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On the Contribution of Technology Shocks 
to Business Cycles 

S. Rao Aiyagari* 
Research Officer 
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The paper "Time to Build and Aggregate Fluctuations" by 
Kydland and Prescott (1982) has led to a controversy in 
the literature on business cycles concerning the extent to 
which technology shocks are responsible for aggregate 
fluctuations in the U.S. economy. Prescott (1986b, p. 29) 
has suggested that "technology shocks account for more 
than half the fluctuations in die postwar period, with a 
best point estimate near 75 percent." Since then, several 
people have questioned this conclusion and suggested that 
the contribution of technology shocks is much lower than 
the figure calculated by Prescott.1 

The policy importance of figuring out the relative con-
tribution of different sources of economic fluctuations 
arises from the following considerations. Sometimes the 
choice of a policy instrument can depend on the relative 
contribution of different shocks to fluctuations.3 Some-
times the exact nature of a desirable policy rule can de-
pend on the nature of shocks. That is, how government 
policy variables should respond to observable variables 
like output and investment can depend on whether fluctua-
tions are due to technology shocks or some other shocks.4 

If the root sources of fluctuations are not observable di-
rectly (unlike, say, the weather) or indirectly, then the 
government has to solve a signal extraction problem to 
determine optimal government policy. The solution of any 
signal extraction problem depends on the relative contri-
bution of different sources of fluctuations to observables.5 

Therefore, it becomes important to determine the contribu-
tion of different shocks to economic fluctuations. 

•The author thanks Ed Green, Zvi Eckstein, Mark Gertler, Larry Christiano, Neil 
Wallace, Ed Prescott, Jim Schmitz, and Warren Weber for helpful discussions and 
comments. He also thanks seminar participants at the Federal Reserve Bank of New 
York and New York University for comments. 

1 Summers (1986) offers a particularly blunt and negative assessment of Prescott's 
conclusion, suggesting that it is plagued by various types of measurement errors and 
that the true contribution of technology shocks is probably very small and may even be 
zero. Since then, several researchers—including Hall (1987,1988), Eichenbaum (1991), 
and Burnside, Eichenbaum, and Rebelo (1993)—have also argued that Prescott's mea-
sure of the importance of technology shocks is very imprecise and may be too high. 

2 Of course, I am presuming that there are some market imperfections which make 
some government policy other than laissez-faire desirable. I should note that the models 
of Kydland and Prescott (1982) and Prescott (1986a) are of competitive market econo-
mies in which aggregate fluctuations are socially optimal. The models of some of their 
critics who argue that the contribution of technology shocks is much lower than that 
calculated by Prescott have the same feature. Hence there is no useful role for policy 
in any of these models. I am also presuming that fluctuations are not the result of ran-
dom variations in government policy variables unrelated to economic variables. If this 
were not the case, then the solution to the policy problem would seem simple. Since 
it is hard to imagine how such government policy shocks can contribute to welfare, it 
seems desirable to eliminate them entirely or at least follow appropriate procedures to 
minimize such policy shocks. 

3For example, in an IS/LM model, Poole (1970) shows that whether the monetary 
authority should use a money supply rule or an interest rate rule depends on the relative 
variances of shocks to the IS curve (like animal spirits, saving propensity, government 
consumption, or taxes) and the LM curve (like liquidity preference shocks). 

4For example, consider an economy in which lump-sum taxes are not feasible and 
revenues must be raised by a proportional labor income tax. In such an economy, a pol-
icy to smooth taxes over time is very likely to be desirable. However, whether the pol-
icy should be procyclical or countercyclical can depend on whether the fluctuations are 
due to changes in government consumption or changes in technology and may also 
depend on whether or not changes in technology are highly persistent. 

5Lucas (1972) was the first to use a signal extraction model of optimal behavior 
at the individual level to explain the positive comovement of prices and output known 
as the Phillips curve. In his model, individuals observe only the price level and cannot 
tell if a movement in the price level is due to a monetary shock or a supply shock. 
Their labor supply decision depends on the price level, and the decision rule depends 
on the relative variances of these two shocks. Consequently, movements in the mone-
tary shock lead to movements in the price level and thereby to movements in labor 
supply and output. 
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In this article, I will argue that the various measures of 
the contribution of technology shocks to business cycles 
calculated using the real business cycle (RBC) modeling 
method are not supported by corroborating evidence. I 
should emphasize that this criticism is not specifically 
against the number put forth by Prescott but applies to 
most such studies regardless of whether the particular 
number they yield is large or small. One—or none—of 
these numbers may be right, but there is no way to know 
based solely on the properties of these models and the 
data. 

Then I will describe a different and much simpler 
method for calculating the extent to which technology 
shocks contribute to business cycles, which is the main fo-
cus of my article. This method is designed to take account 
of facts concerning the productivity/labor input correlation 
and the variability of labor input relative to output and has 
the following implications: 

• Under the standard assumptions of competitive mar-
kets, no external economies of scale, and no mea-
surement errors, 
> Either the contribution of technology shocks must 

be large (at least 78 percent), or the predictions 
concerning the productivity/labor input correlation 
and the variability of labor input relative to output 
will be incorrect. 

> A large magnitude of the aggregate intertemporal 
labor supply elasticity is not necessary for explain-
ing the observed fluctuation in labor input. Hence 
some of the work in RBC modeling that has at-
tempted to modify the basic growth model by in-
creasing the intertemporal labor supply elasticity 
has been quite unnecessary. Instead, work should 
have focused on incorporating shocks other than 
technology into these models. 

> Contrary to the argument of Eichenbaum (1991), 
the contribution of technology shocks can be esti-
mated fairly precisely. 

• The point estimate of the contribution of technology 
shocks can be lower than 78 percent under alternative 
assumptions involving imperfect competition, exter-
nal economies of scale, overtime wage premiums, 
and measurement errors (especially systematic errors 
in measuring labor input) while still resulting in cor-
rect predictions for the productivity/labor input cor-
relation and the variability of labor input relative to 
output. 

In view of the second implication, the argument of Pres-
cott's critics that the contribution of technology shocks is 
much lower should be understood to imply some depar-
ture from the standard assumptions. I will conclude by 
suggesting that it may be possible to use empirical evi-
dence from micro studies at the firm and household level 
to determine whether the standard assumptions or some 
alternative assumptions are appropriate. Thus it may be 
possible to narrow the range of disagreement regarding 
the contribution of technology shocks. 

Problems With Measures 
Based on Real Business Cycle Models 
Perhaps the best way to explain the problems with current 
RBC model-based measures of the importance of technol-
ogy shocks is by analogy with the price and quantity de-
termination in a single market, in terms of the usual sup-
ply/demand apparatus. Suppose that the supply and de-
mand curves are being shifted by many random influ-
ences, one of these being random changes in technology. 
(For simplicity, I will assume that any particular shock 
affects either supply or demand, but not both, and that the 
various shocks are mutually independent.) Clearly, equi-
librium price and quantity will be fluctuating randomly. 
A modeler of such a market, who is interested in how 
much technology shocks contribute to quantity fluctua-
tions, could specify a supply/demand model in which only 
technology shocks enter (say, on the supply side), calcu-
late the variance of quantity (which is a measure of how 
much quantity fluctuates in the model), express this as a 
ratio to the variance of quantity in the data, and report that 
as the contribution of technology shocks to quantity fluc-
tuations. Let us call this ratio ((). 

How would one defend the calculated value of (() as 
plausible? One possibility is to compare the model's pre-
dictions for the price/output correlation and the variance 
of price with the data. However, if (j) is not close to unity, 
then such a comparison would not make sense since, ad-
mittedly, the model is omitting some shocks which are 
present in the data and which significantly affect the 
price/output correlation and the degree of price fluctuation. 
Therefore, there is no way to judge if the calculated value 
of <|> is plausible or not. Further, given that the model is 
missing some quantitatively significant shocks, it would 
appear to be better if the model's predictions were wrong. 
But, again, there is no way to say by how much they 
would have to be wrong in order for the calculated value 
of (() to be right. 

RBC models are basically similar to a supply/demand 
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model except that the RBC analysis is of a general equi-
librium nature and may include some shocks in addition 
to technology shocks. The RBC modeler specifies the 
technology and the preferences and endowments of the 
individuals in the model economy using particular func-
tional forms and parameter values. These are used to cal-
culate the unconditional variance of output in the model 
economy when only technology shocks are present. This 
is expressed as a fraction (denoted <|>) of the variance of 
output in the U.S. economy, and <\> is taken to be an esti-
mate of the contribution of technology shocks to output 
fluctuation. 

The view underlying many RBC models (certainly 
those with only technology shocks in them) seems to be 
that the models are missing quantitatively important 
sources of fluctuations.6 As Prescott (1991, p. 6) has said, 
"To estimate the model is to implicitly assume that tech-
nology shocks are the only significant source of fluctua-
tions. That is not a hypothesis we were willing to main-
tain." That is, under this view, a close match of model sta-
tistics with those in the data cannot be used to corroborate 
the calculated value of (|).7 Indeed, as noted in the sup-
ply/demand example, it would appear to be better if the 
model statistics were not close to the values in the data. 
As Prescott has noted (1991, p. 6), "Mimicking is not al-
ways good." However, as noted earlier, for this to be use-
ful in practice, one needs to know by how much the mod-
el statistics should miss those in the data. Since this is of-
ten not possible, it is difficult to evaluate the plausibility 
of these models and thereby defend the contribution of 
technology shocks implied by them. 

The above comments apply also to the models of some 
of Prescott's critics. Sometimes the output variance gen-
erated by their models is significantly lower than that of 
the data, suggesting that their models are missing some 
shocks that explain the remaining portion of output vari-
ance. One cannot then defend the calculated value of <|> by 
comparing model statistics with those in the data (using 
either informal or formal econometric methods), since it 
is hard to maintain that the data were (even approximate-
ly) generated by the model at hand. 

As an example, consider the work of Burnside, Eichen-
baum, and Rebelo (1993), who incorporate a labor hoard-
ing feature (as suggested by Summers 1986) into an RBC 
model. Some versions of this model (with both technology 
shocks and government consumption shocks) generate 
output variance that is only 30-40 percent of that of U.S. 
data. (See the values of X for "Labor Hoarding I" and 

"Laboring Hoarding II" in their Table 4.) Hence the con-
tribution of technology shocks alone is implied to be even 
lower. On this basis, Burnside, Eichenbaum, and Rebelo 
(1993) argue that the contribution of technology shocks 
may be much lower than Prescott's figure. And yet they 
suggest (p. 255) that "the labor hoarding model does at 
least as well as the Hansen-Rogerson model at accounting 
for the volatility of hours worked and the relative volatil-
ity of consumption, investment, average productivity, and 
government consumption" (Hansen 1985, Rogerson 1988). 
Elsewhere (p. 260) they state, "Burnside et al. (1991) ar-
gue that the labor hoarding model is better able to account 
for the joint behavior of average productivity and hours 
worked than the standard model." It cannot be a good fea-
ture of a model that it matches various correlations in the 
data while missing shocks that account for possibly as 
much as 70 percent of output variance.8 

Clearly, the contribution of technology shocks to busi-
ness cycles calculated using RBC models is unsupported 
by corroborating evidence. 

6As Prescott (1986b, p. 29) notes in his response to Summers, "I only claim that 
technology shocks account for more than half the fluctuations in the postwar period, 
with a best point estimate near 75 percent. This does not imply that public finance dis-
turbances, random changes in the terms of trade, and shocks to the technology of ex-
change had no effect in that period." Note that Prescott's model only has technology 
shocks in it 

7Comparing selected model statistics with those of the data appears to be a com-
mon practice. (See, for example, Kydland and Prescott 1982; Hansen 1985; Christiano 
and Eichenbaum 1990; Benhabib, Rogerson, and Wright 1991; and Burnside, Eichen-
baum, and Rebelo 1993.) The typical statistics that these studies focus on are the stan-
dard deviations (relative to output) and cross-correlations (with output) of variables like 
consumption, investment, labor input, and productivity. However, it may be possible 
to compare aspects of the model's predictions which are somewhat insensitive to the 
shocks that are not included. For instance, one may try to compare impulse response 
properties of the model (for those shocks that are included) with those in the data. This 
is the method adopted by King (1991) and Rotemberg and Woodford (1992). Of 
course, the assumption that the impulse responses for the included shocks are somewhat 
insensitive to the shocks the model is abstracting from is essential, but without this, the 
only alternative is to try to include all the shocks one thinks are important. In that case, 
there is no advantage to looking at impulse responses, as opposed to looking at stan-
dard deviations and cross-correlations. 

8In fact, in RBC models, there is no guarantee that the contribution of technology 
shocks will come out to be at most 100 percent; that is, one may be led to the nonsen-
sical conclusion that technology shocks account for a lot more than 100 percent of out-
put fluctuations. For an example of this, see Burnside, Eichenbaum, and Rebelo 1992. 
They consider the Hansen (1985) model with technology shocks and government con-
sumption shocks. As can be seen from their Table 5 (columns labeled "Hansen-
Rogerson"), the ratio of output variance generated by the model (with both shocks) to 
that of U.S. data (denoted by A, in the table) may be as high as 168 percent. Since gov-
ernment consumption shocks contribute negligibly to output variance, I can conclude 
that in these examples technology shocks contribute significantly more than 100 percent 
to output variance. (Compare values of A, for variable government and constant govern-
ment in Eichenbaum 1991, Table 1.) Even if the contribution of technology shocks 
alone is less than 100 percent, the fact that technology and government consumption 
shocks together generate much more output variance than in the data makes the model 
unattractive. 
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A Simpler Method of Measuring 
Here I will present a different and much simpler method 
that is based on a variance decomposition procedure, im-
poses a minimum of theoretical structure on the data, uses 
only information on contemporaneous correlations, and 
does not rely on measures of Solow residuals.9 This is in 
contrast to the elaborate dynamic theoretical structure im-
posed in RBC modeling methods and the use of measured 
Solow residuals. 

In my method, a lower bound for the contribution of 
technology shocks is derived by calculating the relative 
strength of technology versus other shocks, which is re-
quired to match two key features of the data: the con-
temporaneous productivity/labor input correlation and the 
variability of labor input relative to output. (These two 
numbers determine all the other standard deviations and 
cross-correlations among the three variables: output, labor 
input, and productivity.) The intuition behind how the ob-
served values of the productivity/labor input correlation 
and the variability of labor input relative to output can be 
used to deduce the contribution of technology shocks and 
nontechnology shocks to business cycles is as follows. 
Suppose, for the sake of illustration, that the production 
technology satisfies diminishing returns to labor input. If 
nontechnology shocks were the only source of fluctua-
tions, then clearly labor input would fluctuate more than 
output, and the productivity/labor input correlation would 
be close to negative unity. If technology shocks were the 
only source of fluctuations, however, then labor input 
would generally fluctuate less than output, and the pro-
ductivity/labor input correlation would be close to unity. 
Therefore, the empirically observed values of these two 
statistics can be used to deduce the relative strengths of 
technology versus nontechnology shocks and hence the 
contribution of technology shocks to business cycles.10 

There are three key steps in my analysis. The first is 
the specification of technology. This is specified as 

(1) yt = a(nt+zt) 

for a > 0, where yt, nv and zt denote the logarithms of 
these economy wide variables in period t: output, labor in-
put, and technology level, respectively. 

The essential features of equation (1) are omission of 
capital input and log-linearity. Effectively, capital is being 
treated as a fixed input so that its role in production need 
not be specified. This is justified by appealing to the fol-
lowing fact. 

FACT 1. Movements in capital are small and contribute 
negligibly to movements in output over short periods of 
time corresponding to the length of a typical business 
cycle.11 

The log-linear specification may be justified as a locally 
valid approximation to the production function.12 

The second key step of my analysis is the following 
representation of the effects of technology and other 
shocks on labor input: 

(2) n, = 5 0 z , + b j Z H + + T s j J q X i H 

where xx v x2 v v and so on, are the different nontech-
nology shocks in period t. Equation (2) may be thought of 
as the decision rule for labor input resulting from some 
dynamic equilibrium model.13 The specification in (2) is 
quite general (except for the log-linearity) since labor in-
put in a period depends on all current and past values of 
random shocks to the economy. 

I will assume that the nontechnology shocks are uncor-

9The Solow residual in period t is defined as exp[y-Qkk-Qnnt], where yt,kt, and 
nt are the logs of output, capital, and labor input in period t, respectively, and Qk and 
6n are the shares of capital and labor income in output. Under some assumptions, the 
Solow residual in period t coincides with the technological change index. (See Solow 
1957.) 

10The definition of business cycle fluctuations used here is that of Hodrick and 
Prescott (1980). That is, the correlations from the data that I will use are calculated 
using the deviations of the logarithms of output, labor input, and productivity from their 
respective Hodrick-Prescott trends. The main reason for this is to maintain comparabil-
ity with RBC studies since this is a commonly used procedure in most RBC studies. 
In general, the contribution of technology shocks can differ based on the detrending 
procedure used. By using the Hodrick-Prescott definition of business cycle fluctuations, 
I am implicitly measuring the contribution of technology shocks at the frequencies em-
phasized by this detrending procedure. The way this difference will show up in my 
framework is that the values of the correlations that are used will generally differ with 
different detrending procedures. 

11 Empirically, most short-run fluctuations in output are due to fluctuations in the 
labor input, and fluctuations in capital are small. According to postwar U.S. data (Han-
sen 1985, Table 1), the correlation between output and capital stock is 0.04; that is, 
movements in output and capital are almost unrelated over short periods of time. 
Further, the standard deviation of capital relative to that of output is only 0.36, com-
pared to 0.94 for the standard deviation of labor input relative to that of output (Hansen 
1985, Table 1). 

12The specification in (1) can be consistent with variable capacity utilization as 
long as capacity utilization varies one-for-one with the labor input. Note that I have not 
restricted the value of a to be less than unity, which corresponds to diminishing returns. 
Diminishing returns may be reasonable even with variable capacity utilization if in-
creasing labor input (and capacity utilization) leads to more frequent breakdowns of 
capital equipment and larger (total and marginal) maintenance expenditures, so that out-
put net of maintenance expenditures is subject to diminishing returns. 

13One such example is Kydland and Prescott 1982, in which past leisure is used 
as an argument in the utility function. The effects of lagged z's are absent in the sim-
pler models of Hansen (1985) and Christiano and Eichenbaum (1990). 
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related with the technology shock at all leads and lags. I 
will interpret the xt f's as either innovations in other ex-
ogenous nonpolicy variables (like the weather) or as poli-
cy shocks, that is, shocks in the decision rules for policy 
variables. Under this interpretation, my assumption is rea-
sonable.14 

The third key step of my analysis is to decompose the 
influences on labor input into two mutually orthogonal 
parts: one arising from the current technology shock and 
the other capturing everything else that is uncorrected 
with the current technology shock. Using this idea, I can 
rewrite equation (2) as 

(3) nt = yzt + ^t 

where 
_ _ oo 

(4) y= cov(«rz,)/var(z,) = 50 + SyCOv(z,̂ _7)/var(z,) 

(5) = 00, + xt 

(6) co, = 8 t z H - 4E ;=15,cov(z^,_y)]/var(z,) 

(7) 

Note that ^ is uncorrelated with zt; that is, cov(ilt,zt) = 
0, because co, and xt are uncorrelated with zr Consequent-
ly, the variance of output is also decomposed into two 
mutually orthogonal parts: one arising from variability in 
the current technology shock and the other from every-
thing else that is uncorrelated with the current technology 
shock. In this way, the large number of unknown coeffi-
cients (5y) and the variance of JC relative to z are replaced 
by a single unknown coefficient y and the variance of £ 
relative to that of z. To show how these latter two objects 
can be determined, let n denote the logarithm of labor pro-
ductivity so that 

(8) nt = yt-nt = azt-(l-a)nt 

= [a - (l-a)y]z, - ( l -a)Q 

and let 

(9) q = var(Q/var(z) 

(10) p = corr(7C,,flr) 

(11) a=[var(A2r)/var(^)]1/2. 

Using equations (1), (3), (8), and (9), I can derive the 
following expressions for p and a: 

(12) p2 = {y[cc - (1—cx)y] - (l-a)<7)2 -s-

( ( ^ X t a - (l-a)y]2 + (1-a)2^}) 

(13) a 2 = (y2+^)/{oc2[(l+Y)2 + <?])• 

If I have a value for the parameter a in (1), then equa-
tions (12) and (13) can be used to find values of y and q, 
such that the resulting values of p and a will match the 
values in the data. These values of y and q can then be 
used in the following way to calculate a lower bound (de-
noted <|>*) for the contribution of technology shocks. 

Let var(y\x) denote the variance of output conditional 
on the jc-shocks; equivalently, it is the variance of output 
when only technology shocks are present. Let var(y) de-
note the variance of output when technology shocks as 
well as other shocks are present. Then a measure of the 
contribution of technology shocks to output fluctuation is 
given by var(y\x)/var(y) and is denoted by (|). It can be 
seen that (|) takes the value unity if all of the variation in 
output is due to technology shocks and the value zero if 
all of the variation in output is due to other shocks. The 
expression for (|) is given as 

(14) <() = var(j|x)/var(j) 

= oc2[(l+y)2var(z) + var(co)] -r 

{oc2[(l+y)2var(z) + var(Q]} 

> (l+y)2var(z)/[(l+y)2var(z) + var(Q] 

= (1+Y)2/[(1+Y)2 + var(Q/var(z)] 

= (I+Y)2/[(I+Y)2 + 4\ 

The intuition described earlier in this section can be 
seen in the above equations. Suppose, for simplicity, that 
lagged z's are absent in (2) so that y = 80, cor = 0, and ^ 
= xv (For examples, see the model of Hansen 1985 and 
the basic growth model of Prescott 1986a.) Note that ty = 

14If some of the JC'S represent policy shocks (such as a shock to the policy rule for 
government consumption), then the implicit view underlying this assumption is that any 
correlation between corresponding policy variables (government consumption) and the 
technology shock is due to endogenous policy rather than the effects of policy variables 
on technology. That is, that part of the effect of government consumption on labor in-
put that is due to the correlation between government consumption and the technology 
shock is taken to be the result of endogenous policy and is attributed to the technology 
shock. Some assumption of this sort is necessary in order to talk about the contribution 
of technology shocks. 
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<|>* in this case. If nontechnology shocks were the only 
source of fluctuations, then <\> = 0 and q = <*>, and (12) and 
(13) would imply that p = -1 and a = 1/a. If returns to 
labor input are diminishing so that a < 1, then a > 1. 
Thus the productivity/labor input correlation is negative 
unity, and labor input fluctuates more than output. If tech-
nology shocks were the only source of fluctuations, then 
(|) = 1 and q = 0, and (12) and (13) would imply that p = 
1 and a = y/[a(l+y)].15 

In the general case, the values of y and q calculated 
using (12) and (13) can be used in (14) to calculate <|>*, 
which provides a lower bound for ty (the fraction of output 
variance arising from technology shocks). 

Implications Under Standard Assumptions 
I will now implement this method under the following 
standard assumptions (common in many RBC models) 
and facts regarding the U.S. economy. 

ASSUMPTION 1. Perfect Competition 
Product and labor markets are competitive; that is, firms 
behave as price takers in product as well as labor markets. 
ASSUMPTION 2. No External Economies 
The response of output to labor input is the same at the 
individual firm and the economy wide levels and exhibits 
diminishing returns to labor. 
ASSUMPTION 3. No Measurement Errors 
There are no (significant) measurement errors in output or 
labor input. 

FACT 2. The correlation between productivity and labor in-
put (p) is about zero.16 

FACT 3. The variability of labor input relative to output (A) 
is about 0.85.17 

FACT 4. The share of labor income in output, denoted 0 , is 
about 0.64. 
By virtue of Assumptions 1 and 2 and profit maximiza-
tion, it follows that a equals the labor share and hence is 
about 0.64.18 Using this value for a, I display in Chart 1 
graphs of <|>* (the lower bound on the contribution of tech-
nology shocks) versus p (the productivity/labor input cor-
relation) for three different values of a (the relative vari-
ability of labor input).19 

I will now display the various implications of my 
method under standard assumptions (Assumptions 1-3). 
Later I will display the implications of several alternative 
assumptions. 

Large Technology Shock Contribution 
First, I will show that under the standard assumptions, any 
RBC model must either yield a large contribution of tech-
nology shocks (above 78 percent) or make counterfactual 
predictions concerning the productivity/labor input correla-
tion and the variability of labor input relative to output. 
This follows from two considerations. First, when p = 0 
and o = 0.85 (as dictated by Facts 2 and 3), Chart 1 indi-
cates (and my calculations confirm) that <|)* = 0.78. Sec-
ond, my value for ())* is constructed under the standard as-
sumptions and in such a way that the values of p and a 
match those in the data. Now recall that <|>* is a lower 
bound for <|>, the contribution of technology shocks to out-
put fluctuations. Therefore, under the standard assump-
tions, the contribution of technology shocks to output vari-
ation must be at least 78 percent, or the values of p and 
o from the model will not match the values in the data. 

Using my method, I can also show that the contribu-
tion of technology shocks was likely lower in the 1950s 
and 1960s than in the 1970s and 1980s. Many economists 
have noted that the latter two decades were more subject 
to adverse supply shocks than were the former. Some ex-
amples are the oil price shocks of 1973 and 1979 and the 

15 In the typical RBC model, since the technology shock is fairly persistent, y is 
small, which leads to the usual result that o is significantly less than unity. Thus the 
productivity/labor input correlation is unity, and labor input fluctuates less than output. 

16Christiano and Eichenbaum (1990) and Baxter and King (1991) report point esti-
mates of p equal to -0.20 and -0.04, respectively (using slightly different time series). 
My own calculation, based on data from the first quarter of 1950 to the fourth of 1988, 
yields a value of -0.13. The standard error of 0.11 reported in Christiano and Eichen-
baum 1990, Table 4a, suggests that one cannot reject, at the 5 percent level, the hypoth-
esis that p is zero. 

17Hansen (1985) and Prescott (1986a) report point estimates for a of 0.94. 
Christiano and Eichenbaum (1990), Baxter and King (1991), and Benhabib, Rogerson, 
and Wright (1991) report the value 0.85. Kydland and Prescott (1993) suggest that if 
differences in the quality of various types of labor input are taken into account, then 
the relative variability of labor input may be reduced by a factor of 0.75; that is, it may 
be as low as 0.64. 

18The technology in (1) can be written as Y = (ZN)a, where Y, Z, and N are out-
put, level of technology, and labor input, respectively. Profit maximization implies that 
the marginal product of labor equals the real wage (denoted HO, so that a(Z/V)a-1Z = 
W. Therefore, the labor share 9 = WN/Y = a. 

19It may seem puzzling that the relation between <()* and p is not monotonic and 
that when p is sufficiently negative, <{)* starts getting close to unity. For instance, when 
p equals negative unity, it would seem that <j)* ought to be zero, since with only non-
technology shocks, labor input and productivity would be perfectly negatively corre-
lated. However, with only nontechnology shocks, it is not possible to match the value 
of a because in this case the model implies a = 1/a, which is a lot bigger than the em-
pirical value of o. The way to match both p and a is to have only technology shocks 
and a negative value of y, that is, labor input has to vary negatively with the technology 
shock so that productivity and labor input move in opposite ways. This is the reason 
why <J)* starts rising toward unity when p gets closer to negative unity. As can be seen 
in Chart 2, the value of y turns negative at exactly the same value of p at which the 
value of <)>* reaches a minimum. 
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Chart 1 

Estimating How Much Technology Shocks 
Contribute to Output Fluctuations 
Based on Standard Assumptions in Real Business Cycle Models and U.S. Data in 1950-88 
for Likely Range of Variability of Labor Input Relative to Output (a) 

Lower Bound on 
% of Output 
Fluctuations Due 
to Technology 
Shocks (<|>*) 

95% 
Confidence 

Interval 

L 
-1.0 - .8 - .6 - .4 - .2 0 .2 .4 .6 .8 1.0 

Correlation of Productivity and Labor Input (p) 

food price shocks due to adverse weather conditions in 
1973-74 and 1978-79. The 1970-80s have also been 
characterized by a slowdown in productivity. These fac-
tors resulted in the higher and more variable inflation rate 
in the 1970-80s than in the previous two decades. It 
seems natural to ask if the contribution of technology 
shocks might also have been higher in the 1970-80s. 0 

Using quarterly data, I have calculated the values of p and 
a separately for the periods 1952-69 and 1970-88 and 
found that in the former period, p was about -0.40 and a 
was about 1.05, whereas in the latter period, p was about 
0 and o was about 0.90. Clearly, the productivity/labor 
input correlation was significantly more negative in 1952-
69, which suggests that the contribution of technology 
shocks could have been lower then. (See Chart 1.) Using 
the above values of p and a, my calculations indicate that 
the contribution of technology shocks could have been as 
low as 55 percent in 1952-69 compared to 79 percent in 
1970-88. 

Not-So-Large Labor Supply Elasticity 
Second, I will show that a large aggregate intertemporal 
elasticity of labor supply is not necessary for an RBC 
model to explain the observed fluctuation in labor input. 

The basic growth model with log-linear utility, divisi-
ble labor, and only technology shocks (Prescott 1986a, p. 
16) has been considered deficient for two reasons: 

• The model leads to labor input varying only about 
half as much as output compared to the empirical 
value of a = 0.85. 

• The model also leads to a productivity/labor input 
correlation that is close to unity as compared to the 

2 0 An oil price rise may be regarded as an adverse technology shock since it 
reduces oil input in production and, when oil and labor input are complements, reduces 
the amount of output that can be produced for a given level of labor input. Thus an oil 
price rise has the same effect as a reduction in z in equation (1) specifying the tech-
nology. 
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Chart 2 

Labor Input's Response to a Technology Shock 
Based on Standard Assumptions in Real Business Cycle Models and U.S. Data in 1950-88 
for Likely Range of Variability of Labor Input Relative to Output (a) 

Correlation of Productivity and Labor Input (p) 

empirical value of p = O.21 

The apparent inability of the basic growth model to cor-
rectly predict the variability of labor input relative to out-
put has led some researchers to consider modifications de-
signed to increase the intertemporal labor supply elasticity 
and thereby increase the variability of labor input relative 
to output. For instance, Kydland and Prescott (1982) con-
sider past leisure as an argument in agents' utility func-
tions, and Hansen (1985) considers indivisible labor.22 

However, I will show that these modifications to in-
crease the aggregate intertemporal labor supply elasticity 
were unnecessary. Refer to Charts 1 and 2, and note that 
when p is zero and a is 0.85, the values of y and <|>* based 
on my method are 0.44 and 78 percent, respectively. Also 
note that the basic growth model maintains the standard 
assumptions. The value of y for a version of the basic 
growth model is 0.45, which is close to my value of y. 
(See Campbell 1991, Table 2, where v 2 stands for y and 
a stands for z.) Further, the basic growth model yields 75 

percent as the contribution of technology shocks, which is 
quite close to my value of (J)*.23 Therefore, I can conclude 

21 See the discussion in Prescott 1986a, pp. 16-20. Regarding the basic growth 
model, Prescott notes, "The most important deviation from theory is the relative volatil-
ity of hours and output." Also note that the observation that the "empirical labor elastic-
ity of output" (Prescott 1986a, p. 19) is approximately unity (and hence significantly 
higher than the labor share) is equivalent to the observation that the productivity/labor 
input correlation is approximately zero. This follows because r| = co\(n,y)/\ar(n) = 
[COV(AZ ,7t) + var(/I)]/var(N). This has also been noted by Christiano and Eichenbaum 
(1990). 

22The basic growth model of Prescott (1986a) implies an elasticity of labor supply 
with respect to a temporary change in the real wage of 2. The Kydland and Prescott 
(1982) model implies a value of over 6 for the corresponding elasticity, and the indivis-
ible labor model of Hansen (1985) implies a value of infinity for this elasticity. See 
Prescott 1986a, pp. 14-19. 

23 If somewhat different parameter values for preferences, and the like, are used, 
then the value of y for such a model could range from 0.24 to 0.49. Christiano and 
Eichenbaum (1990, Table 2) report values of 0.30 and 0.49. (The coefficient en corre-
sponds to my y.) Campbell (1991, Table 2) reports a value of 0.24. However, these al-
ternative values can be quite consistent with my analysis. As I will show momentarily, 
given the sampling variability in the values of p and a, values of y ranging from 0.23 
to 0.49 can also provide quite a good match with the data. 
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that the basic growth model is quite capable of matching 
features of the data regarding output, labor input, and 
productivity, once nontechnology shocks are included. 

The intuition behind this conclusion is simple. Recall 
that with only technology shocks, the basic growth model 
predicts a productivity/labor input correlation near unity 
and one-half as much variability in labor input relative to 
output.24 Adding in shocks to something other than tech-
nology—which I will call the x-shocks—serves to bring 
both of these model statistics close to the empirical values. 
The x-shocks make productivity and labor input move in 
opposite directions and serve to bring their correlation 
down to about zero. The x-shocks also make labor input 
vary more than output, because the parameter a in equa-
tion (1) is less than unity; a 1 percent change in labor in-
put due to the x-shocks will change output by less than 1 
percent. Thus the Jt-shocks raise the relative variability of 
labor input toward the value implied by the data. 

It follows that attempts to modify the basic growth 
model by increasing the intertemporal elasticity of labor 
supply were unnecessary. Instead, work should have fo-
cused on incorporating shocks other than technology into 
the model. 

More Measurement Precision 
I will now show that under the standard assumptions, and 
contrary to Eichenbaum's (1991) argument, the contribu-
tion of technology shocks can be estimated fairly precise-
ly. To demonstrate this, I can use Chart 1, since it is con-
structed by forcing the model's predictions for p and a to 
match the values in the data. I take the 95 percent confi-
dence interval for p to be [-0.35,0.09] and the 95 percent 
confidence interval for a to be [0.70,0.94],25 As p ranges 
from -0.35 to 0.10 and a ranges from 0.70 to 0.94 (in 
Chart 1), the values of (j>* range, roughly, from 0.65 to 
0.90 26 While there is some uncertainty regarding the val-
ue of (j) due to sampling variability in the values of p and 
a, the extent of uncertainty in 0 is much less than has 
been suggested by Eichenbaum (1991). 

Eichenbaum (1991) argues that there is a considerable 
degree of imprecision attached to Prescott's measure of 
the importance of technology shocks due to sampling vari-
ability in some of the estimated parameters. (See Eichen-
baum 1991, Table 1, Figure 1, and the accompanying dis-
cussion on p. 614.) Referring to a model in which tech-
nology shocks are the only shocks, he writes that (p. 614) 
"we ought to be very comfortable believing that the model 
explains anywhere between 5% and 200% of the variance 

in per capita US output." This conclusion ignores the mis-
match between the model's predictions for p and a and 
the values in the data that will result if the contribution of 
technology shocks is too low or too high.27 Ignoring val-
ues over 100 percent as inadmissible, consider the possi-
bility that the contribution of technology shocks could be 
as low as 5 percent (or as high as 95 percent). In order to 
entertain this possibility, one would also have to entertain 
the possibility that when other shocks that account for the 
remaining 95 percent (or 5 percent) of output variance are 
put into the model, the values of p and a will match those 
in the data. In fact, my calculations show that this cannot 
happen. When proper attention is paid to matching the 
model's predictions for p and a with the values in the da-
ta, the sampling variability in <\> is much lower. 

Implications Under Alternative Assumptions 
In this section, I will show how the contribution of tech-
nology shocks can be lower than 78 percent under several 
alternative assumptions considered in the literature while 
still resulting in correct predictions for p and a. I will 
consider the following alternatives to the standard as-
sumptions: 

• Monopolistic competition in product markets. 
• External economies of scale. 
• Overtime wage premiums. 
• Monopsonistic competition in labor markets. 
• Errors in the measurement of output and labor input. 
Note that Assumptions 1 and 2 together with Fact 4 

were only used in deriving an estimate of the parameter 
a and that the first four alternatives involve changing ei-
ther Assumption 1 or Assumption 2. Therefore, I only 
need to analyze how those alternatives will change the 
value of a. Then this value of a can be used to calculate 
y and (])* just as before. In each case, the result will be to 

24The productivity/labor input correlation will be near unity, provided y is between 
zero and a/( l -a) . As noted earlier, negative values of y will lead to a negative produc-
tivityAabor input correlation. (See Charts 1 and 2.) 

251 use the standard errors for p and a reported in Christiano and Eichenbaum 
1990, Table 4a, of 0.11 and 0.06, respectively, along with the point estimates of -0.13 
and 0.85, respectively. 

26It is also possible to take account of sampling error in the measurement of labor 
share in output which is used to calculate a. However, the standard error reported in 
Christiano and Eichenbaum 1990, Table la, suggests that the labor share is determined 
quite precisely. Values of 0 are unlikely to be outside the range from 0.63 to 0.65. 

27The models of Hansen 1985 and Prescott 1986a have the feature that (j)* and <)) 
coincide because lagged values of 2 do not appear in the labor input decision rule. [See 
equation (2).] 
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deliver a higher value of a, which turns out to lower the 
value of <|>*. 

Monopolistic Competition 
Suppose that firms are monopolists in the product markets 
and face a downward-sloping demand curve with price 
elasticity equal to r\. Then profit-maximizing behavior on 
the part of firms implies that firms will equate the margin-
al revenue product of labor to the real wage. It follows 
that 0, the share of labor income in output, equals oc[l -
(l/r|)]. AS can be seen, a particular value of the labor 
share will imply a higher value of a under monopolistic 
competition as compared to perfect competition (r| = <*>). 

In order to come up with a value for a, I will also need 
to have some idea of the elasticity of demand in product 
markets. Work by Hall (1987, 1988) suggests that values 
of T| range from about 2 to about 6 depending on the in-
dustry. If I take 4 as a benchmark value for r|, then using 
the value of 0.64 for the labor share, I find that a must be 
about 0.85. Using this value, my calculations indicate that 
when p = 0 and a = 0.85, the value of <()* = 0.54. Thus 
taking account of monopolistic competition can lower the 
contribution of technology shocks. 

External Economies of Scale 
Here I relax the part of Assumption 2 which states that 
the relation between output and labor input is the same at 
the individual firm level as well as the economywide lev-
el. In particular, I assume that the production technology 
at the firm level exhibits external economies of scale. 
Baxter and King (1991) argue that such external econo-
mies may be important and have presented some evidence 
in support of this view. The following formulation of in-
dividual firm technology is borrowed from their paper: 

(15) yt(f) = Eyt + a'[nt(f) + zt] 

where y ( f ) and n ( f ) represent the logarithms of individual 
firm output and individual firm labor input, respectively, 
and e represents the effect of external economies. 

Assuming that all firms are identical, I can aggregate 
the above relationship over all firms [by setting y ( f ) and 
n ( f ) equal to y and n, respectively] and obtain the follow-
ing relationship between aggregate output and aggregate 
labor input: 

(16) yt = [a'/(l-£)](nt+zt). 

By comparing (16) and (1), I find that 

(17) a = a'/(l-e). 

Note that according to the technology in (15) and (16), 
when markets are competitive, a ' equals the labor share 
of income, which I have taken to be 0.64. Therefore, 
equation (17) implies that a > a" = 0.64. In order to come 
up with a value for a, I will now need to have an estimate 
for 8 in addition to 0, the share of labor income in output. 
Baxter and King (1991) discuss the existing empirical evi-
dence regarding 8 and use a value of 8 = 0.23, which if 
combined with a labor share of 0.64 yields a value of a 
= 0.83. This is very close to the value of 0.85 for a that 
was used in the monopolistic competition case. Therefore, 
I can conclude that when p = 0 and a = 0.85, the value of 
<|>* = 0.54. Thus taking account of external economies of 
scale can also lower the contribution of technology shocks 
to output fluctuation. 

Overtime Wage Premiums 
Lucas (1970) suggests that the real wage may be procycli-
cal even in the absence of any technology shocks if over-
time labor is more expensive to hire than normal straight-
time labor. One way to capture this in my framework is 
to assume that the firm faces an upward-sloping schedule 
relating the marginal wage to labor input.28 Like the pre-
vious two factors, this factor causes an increase in the val-
ue of a to be used in my calculations and thereby reduces 
the contribution of technology shocks. 

To see this, let w(s) be the (increasing) marginal wage 
paid when labor input is 5. Let 

(18) K = M W ) / [ f * M s ) d s ] 

be the elasticity of the total wage bill with respect to total 
labor input (denoted N). From profit maximization, the 
marginal product of labor (denoted MPL) equals w(N). 
Therefore, the labor share of output is 

(19) e=[f0Nw(s)ds]/v 

= Nw(N)/(KY) 

= [(N x MPL)/Y]fk. 

Using the form of the production function (1), I then have 

28Recall (from footnote 12) the interpretation of the production function (1) as aris-
ing from a fixed coefficients technology with possible diminishing returns to higher-
capacity utilization. 
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0 = a/K. Since w{ •) is increasing, K > 1 and therefore a 
> 9. Hence the contribution of technology shocks can be 
lower. To say how much lower, I would need an estimate 
of the elasticity parameter K.29 

Monopsonistic Competition 
The analysis is similar under monopsony. To see this, let 
\|/ be the elasticity of the wage with respect to the labor 
input. Profit-maximizing behavior on the part of the firm 
now implies that the firm will set the marginal product of 
labor to equal W x (1+\|/), where W is the wage. There-
fore, the share of labor income in firm output is 

(20) 0 = WN/Y = [(TV x MPL)/(l+\\f)]/Y = cx/(l+\|/). 

It follows that a given value of the labor share, 0, will 
now imply a larger value of a if \|/ is positive. Therefore, 
the contribution of technology shocks can be lower. To go 
beyond this and say how much lower, I would need an es-
timate of the elasticity parameter \|/. 

Measurement Errors 
In Assumption 3, I assumed that output and labor input 
were measured without error. Here I address departures 
from this assumption. There are three types of measure-
ment errors: sampling errors, unsystematic measurement 
errors, and systematic measurement errors. I have already 
covered sampling error in my discussion of Eichenbaum's 
(1991) criticism of the models of Hansen (1985) and Pres-
cott (1986a). Here I will discuss the other types of mea-
surement errors. 

• Unsystematic 
Several researchers argue that unsystematic measurement 
errors, especially in the measurement of labor input, may 
be quite important (Hansen 1985, Prescott 1986a, and 
Christiano and Eichenbaum 1990). Unsystematic measure-
ment error in labor input will result in an overstatement of 
the relative variability of labor input (a) and an under-
statement of the productivity/labor input correlation (p). 
That is, the measured relative variability will be higher 
than the true variability, and the measured correlation will 
be less than the true correlation. Since the measured corre-
lation is about zero, the true correlation is positive. This 
suggests that the contribution of technology shocks can be 
even greater than my calculations indicate. (See Chart 1.) 
The overstatement of the relative variability of labor input 
has an ambiguous effect. 

Unsystematic measurement error in output also affects 
both the productivityAabor input correlation and the rela-

tive variability of labor input. If labor input is measured 
accurately, unsystematic measurement error in productiv-
ity is introduced and the magnitude of the productivi-
tyAabor input correlation is reduced without affecting its 
sign. Thus the measured correlation is biased toward zero. 
It follows that if the measured correlation is positive, then 
the true correlation will be higher and thereby imply a 
larger value of <|)* than before. (See Chart 1.) Conversely, 
if the measured correlation is negative, then the true corre-
lation will be more negative and imply a smaller value of 
(|)* than before. (Again, see Chart 1.) 

Unsystematic measurement error in output also makes 
the measured relative variability of labor input smaller 
than the true one, since the measured variability of output 
is larger. Therefore, on this account also, it suggests that 
the value of (|)* may be smaller than before.31 In order to 
go beyond this, I would need some idea of the likely ex-
tent of measurement error in output. 

• Systematic 
I will now consider the impact of taking account of possi-
ble systematic measurement errors, especially in labor in-
put. It has been observed by proponents of theories of la-
bor hoarding (such as in Summers 1986) that labor hoard-
ing leads to systematic measurement errors in labor input, 
which could explain the relevant facts concerning mea-
sured output, measured labor input, and measured produc-
tivity without any technology shocks. Labor hoarding can 
be captured in a simple way by positing that the variation 
in measured labor input is smaller than that in actual labor 
input. Suppose that due to a systematic measurement error 
of this type, a 1 percent change in actual labor input trans-
lates into only a X percent change in measured labor in-
put, where A, is less than one.32 Now let 

29In the fixed coefficients example, Lucas (1970) takes a to be known and equal 
to unity and uses his theory to show that the labor share 0 can be less than a and that 
the real wage (which equals the labor share) can be procyclical. The alternative con-
sidered here is to treat a (reflecting the extent of diminishing returns to capacity utiliza-
tion) as unknown and use the observed value of 0 and an estimated value of K to cal-
culate a. 

30The 95 percent confidence interval for the productivityAabor input correlation 
shows that this correlation is quite possibly negative and may be as low as -0.35. 
Therefore, measurement error in output implies that the true productivityAabor input 
correlation would be lower than -0.35, that is, even more negative. 

3 Compare the values of (J)* in Chart 1 corresponding to p equal to -0.20 and a 
equal to 0.70, 0.85, and 0.94, respectively. However, for slighdy larger values of p, the 
relation between a and (}>* is not necessarily monotonia For still higher values of p, (()* 
is increasing in a. 

32The dynamics of mismeasuiement are being ignored here. In general, the extent 
of systematic mismeasurement can vary over the cycle and have implications for the 
dynamic correlations between measured productivity, measured output, and measured 
labor input. This would require looking not only at the contemporaneous correlations, 
as I do, but also at the dynamic correlations. 
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(21) a ' = (% A in total output -r 

% A in actual total labor input)z = constanr 

It follows from equations (1) and (21) that 

(22) a = a'/X 

for 0 < X < 1. As before, using Assumptions 1 and 2 and 
Fact 4,1 can conclude that a ' must equal the labor share, 
which is 0.64. However, as can be seen from equation 
(22), the implied value of a will be higher than this. As 
I demonstrated earlier in the discussion of monopolistic 
competition, higher values of a can lower the contribution 
of technology shocks.33 In order to go beyond this, I 
would need an estimate of the parameter X. 

Summary 
In this article, I have shown that under the standard as-
sumptions of competitive markets, no external economies 
of scale, and no measurement errors, either the contribu-
tion of technology shocks must be large (at least 78 per-
cent), or the predictions concerning the productivity/labor 
correlation (p) and the variability of labor input relative to 
output (a) will be incorrect. 

However, the point estimate of the contribution of tech-
nology shocks can be lower than 78 percent under alterna-
tive assumptions involving imperfect competition, external 
economies of scale, overtime wage premiums, and mea-
surement errors (especially systematic errors in measuring 
labor input) while still resulting in correct predictions for 
p and a. In view of this point, it follows that whether the 
contribution of technology shocks is large or small de-
pends on a number of empirical questions concerning the 
extent of imperfect competition, external economies of 
scale, overtime wage premiums, and measurement errors 
in labor input and output. Consequently, in order to deter-
mine the exact contribution of technology shocks to ag-
gregate fluctuations, one would need to have precise quan-
titative measures of each of the above factors. Currently, 
there exist some micro studies at the firm and household 
level which provide some empirical evidence regarding 
these factors. More work along these lines, especially with 
regard to accurate measurement of output and labor input, 
is likely to be very useful in narrowing the range of dis-
agreement on the contribution of technology shocks to 
business cycles. 

33Note that the monopolistic competition theory, the external economies theory, the 
overtime wage premiums theory, the monopsonistic competition theory, and the labor 
hoarding theory of systematic measurement error in labor input all work in the same 
fashion. The implications for the value of the parameter a (and hence for the value of 
<{)*) of these alternative assumptions are the same if the parameter A. in equation (22) 
equals 1 - (l/r|) in the monopolistic competition theory, 1 - e in the external econ-
omies theory, 1/K in the overtime wage premiums theory, and 1/(1+\j/) in the monop-
sonistic competition theory. 
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