of
calculations are reported in Table 1.

In each of the numerical examples, arbitrary values were
assumed for the parameters A, p, and y. The discount factor B was
again taken as equal to one, and the true policy objective Jy was
reinterpreted as an average cost objective. Using formulas de-
rived in Appendix D, the equilibrium value of Jt was calculated
for each set of parameter values under precommitment, discretion-
ary, and various targeting environments. For each policy environ-
ment, the performance index P = 100(J/J9) was calculated, where Jd
represents the equilibrium value of J for the same parameter
values, given a discretionary policy environment without targeting
(i.e., where t = 0). This index thus gives the performance of
policy in a given environment as a percentage of the performance
of the best consistent policy without targeting. Note that
smaller values of P are preferred and that a value of P under 100
indicates improvement due to implementation of targeting.

Before describing the results of these calculations, it
may be useful to consider how variations in the parameters A, o,
and y affect the potential gains in policy performance due to
precommitment. First, recall that setting A = 0 allows the Fed to

costlessly offset money demand surprises (if targeting is- not in



Table 1
Numerical Examples of Policy Performance

Under Targeting

Set 1
Parameter Values: X = 1.0, p = 1.5, y = 0.95

Policy Environment Performance Index (P)
Precommitment 76.57%
Discretionary With

T = 0 100.00%

T = 0.1 100.03

= 1.0 102.88

T = 10.0 114.36
Set 2
Parameter Values: X = 10.0, o = 1.1, vy = 0.95
Policy Environment Performance Index (P)
Precommitment 37.87%
Discretionary With

T = 0 100.00%

T = 1.0 102.44

T = 10.0 116.12
Set 3
Parameter Values: A = 0.1, p = 2.0, vy = 0.5
Policy Environment Performance Index (P)
Precommitment 94, 08%
Discretionary With

T = 0 100.00%

T = 0.05 99.46

T = 0.1 102.48
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effect), so that the global minimum of Ji = 0 can be attained in a
discretionary policy environment without targeting. Accordingly,
one would expect the gains from precommitment to be small when 2
is close to zero. A similar conclusion holds when y is close to
zero. This is because in the limiting case that y = 0, the dynam-
ic policy game inherent in the model reduces to a sequence of
repeated static games, which by definition are immune to dynamic
consistency problems.10 Finally, equation (3) reveals that when p
becomes large, D¢ is driven to zero. In the limiting case that
g = =, the problem of stabilizing Dy becomes trivial. Hence the
benefits of precommitment are likely to be reduced when p is
relatively large.

For the first set of numerical examples shown in Table
1, the parameter values » = 1.0, p = 1.5, and y = 0.95 were as-
sumed. The performance index P of about 77 percent for the ideal
precommitment environment indicates that the potential gains to
precommitment for this example are significant: perfect credibil-
ity entails about a 23 percent decrease in the policy loss func-
tion. However, attempts to increase policy credibility via tar-
geting were not successful. For the positive values of 1 that
were tried, the implementation of targeting resulted in a deterio-
ration of policy performance (i.e., in values of P over 100 per-
cent). This deterioration 1is apparently increasing in the
"strictness" t of the targeting mechanism.

In the second set of examples, the parameter values
A =10.0, p = 1.1, and y = 0.95 were assumed. As might be in-

ferred from the discussion above, increasing the value of A and
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decreasing the value of p, relative to the first set of parameter
values, results in an even greater potential gain in policy per-
formance from precommitment. The value of the performance index P
under precommitment is about 38 percent for this example, implying
a 62 percent decrease in the policy loss function under full
credibility. Again, attempts to recoup this gain under targeting
only resulted in deterioration of policy performance, with the
degree of deterioration increasing in =.

For some of the numerical examples considered, implemen-
tation of targeting did lead to gains in policy performance.
Typical of these examples is the'third set shown in Table 1. For
this set of examples the parameter values » = 0.1, p = 2.0, and
vy = 0.5 were assumed. As seen from the performance index column
of the table, taking t = 0.05 in this example results in a de-
crease of about half a percentage point in the policy objective
function. Larger values of 1 again lead to deterioration of
policy performance. However the value of P for the precommitment
case (about 94 percent) reveals that for this example, the magni-
tude of the dynamic consistency problem is not large. Even in an
environment of perfect credibility, only about a 6 percent gain in
policy performance can be attained,

In summary, the numerical examples reveal that the
effect of targeting on policy performance is somewhat ambiguous.
For some parameter values, targeting results in gains in policy
performance, while for other values, losses occur. The magnitude
of the potential gains (under 2 percent in all the examples tried)

tend to be quite small relative to the magnitude of the potential
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losses. Moreover, the gai-s were always present in examples for
which the dynamic consistency problem was relatively unimportant
(i.e., in examples for which the values of A, p, or y were close
to regions where the. dynamic consistency problem does not
exist). The larger losses were present in examples where poten-
tial gains due to increases in credibility were quite large.

Some intuition concerning the failure of the targeting
scheme considered in this paper is offered by Figures 1 and 2.
These figures depict the responses of mt'énd py to a one-standard-
deviation shock to money demand (here corresponding to a minus 0.1
standard deviation realization of et) where the parameter values
A =10, p = 1.1, and vy = 0.95 are assumed. Responses are plotted
for the precommitment case and for the discretionary case where
T = 0 (no targeting) and 1= 10 (targeting).

Figure 1 shows the response of me (proportional to the
response of the logged money stock to a positive shock to money
demand) under the three environments. The optimal precommitment
response is seen to require an initial rapid series of increases
in m_, followed by a series of gradual decreases. The discre-
tionary response without targeting consists of an initial rapid
increase, followed by a series of gradual decreases of mi. The
effect of the targeting scheme considered is to introduce oscilla-
tions into the response of mg. During the midyear (odd-numbered)
periods when targeting is in effect, m. 1is biased towards zero;
while during even periods, me is very close to its values under
discretion without targeting. Figure 2 shows that under target-
ing, similar--if somewhat less extreme--oscillations are intro-

duced into the p, process.



Figures 1 and 2

Response of Money Stock and Price Level to a Money Demand Shock
in Three Policy Environments

(Parameter Values: A = 10.0, p=1.1, vy =0.95)
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Some intuition for the example is provided by an earlier
result of Whiteman (1986). That paper shows that discretionary
policy (without targeting) will dominate a passive policy of
always setting m_ = 0. Hence it is not surprising that targeting,
which seems to bias policy responses towards this passive policy,
results in a worsening of poliecy performance. This bias towards
zero is a direect result of the targeting mechanism, which assigns
positive costs to active policy responses.‘ Of course, these costs
are assigned with the idea that they will be more than offset by a
resultant increase in credibility. However, the parameter values
assumed in this example cause money demand shocks to have very
persistent effects, so that the marginal benefit of a one-period-

ahead commitment on the part of the Fed is quite small.

7. Summary and Conclusion

The consequences of a simple monetary targeting mecha-
nism have been considered for a dynamic macro model under rational
expectations. Through the use of numerical examples, the effect
of this targeting mechanism on policy performance in this model
has been shown to be ambiguous and to be negative for those exam-
ples in which policy credibility is an important problem.

These highly stylized examples cannot provide definitive
answers concerning the general usefulness of targeting mechanisms
in setting government policies. Even in the context of the simple
model discussed, it may be possible to design more effective
targeting schemes. For example, improvements in policy perfor-
mance might result from requiring the Fed to target the price

level as well as the money supply or from extending the number of
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periods over which targeting must occur. Still, the examples
considered carry an important message: arbitrarily applied tar-
geting schemes can easily lead to a deterioration of policy per-
formance. These examples also point to the need for more research

into the strategic effects of monetary targeting mechanisms.
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Notes

'See McCallum (1985) for a survey of the literature on
monetary targeting in general and on the strategic aspects of
targeting especially.

’A similar result is shown in Canzoneri (1985).

3The paper can be viewed this way in the sense that both
the model and the targeting scheme considered here closely resem-
ble dynamic analogs of those proposed by Rogoff. However, no
attempt has been made to nest Rogoff's static setup in the dynamic
environments that this paper considers.

“See Whiteman (1983) and Watson (1985) for a discussion
of the solution of equation (1).

5There is also some evidence that such terms are needed
to make optimal control models of Fed policy believable. Empiri-
cal studies by Litterman (1982, 1986) suggest that assigning costs
to fluctuations in the policy instrument (i.e., the interest rate
in these studies) is necessary to prevent rapid oscillations in
this variable.

6The policy problems considered in Section 3 were first
proposed and analyzed by Whiteman (1986), using techniques differ-
ent from the ones employed here. Throughout this paper we will be
abstracting from the possibility of reputational effects (see
Barro and Gordon 1983) or regime change (see Roberds 1986).

7Setting the Fed's discount factor equal to one does not
affect the qualitative properties of the models studied below.
The government's objective is still well defined if we reinterpret

Ji as an average cost objective, as in Bertsekas (1976). Average
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cost objectives are convenient for the numerical simulations
reported in Section 6, since they allow estimation of the Fed's
objective using sample moments.

®For a proof of this statement, see Corollary 3.2 of
Whiteman (1986).

°This transformation (division of the logged monetary
target by «) is done purely for notational convenience.

10Any potential credibility problems arising in a statie
context are assumed away in the models of this paper, so as to
concentrate on dynamic credibility issues. This assumption seems
warranted, given that dynamic credibility issues were the main

focus of Kydland and. Prescott's (1977) original critique.
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Appendix A

Derivation of the Optimal Policy Rule (8)

Substituting the portfolio balance schedule (3) into the

Fed's first-order condition (7) yields

oy NE m +E u,)

(A1) -X(L—p)mt = (L (M B U

where the operator L is defined as L(E.m.) mg_4, and L' as
L’1(Etmt) = Eymg, 4. Equation (A1) can be solved using the method
outlined in Sargent (1979). Operating on (A1) with (L—1-p), we

obtain the second-order expectational difference equation

-1
(42) [-A(L7'=p) (L-p) - 1Em, = u .

Applying Sargent's technique then yields the solution for my
- -1
(A3) m = com . + [03 /(1-02Y)]ut

where -1(2'1—9)(2-9)—1 can be factored as c2(1-c1z)(1-c 2'1), when

1
¢, < 0 and ¢y « (0,1). Equation (8) follows if we substitute cq
for [c51/(1-c1y)] and note that the first-order condition (6) for
the initial period may be written as (7), subject to the initial

condition m_4 = O.

Derivation of the Consistent Policy Rule (12)
Using the portfolio balance schedule (3) to eliminate Pt

from the first-order condition (11) yields

(L) [aoL™ - P+ Em, = .
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Defining dj = -(1+lp2) and dq = xo/(1+xp2), equation (AY4) can be

solved using Sargent's (1979) technique to yield

-1

(a5) m = d, ut/(1~d1y).

The feedback parameter f* may be found by evaluating d61/(1-d1y)

and simplifying.
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Appendix B

Alternative Derivation of f¥ Under Feedback Equilibrium

Begin by writing constraint (13) in abbreviated form as

(B1) Py = agu, + a,m.

Since the Fed's value function V(ut+1) does not depend on mg,

solving program (14) is equivalent to solving the simpler program

(B2) min 1/2(Xm§ + pi)

me

subject to (B1). The first-order condition for program (B2) is
given by
(B3) (x + aZ)m + (a.a,)u, =0

177t 07177t :

Substituting for the a's in (B3) and solving for m. yields
L1, -1 ' -2
(BY4) m, = [o7 (140 on)]/[(k+p )(Y'D)]Ut-

Imposing the conditions me = f*ut, £* = fo, and dividing (B4) by

up yields

(B5) £* = -[1 - Xo(¥-o)]°1-
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Appendix C

Calculation of Feedback Equilibrium Under Targeting

We begin by evaluating the public's portfolio balance
schedule (3) when policies are set using the linear decision rules
(15), (16), and (17). Using prediction formulas from Hansen and

Sargent (1980), equation (3) may be evaluated for even t as

- 3
cn p, = a¥u,
where
(c2) a* = (—p'1fo - Y8, - 0g,f, + v ¥ 0)/(0%= ¥°).

When t is odd, equation (3) can be evaluated as
(C3) P, = bOut + b1mt

where bO = p—1(a*y-1), and b1 = -p
Now consider the Fed's optimization problem at some odd

time t, i.e., the inner minimization problem of program (22).

Because the next (even) period's value function W(ut+1) does not

depend on the choice of m, this minimization problem is equiva-

lent to the simpler program

(cu) m;z 1/2[p§ + xmi

Solving program (CH) yields the following solution for my

— m¥* 2 *® 3
+ t(m - m¥) ] s.t. (€3), m¥ given.

. 2
(c5) m = [rmt - b1bout]/(x + T+ b1].
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Solution (C5) in turn implies the following values for 8p ang gq:

(C6) g} /(x + T+ bF)

~boPy

(CT) g /(A + T+ b?).

Now consider the Fed's optimization problem at some even
time t, i.e., the outer minimization problem of program (22).
Since the public knows that in the next period, bolicy will be set
according to a rule of the form (17), the Fed should take into
account the impact of its target announcement on the public's
expectation of mg_ .. Substituting (17) into equation (3) and

taking expectations then yields

- %*
(C8) P, = dout + d1mt + d2mt+1

where d, = =p~ {1+0” [(1+g.-va*)y]}, dy = -p=1, and d, = -p~2g..
0 0 1 2 1
Also, the Fed should take into account the impact of its target
announcement on its time t+1 loss function via the decision rule
(17). Substituting (17) and (C3) into the time t+1 policy loss

function yields

(€9) Lo Py qomf, () = Clmd poup )
where

Clmt, g, q) = 1/2(°1”§+1 * °2m§31 + 2cqup ym )
and |

(¢]
n

2 2 2
o = 28] + (b,g)° + t(g,-1)

3 = ngg1 + (b0+b1go)(b1g1) + rgO(g1-1).
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Since policy decisions made at time t (even) do not
affect the Fed's value function W(ut+2) at time t+2, the outer
minimization problem of program (22) reduces to the following

problem:

2 2)

(C10) min 1/2(mt+pt

%
mt’mt+1

Necessary first-order conditions for program (C10) are given by

+ EtC(m§+1,ut+1) s.t. (C8) and (C9).

" 5 - - - -
(x+d1) d,d, m, | -dqd,
(C11) = u
. > . t
d,d, [c2+d2) m¥ -(c3y+d2do)
which we abbreviate as Dm = dup. Substituting for m, and m§+1

using equations (15) and (16) and dividing (C11) by u. then im-

plies the following values for f, and f,:

fo

(C12) = D™ 'd.

'
f1

A feedback equilibrium can be calculated by taking some
initial guess for the parameters of the equilibrium feedback laws
(20) and (21), then iterating on equations (C6), (C7), and (C12)
until convergence is reached. In practice, convergence was quite
rapid from essentially arbitrary starting values for each of the _
examples reported. The convergence criterion was that maximal
differences between successive approximations be no greater than
10~7 in absolute value. For some unreported simulations, conver-
gence was not obtained for large values of t. Similar convergence

problems are reported by Kydland and Prescott (1977) for simula-
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tions of a policy game in a discretionary environment; this sug-

gests that such problems are not uncommon to this type of model. .
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Appendix D

Calculation of the Policy Objective

In this section, analytical expressions are derived for
the average cost version of the minimized poliey objective Jes
given a targeting policy environment. Analogous expressions for
the discretionary and precommitment policy environments can be
derived using formulas given in Whiteman (1986); for the sake of
brevity, these are omitted here.

We begin by noting that under targeting, the equilibrium
vector (mt,pt) process will take on the value of either of two
stationary bivariate processes, according to whether t is odd or

even. In even periods, my and Py are determined as the processes

. e _
(D1) m_ = fout
e—-
(D2) pt = moly
where
(D3) Ty = dy + d,fy + dyF,.

Similarly, when t is odd, my and p, are determined as

O—
(DR) Mg = Holy * Myl y
O-
(D5) Py = mqlp + mou
where
(D6) Mo = 8g

(D7) UA‘ = f1g1
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(D8) 1\'1 = bO + b1g0

(D9) m, = b.fg,.

It is then straightforward to show that Ji will take on
the constant value 1/4{var(p®) + var(p®) + r[var(n®) + var(n®)]}.
Exploiting stationarity of the [ut} process, J_ may then be cal-

culated by evaluating

(D10) var(m®) = fg var(u)
(D11) var(pe) = wg var(u)
(D12) var(m®) = [ug + u? + 2Yuou1) var(u)

(D13) var(p°) (n? + ng + 27w1n2) var(u).
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