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Abstract

We study an incomplete market economy with aggregate shocks and agents with hetero-
geneous skills. To redistribute and to finance exogenous stochastic government expenditures,
the government imposes non-linear taxes on labor income. Only relative assets positions de-
termined, so assets of the government or one of the agents can be set to zero always. Optimal
labor distortions are history dependent but do not necessarily to drift to zero. Optimal labor
distortions and debts in a heterogenous agent economy differ markedly from representative agent
models like Aiyagari et al (2002). Differences stem from the restriction that lump sum transfers
are non-negative in those representative agent economies, a restriction that we do not impose.
In representative agent economies, the binding non-negative lump sum transfers restriction de-
termines dynamics of distorting taxes and government debt. If that restriction were imposed in
our heterogenous agent economy, it would not necessarily bind.
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1 Introduction

With complete markets, a government should rely mostly on history-contingent debt to adjust

to random fluctuations in government purchases gt; distorting taxes on labor should be approx-

imately constant and depend only on the Markov state driving gt. These conclusions emerged

from Lucas and Stokey’s (1983) and Chari and Kehoe’s (1999) studies of environments with

a representative agent and linear taxes on labor earnings. They also emerged from Werning’s

(2007) study of settings with nonlinear taxes and heterogenous agents.

A perception that governments have limited access to state-contingent debt motivated subse-

quent researchers to study Ramsey debt and tax policies without complete markets. Aiyagari et.

al. (2002, a.k.a. AMSS) and Farhi (2010) studied optimal debt and linear taxes with incomplete

markets and a representative consumer. In contrast to outcomes under complete markets, they

found that the linear tax rate on labor earnings is history dependent and that it acquires a very

persistent component rationalizing Barro (1979). Government debt dynamics are an important

determinant of the evolution of the optimal linear tax rate. Market incompleteness gives the

government a precautionary motive to acquire claims on the public, imparting a downward drift

to the distorting tax rate. AMSS constructed a quasi-linear preference example in which the

government’s precautionary savings dynamics asymptotically drive the distorting tax to zero

almost surely.1

To incorporate more realistic tax systems, this paper studies Ramsey debt and tax policies

when taxes on labor income are allowed to be nonlinear. Figure 1 shows that U.S. taxes on labor

earnings are nonlinear, and that while a linear tax is a poor approximation, an affine tax is a

pretty good approximation. Motivated by that observation, we study nonlinear tax systems. In

the AMSS incomplete markets tradition, we suppose that the government and all types of agent

trade only a one-period risk-free bond. Given an exogenous government expenditure process

{gt}
∞
t=0, our Ramsey government chooses transfers and distorting taxes on labor income partly

to pay for gt and partly to redistribute resources across households. We study how distorting

taxes, transfers, and debts respond to government expenditure shocks. We study a sequence

of nonlinear taxes that assume various functional forms and alternative sets of conditioning

information for taxes on labor earnings.

We start with the simplest departure from linear taxes, an affine tax system that consists

of a proportional labor income tax or subsidy rate τ together with a constant T that we regard

1Mike and Tom: Somewhere put a footnote of the Ali-Mike-Anmol discussion about the consequences of
allowing private agents to trade a complete set of Arrow securities, but allowing the government to trade only a
risk-free one-period security. Put in the link or lack of link to a Werning economy.
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Figure 1: The U.S. tax code is poorly approximated as linear, better approximated as affine.

as a lump-sum tax (or subsidy). The analysis of Ramsey taxes and debt under affine taxes

reveals forces that also drive outcomes under a broader class of nonlinear taxes on labor coupled

with other restrictions on taxes that prevent the government from effectively completing debt

markets by taxing returns on assets.

Both quantitatively and qualitatively, paths of optimal taxes and government debt in the

heterogeneous agent economies differ substantially from those previously obtained in represen-

tative agent models. We show that while optimal labor distortions are persistent and history

dependent, they generally have no downward drift. Optimal government debt is indeterminate.

More specifically, in an economy with I agents and a government, debts of one of the I + 1

agents can be normalized to be zero always. While agents’ trading of risk-free assets facilitates

smoothing distortions, the Ramsey planner doesn’t care whether private agents smooth those

distortions by trading only with each other or by trading also with the government.

The different prescriptions for the optimal taxes come from the presence or absence of non-

negativity restrictions on transfers and their distinct ramifications in the two types of economies.

In homogeneous agent economies, lump sum taxes are the optimal way to finance government

expenditures, and to rule them out a constraint that lump sum transfers must be non-negative

is exogenously imposed. This restriction gives government debt an important role in helping

to reduce the planner’s Lagrange multiplier on this constraint. Under the optimal policy, the

government accumulates assets to relax future non-negativity constraints on transfers. When
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interest rates equal the planner’s discount rate, as in the benchmark quasi-linear example in

AMSS, the government stops accumulating assets only when an undistorted ‘first best’ tail

allocation is attained. In contrast, in heterogeneous agent economies either when the govern-

ment wants enough redistribution or when the lowest skilled agents are sufficiently poor, even

if imposed, a non-negativity constraint on transfers never binds. That completely disarms the

precautionary motive that the government in a representative agent model has to accumulate

assets for the purpose of decreasing labor tax distortions over time.

After studying affine taxes, we consider optimal taxes when the government has access to

richer sets of tax instruments. A planner constrained only by its inability to observe agents’ skills

directly would choose allocations that depend only on the current realization of the aggregate

shock so that distortions are not history dependent. We show that these optimal allocations

can be achieved only if the planner has access to either a non-linear tax on asset holdings or

a state-dependent tax on asset holdings; that is, ironically, only if the planner can either shut

down or complete the incomplete asset markets. When the government can’t do that, optimal

distortions are history-dependent.

2 Environment

There are I types of infinitely lived agents. There is a mass πi of a type i ∈ I agent, with
∑I

i=1 πi = 1. Preferences of an agent of type i over stochastic processes for consumption {ci,t}

and labor supply {li,t} are ordered by

E0

∞
∑

t=1

βtU i (ci,t, li,t) (1)

where β ∈ (0, 1) is a discount factor and, except in some special examples, U i : R2
+ → R is

concave in (c,−l) and twice continuously differentiable. Let U i
x,t or U

i
xy,t denote first and second

derivatives of U i with respect to x, y ∈ {c, l} in period t. We assume that li ∈
[

0, l̄i
]

and that

limx→l̄i
U i
l (c, x) = ∞, limx→0 U

i
l (c, x) = 0 for all c and i.

An agent of type i who supplies li units of labor supply produces θili units of output, where

θi ∈ Θ is a nonnegative scalar. Let gt denote government purchases. Feasible allocations satisfy

I
∑

i=1

πici,t + gt =
I
∑

i=1

πiθili,t. (2)

Government expenditures gt follow an irreducible finite state process Markov. Let st = gt

and st = (s0, ..., st) . We use two notations to keeps track of histories. Most of the time we use a

notation zt to denote a random variable with a time t conditional distribution that is a function
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of the history gt. In some places, we use a more explicit notion z
(

st
)

to denote a realization of

the stochastic process zt at a particular history st.

The government’s preferences over stochastic process for consumption and work are ordered

by

E0

I
∑

i=1

πiαi

∞
∑

t=0

βtU i (ci,t, li,t) (3)

where αi ≥ 0,
∑I

i=1 αi = 1 is a set of Pareto weights.

2.1 Incomplete markers and affine taxes

Under an affine tax system, agent’s i budget constraint is

ci,t + bi,t = (1− τ t) θili,t +Rt−1bi,t−1 + Tt (4)

where bi,t denotes asset holdings of agent i in time t ≥ 0, Rt−1 is a gross risk-free one-period

interest rate from time t− 1 to time t for t ≥ 1 and R−1 ≡ 1. For t ≥ 0, Rt is measurable with

respect to time t information. To rule out Ponzi schemes, we assume that bi,t must be bounded

from below.

The government budget constraint is

gt +Bt = τ t

I
∑

i=1

πiθili,t − Tt +Rt−1Bt−1, (5)

where Bt denotes government assets at time t. We assume that government debt must be

bounded from below. Our assumptions about preferences imply that the government can collect

finite revenues in each period, so this restriction rules out Ponzi schemes for the government.

We assume that agents i ∈ I and the government start with initial assets {bi,−1}
I
i=1 and

B−1, respectively, and that asset holdings satisfy

I
∑

i=1

πibi,t +Bt = 0 for all t ≥ −1. (6)

Since all bi,t and Bt are bounded from below, constraint (6) implies that they must also be

bounded from above.

We allow the government to choose a feasible sequence of transfers {Tt} and do not

restrict their signs at any particular dates or histories. For example, if Pareto weight αi > 0

and type i has θi = 0 and no initial wealth, the present value of transfers to agent i must

necessarily be nonnegative. All results in the present paper include this example as a special case.
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Remark: We choose this structure of taxes and markets to preserve key tensions that pervade

economies with incomplete markets. We know that if the government can trade risk-free debts of

different maturities (as in Angeletos (2002) or Buero and Nicolini (2004)) or if it can tax bonds

in response to the shocks (as in Chari, Christiano, and Kehoe (1994)), it can effectively replicate

equilibrium allocations for a complete market economy. To preserve market incompleteness, we

rule out these instruments. Similarly, it is well know that a combination of consumption and

labor taxes can replicate taxes on debt, so we rule out consumption taxes too. We conjecture

that most of our results will continue to hold if we allow those taxes but require that they be

measurable functions of information available one period in advance.

We now turn to the definition of equilibrium.

Definition 1 For given
(

{bi,−1}i , B−1

)

and {τ t, Tt}t , a competitive equilibrium with affine taxes

is a sequence {{ci,t, li,t, bi,t}i , Bt, Rt}t such that {ci,t, li,t, bi,t}i,t maximizes (1) subject to (4),

{{bi,t, }i , Bt}t are bounded, and constraints (2), (5) and (6) are satisfied.

When equilibrium allocations are interior, standard arguments show that necessary condi-

tions for consumer optimality are

(1− τ t) θiU
i
c,t = −U i

l,t (7)

and

U i
c,t = βRtEtU

i
c,t+1. (8)

Unless otherwise stated, we assume that an equilibrium is interior. To characterize an equilib-

rium, we require

Lemma 1 Any sequence {{ci,t, li,t, bi,t}i , Rt, τ t, Tt}t is part of a competitive equilibrium with

affine taxes if and only if it satisfies (2), (4), (7), and (8) and bi,t is bounded for all i and t.

Proof. Necessity is obvious. In the technical appendix we use arguments of Magill and Quinzii

(1994) and Constantinides and Duffie (1996) to show that any {ci,t, li,t, bi,t}i,t that satisfies

(4), (7) and (8) is a solution to consumer i’s maximization problem. Equilibrium Bt is then

determined by (6) and constraint (5) is then implied by Walras’ Law

We are now ready to discuss how taxes should optimally respond to aggregate shocks. To find

the optimal equilibrium, by Lemma 1 we can choose {{ci,t, li,t}i,t , bi,t, Rt, τ t, Tt} to maximize (3)

subject to (2), (7), and (8). We follow steps similar to ones taken by Lucas and Stokey (1983)
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and AMSS and apply a first-order approach. Substituting consumers’ first-order conditions (7)

and (8) into the budget constraints (4) yields implementability constraints of the form

ci,t + bi,t = −
U i
l,t

U i
c,t

li,t + Tt +
U i
c,t−1

βEt−1U i
c,t

bi,t−1 for all i, t. (9)

Remark: For I ≥ 2, we can use constraint (9) for one of the agents, e.g. i = 1, to eliminate

Tt from (9) for all other agents. Define b̃i,t ≡ bi,t − b1,t and represent the implementability

constraints as

(ci,t − c1,t) + b̃i,t (10)

= −
U i
l,t

θiU i
c,t

(θili,t − θ1l1,t) +
U i
c,t−1

βEt−1U i
c,t

b̃i,t−1 for all i > 1, t.

With this representation of the implementability constraints, the maximization problem depends

only on the I − 1 variables b̃i,t−1. Therefore, any combinations of {{bi,t, }i , Bt}t that satisfy (6)

and give rise to the same
{

b̃i,t

}

i,t
support the same allocations.

The remark leads to

Proposition 1 (i) We are free to normalize the asset holdings {bi.t}i of one of the agents i or

Bt of the government to zero in all t. (ii) For all initial distributions of assets ({bi,−1}i , B−1)

for which
{

b̃i,−1

}I

i=2
is fixed, optimal allocations are identical.

The first part of proposition 1 asserts that the sequence ({bi,t, }i,t , Bt) is indeterminate.

This is a version of Ricardian equivalence.2 Given any equilibrium, for example, one in which

the government occasionally does not balance its contemporaneous budget, there exists another

equilibrium with the same allocation and interest rate sequence, but in which the government

runs a balanced budget at all dates and all histories. The economics driving this outcome

underlies the classic insight of Barro (1974): for a sequence of government surpluses (deficits),

of constant present value, the government could increase (reduce) transfers today and reduce

(increase) transfers tomorrow, appropriately adjusting for the costs of servicing its one-period

debt, uniformly across across agents. This would leave the present value of distorting taxes

for each agent unchanged and allow each agent to preserve his consumption and labor supply

streams by adjusting only his path of assets.

These Ricardian equivalence statements do not say that “debt is irrelevant” for optimal

transfers and distorting taxes. Rather, it means that the Ramsey planner is indifferent between,

on the one hand, adjusting government debt and, on the other hand, letting agents trade debt

2Also see Werning (2007) for a related proof of Ricardian equivalence in a complete market environment.
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Figure 2: Distorting taxes τ , transfers T , consumption of high θ type, and consumption of low θ type,

all as functions of fraction of initial government debt owned by low θ type 2 agent.

privately among themselves to smooth responses to aggregate shocks. As we will highlight in

the examples to be discussed below, debt markets are used extensively to smooth fluctuations

in taxes.

The second part of the proposition shows that by itself the initial level of government debt

B−1 is not informative about how distortionary are the taxes levied to service it. To estimate

the magnitudes of distortions that a given level of government indebtedness causes, one needs

to know the distribution of asset holdings, {bi,−1}i across private agents. In a nutshell, what

matters is not just how much debt government the government owes, but who owns it.

2.2 Nonstochastic stationary example

Figures 2, 3, 4, and 5 show outcomes for a simple nonstochastic stationary economy. We have set

parameters so that government purchases are about 10 percent of what would be GDP without

distorting taxes, and we have set productivities and Pareto weights so that after tax wages for

the high type are about 5 times what they are for the low type, an approximation to the 90-10

decile ratio in the U.S. There are two types with θ1 = 8 and θ2 = 1. The measures of the two

types of workers are π1 = .5 and π2 = .5. Preferences of both types are ordered by (1) with

β = .98 and

U i =
c1−σ
it

1− σ
−

l1+γ
it

1 + γ
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with σ = 1 and γ = .3. Government expenditures gt = 1 for all t. Initial government debt

is B = 10, which is double undistorted full employment GDP. The relatively unskilled type

2 agents initially own a fraction x ∈ [0, 1] of the initial government debt. Pareto weights are

α1 = .5, α2 = .5. To normalize, we assume that the two private agents do not borrow or lend

with each other, only with the government. We take b̃2 as an initial condition. Because g is

nonstochastic and constant, there are complete markets.

Pareto optimal allocations have constant c1, c2, τ , T , all of which are functions of g, b̃2; R =

β−1 Figure 2 shows τ and T as functions of x as well as the consumption levels of the two types

as functions of the fraction x of government debt initially in the hands of the low θ type 2 agent.

Figure 3 shows τ as a function of x for three levels of initial government debt −B. Figure 2

shows the two agents’ sources of income as functions of x.

The government sets affine taxes to finance g and to transfer from the high θ type to the low

θ type through two types of transfers: T , the constant in the affine tax schedule, and π1RxB,

the interest payments on the government debt received by the low θ type. Figures 2, 4, and 5

show outcomes. Figure 2 shows that the government sets a lower distorting tax rate τ and a

lower explicit transfer Tt, the higher is x. Higher levels of initial government debt steepen the

slopes of the τ on x curve because the larger is B, the more potent interest payments become

as a means of subsidizing the low θ type.

Remark: A downward slope of the labor tax as a function of the fraction x of initial government

debt in the hands of the low θ type agent prevails so long as the Pareto weight α1 attached to

the high θ agent is sufficiently high (.15 or above with the other parameters set at the values

for our figures). For a fixed α1, the consumption share of the low θ agent 2 rises with his share
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x of initial government debt. The downward slope of the distorting tax function requires that

his interest earnings can rise enough as his share of initial assets rises. When α1 is too low,

his interest earnings can be too low, meaning that rising consumption of a type 2 agent as a

function of x might have to be achieved with higher transfers and hence higher labor taxes.

3 Optimal affine taxes

3.1 Lagrangian formulation

Though economic outcomes differ markedly, the mathematical structure of the Ramsey problem

in our heterogeneous agent incomplete markets economy with affine labor taxes resembles that

for the representative agent economies with linear taxes studied by AMSS and Fahri (2010). We

can follow their steps of analysis. Multiply (10) by U i
c,t and define ãi,t ≡ b̃i,tU

i
c,t to obtain

U i
c,t (ci,t − c1,t) +

U i
l,t

θi
(θili,t − θ1l1,t) + ãi,t =

U i
c,t

βEt−1U
i
c,t

ãi,t−1 for all i > 1, t. (11)

Let βt Pr
(

st
)

ψi

(

st
)

be a Lagrange multiplier on this constraint in a Lagrangian for the Ramsey

planner. First order conditions with respect to ãi(s
t) imply

ψi,t =
(

Et

[

U i
c,t+1

])−1
Et

[

U i
c,t+1ψi,t+1

]

(12)

= Etψi,t+1 +
(

Et

[

U i
c,t+1

])−1
Covt

(

U i
c,t+1, ψi,t+1

)

.

This is a multi-agent counterpart of equation (17) of AMSS (2002) for their economy with

a representative agent and linear tax on labor. The Lagrange multiplier ψi,t measures the

distortion of the tax system, since when ψi,t = 0 for all i, the distorting tax τ t equals zero.

Equations like (12) are usually interpreted to imply that distortions follow a “random-walk-like”

process, partly confirming Barro’s (1979) insight about tax smoothing. In representative agent

economies with linear taxes, they also can imply that asymptotically optimal distortions decline

(possibly to zero) while government asset holdings grow3. We have already seen from Proposition

1 that, with heterogeneous agents and affine taxes, government assets are indeterminate and

therefore by themselves play no necessary role in shaping equilibrium allocations and distortions.

Nevertheless, the next section reveals a Barro-AMSS-like insight about smoothing distortions

that holds with affine taxation despite the fact that salient outcomes about long run levels of

government held assets and tax distortions obtained by AMSS and Fahri (2010) under linear

taxes evaporate.

3See, e.g. Aiaygari et al (2002) and Marcet et al (2011).
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3.2 Bellman equation

In the spirit of Kydland and Prescott (1980) and Farhi (2010), we can formulate the planner’s

problem recursively. Let b̃ =
(

b̃2, ..., b̃I

)

and u =
(

U1
c , ..., U

I
c

)

. The planner’s Bellman equation

is

V (b̃,u, g−) = max
b̃′,c,l

∑

s

Pr(g|g−)

[

∑

i

πiαiU
i(g) + βV (b̃′,Ui

c (g) , g)

]

(13)

(ci (g)− c1 (g)) + b̃′i (g) +
U i
l (g)

θiU i
c (g)

(θili (g)− θ1l1 (g)) =
ui

βEs−U
i
c(g)

b̃i (14)

∑

s Pr(g|g−)U
i
c(g)

ui
=

∑

s Pr(g|g−)U
j
c (g)

uj
∀i, j, g, (15)

U i
l (g)

θiU i
c(g)

=
U j
l (g)

θjU
j
c (g)

∀i, j, g, (16)

∑

i

πici(g) + g =
∑

i

πiθili(g) ∀g. (17)

Given b̃−1, g0, the planner chooses u to maximize V (b̃−1,u, g0) subject to (16) and (17) for

t = 0. We will use this formulation to calculate Ramsey plans numerically. Before doing that,

we characterize some special cases that highlight the main economic forces that drive optimal

taxes and allocations.

3.3 Quasi-linear preferences

AMSS obtained sharp results when preferences of their representative agent are quasi-linear in

consumption, i.e.,

U i (c, l) = c− hi(l). (18)

The AMSS case of a representative agent with affine taxes is a convenient benchmark against

which to compare optimal allocations in our heterogeneous agent economy. In AMSS, the

government acquires a precautionary motive to accumulate assets. With quasi-linear preferences,

eventually the government finances all revenue needs from its earnings on these assets. The labor

tax τ t follows a persistent process that converges to zero.

We temporarily adopt a quasi linear preference specification for each type of agent i ∈ I in

our heterogeneous agent economy with affine taxes. We assume that for all types i there is a

common finite lower bound on consumption, c ≤ 0, potentially arbitrarily low4

c ≥ c. (19)

4The reader can think of c as being zero. We use a more general bound to show that some of our results will
hold even for arbitrarily low c.
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In our heterogeneous agent economy with affine taxes, Proposition 1 implies outcomes for

government debt that are very different from AMSS. When preferences are quasi-linear, the

covariance term in (12) equals zero, so application of a martingale convergence theorem allows

a sharp characterization of the long-run joint distribution of assets and consumption across

agents.5

To contrast outcomes in our environment with those in AMSS’s, we restrict our attention to

parameters for which the equilibrium is interior in the sense that constraint (19) does not bind.

It is easy to show that there is a large set of parameters {αi, θi, g} that verify interiority. In the

next section, we will consider an economy that does not assume interiority.

Proposition 2 Suppose that preferences are of form (18) for all i and that the equilibrium is

interior. Suppose that hi satisfies
6

0 ≤ h′′′i ≤
(

h′′i
)2
/h′i for all i. (20)

Then the optimal tax, τ∗t , satisfies τ
∗
t = τ∗ and an optimum debt pattern

{

b∗i,t, B
∗
t

}

i,t
can be

chosen to satisfy b∗i,t = bi,−1 for all i, t ≥ 0 and B∗
t = B−1 for all t ≥ 0.

Proof. [The algebra needs to be double checked] When equilibrium allocations are interior,

the first order condition (7) becomes (1− τ t) θi = h′i(li,t). We can invert function h′i(·) to find

labor supply li as a function of (1− τ) . Call this function Hi (1− τ). Note that H ′
i > 0.

For our purposes it is more convenient to express all labor allocations as a function of (1− τ)

and optimize with respect to τ rather than {li}i . When the equilibrium allocations are interior,

R = 1/β and the implementability constraint (9) becomes

ci,t + bi,t − (1− τ t)Hi (1− τ t) = Tt + β−1bi,t−1. (21)

We can find optimal allocations by maximizing

max
{ci,t,bi,t,τ t,Tt}i,t

E0

∞
∑

t=0

I
∑

i=1

αiπiβ
t [ci,t − hi (Hi (1− τ))]

subject to (21) and
I
∑

i=1

πici,t + gt =

I
∑

i=1

πiθiHi (1− τ t) .

5In addition to the papers discussed above, see also work of Farhi (2010), Battaglini and Coate (2007, 2008)
who use this property of quasilinear preferences to characterize the long run distribution.

6It can be easily verified that this condition is satisfied for example when preferences exhibit constant elasticity
of substitution c− 1

γ
lγ with γ ≥ 2.
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Let βtπiηi,t and βtλt be the Lagrange multipliers on the feasibility and the implementability

constraints. The first order conditions for ci,t and Tt imply that the Lagrange multipliers do

not depend on t, and in particular that λt = 1 for all t, and that ηi,t = 1 − αi. The first order

condition with respect to (1− τ) is

I
∑

i=1

αiπi
[

h′i (Hi (1− τ))H ′
i,t

]

+
I
∑

i=1

πiηi
(

Hi,t + (1− τ t)H
′
t

)

− λ
I
∑

i=1

πiθiH
′
i,t = 0

Since h′i (Hi (1− τ)) = (1− τ t) θi, this equation can be written as

I
∑

i=1

[αiπiθi + πiηi] (1− τ t)H
′
i,t +

I
∑

i=1

πiηiHi,t = λ

I
∑

i=1

πiθiH
′
i,t (22)

Under the assumptions of the theorem, the left side of equation (22) is increasing in (1− τ t)

while the right side is increasing. Therefore there exists a unique τ∗ that solves equation(22).7

This τ∗ pins down a unique constant equilibrium labor supply l∗i . Let b
∗
i,t = bi,−1 for all t and

define

c∗i,t =
1− β

β
b∗i − h′i (l

∗
i ) l

∗
i + T ∗

t

where T ∗
t solves

I
∑

i=1

πi

(

1− β

β
b∗i − h′i (l

∗
i ) l

∗
i + T ∗

t

)

+ gt =

I
∑

i=1

πiθil
∗
i . (23)

By inspection, T ∗
t depends only on gt and not on the history gt−1.

In the affine-tax proposition 2 economy, fluctuations in lump sum taxes and transfers do all

the work. Furthermore, if the planner wants to redistribute enough towards low skilled types,

this lump sum component can be positive at all dates and states. In such an economy, the

planner always uses lump sum transfers and never uses lump sum taxes, so even if we had

imposed the AMSS constraint Tt ≥ 0, that constraint would never bind.

The Lucas and Stokey (1983) and AMSS (2002) representative agent models impose Tt = 0.

Outcomes would be unaltered if the restriction Tt = 0 were to be weakened to Tt ≥ 0, because

7[I leave it here for now to make it easy to double check my arguments] To double check this analysis,
we have H(h′(l)) = l, therefore H ′h′′ = 1 and H ′′ (h′′)

2
+H ′h′′′ = 0. If h′′′

≥ 0 then H ′′
≤ 0 which shows that

the right hand side of (22) is decreasing in (1− τ ) . On the other hand, we have (1− τ )H ′ = h′/h′′, and, since l
is monotonically increasing in (1− τ ) , (1− τ)H ′ increases in (1− τ) if and only if h′/h′′ increases in l. We have

∂

∂l

(

h′/h′′
)

=
(h′′)

2
− h′h′′′

(h′′)2
,

which is positive if h′′′
≤ (h′′)

2
/h′.

When h(l) = 1

γ
lγ , h′ = lγ−1, h′′ = (γ − 1) lγ−2 and h′′′ = (γ − 1) (γ − 2) lγ−3, we have that h′′′

≥ 0 if γ ≥ 2
and

(

h′′
)2

− h′h′′′ = (γ − 1)
[

(γ − 1) l2γ−4
− (γ − 2) l2γ−4

]

> 0.
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a government in those models has no incentive to use distorting taxes to finance positive lump

sum transfers. Instead, the government would like to impose lump sum taxes. Distributional

motives make the situation become very different in our model.

3.4 Comparison with representative agent economies

Authors who study optimal taxation and debt in representative agent economies routinely as-

sume that, in addition to setting linear taxes on labor, the government can also provide lump

sum transfers, but not impose lump sum taxes.8 This is equivalent to adding one restriction to

the tax system that we studied so far, namely,

Tt ≥ 0 for all t. (24)

Relative to that literature, we have taken two departures. We assumed that consumers are het-

erogeneous and we dropped constraint (24). A natural question is: which of the two departures

drive outcomes in Propositions 1 and 2? We answer this question by reporting in the following

way. First, we show that if there exists a type who is sufficiently “poor”, then constraint (24)

does not bind in the optimal tax problems that we studied so far. Second, we study a version

of our quasi-linear economy with the added restriction (24) to highlight key differences between

heterogeneous and homogeneous agent models.

Constraint (24) need not bind

First, we show some conditions under which constraint (24) does not bind.

Proposition 3 Suppose that a Ramsey planner chooses optimal taxes in the heterogenous agent

economy of section 2 subject to the additional constraint (24). Suppose that c = 0 and that there

is some type j for whom θj = 0 and bj,−1 ≤ 0. Then constraint (24) does not bind.

Proof. Let
{

c∗i,t, l
∗
i,t, b

∗
i,t, R

∗
t , τ

∗
t , T

∗
t

}

i,t
be the optimal competitive equilibrium when Tt is un-

resticted. Note that since θj = 0,

c∗j,t = R∗
t−1b

∗
j,t−1 + T ∗

t − b∗j,t ≥ 0.

Let T̂t = R∗
t−1b

∗
j,t−1+T ∗

t − b∗j,t, b̂j,t = 0 and construct b̂i,t for i 6= j as in the proof of Proposition

1. Then
{

c∗i,t, l
∗
i,t, b̂i,t, R

∗
t , τ

∗
t , T̂t

}

i,t
is a competitive equilibrium that satisfies the additional

constraint (24).

8See, e.g. AMSS (2002).
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This proposition shows that constraint (24) generally does not bind when some agents cannot

afford to pay lump sum taxes. We could prove a similar proposition stating that if the planner

wants enough redistribution, in the sense that he assigns a sufficiently high Pareto weight to

types with low present values of income, then constraint (24) typically does not bind.

When constraint (24) won’t bind eventually

It is also instructive to study a version of the quasi-linear economy of section 3.3 with the

additional restriction that taxes must satisfy constraint (24). We maintain the assumption that

equilibrium allocations are interior. When I = 1 this economy is identical to one studied in

Section III of AMSS (2002).

When constraint (24) binds, it is no longer the case that Proposition 1 holds and that only the

net position of assets
{

b̃i,t

}

i>1,t
determines optimal allocations. As a result, we cannot obtain

implementability constraints like (11). Instead, we will have an implementability constraint for

each type, namely,

ci,t + bi,t = h′i (li,t) li,t + β−1bi,t−1 + Tt. (25)

The altered optimal tax problem is

max
{ci,t,bi,t,li,t,Tt}i,t

E0

∞
∑

t=0

I
∑

i=1

αiπiβ
t [ci,t − hi (li,t)] (26)

subject to (25), (24), (2) and

h′i (li,t) /θi = h′j (lj,t) /θj for all i, j.

Proposition 4 Suppose hi satisfies (20). Let βtχt be the Lagrange multiplier on constraint (24)

in maximization problem (26). Then χt → 0 a.s.

Proof. Let βtπiηi,t and βtλt be the Lagrange multipliers on the feasibility and the imple-

mentability constraints. First-order conditions for ci,t, bi,t and Tt are

αi + ηi,t = λt

ηi,t = Etηi,t+1

and
∑

πiηi,t = χt ≥ 0. (27)

These constraints imply that λt is a positive martingale and therefore converges to a constant

a.s. This, in turn, implies that ηi,t and χt converge to constants a.s. and, under assumption

15



(20), that li,t and (1− τ t) converge a.s. to some long run values l∗i and (1− τ∗) Constraint (2)

implies that some ci,t’s must fluctuate to offset fluctuations in gt. If χt → χ > 0, then Tt → 0.

Summing (25) gives

∑

πiθil
∗
i − gt +Bt =

∑

πih
′
i (l

∗
i ) l

∗
i + β−1Bt−1.

For any bound on Bt we can find a sequence of shocks gt so that eventually this bound will

be violated, leading to a constradiction. This implies that χt → 0.

This proposition highlights the key force behind the long run results obtained by AMSS

(2002). Since the risk-free interest rate equals the discount rate, a Ramsey planner who faces

constraint (24) and who is in a setting in which the constraint threatens to bind in the future

always wants to save a bit more to relax future constraints (24). This motive endures until the

planner has saved enough to render all future constraints (24) slack. In the representative agent

economy of AMSS, constraint (24) binds each period until the government has acquired enough

assets that it never again has to use distortionary taxes τ t. This explains the AMSS (2002) result

that the government collects no taxes in the long run. When agents are heterogenous and the

government cares about redistribution, things can be very different. As we have discussed earlier

in this section, in some settings with heterogenous agents, constraints (24) do not bind, and as

a result the government has no reason to accumulate assets or to smooth distortions imperfectly

over time.

3.5 Distortion smoothing with risk-aversion

Our quasi-linear example is limiting in at least one important respect. Since all agents are

risk-neutral, they are indifferent to fluctuations that leave the ex-ante present value of consump-

tion unaltered. With risk-averse agents, things becomes more complicated because it is more

difficult to isolate a pure “labor distortion”, since the distortion generated by τ t will depend

partly on agents’ diverse accumulations of assets. Their asset accumulations will in turn depend

on their aversions to risk and the implied precautionary motives. In general, analysis of such

economies requires numerical computations. To highlight the main economic forces, it is possible

to construct special economies that still allow us to separate “labor distortion” and “risk aver-

sion” effects. We accomplish this by assuming that some agents’ decisions are adversely affected

only by a fluctuating distorting labor tax, while others are affected only by their aversion to

consumption risk.

Here is a simple example of such an economy. There are only two types of agents. A type

1 agent has quasilinear preferences as in the previous section with θ1 = 1, while a type 2 agent
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is risk averse and has θ2 = 0; his preferences can be represented with a strictly concave, twice

differentiable utility function u(c2,t) that satisfies Inada conditions. We call this an AMSS-like

economy. Higher curvature in u makes fluctuations in c2,t, and hence in transfers Tt, more costly.

This simple AMSS-like economy highlights key forces governing optimal taxes and transfers

with incomplete markets. Optimal allocations and taxes are generally history-dependent, in the

sense that the optimal allocations at time t depend not only on the current realization of the

government expenditure shock gt but also on the history of shocks. This result contrast sharply

both with the complete market economies of Lucas and Stokey (1983) and Werning (2007) and

the constrained optima to be discussed in section 6.1, where the optimal allocations in period t

depend only on gt.We also use this economy to highlight different ways that taxes, transfers, and

debts can adjust to aggregate shocks. We show these same forces again in numerical examples

for more general economies.

Proposition 5 Suppose that there is unique l̂ that solves h′′(l̂)l̂ + h′(l̂) = 1. Let c∗1,t be an

optimal allocation of consumption of the risk-neutral agent 1 in the AMSS-like economy. Then

c∗1,t = c infinitely often almost surely.

Proof. We show this result by contradiction. Suppose that (19) does not bind after some period

T̄ . Then the interest rate that period is β−1 and, since u satisfies Euler equation,

u′(ct) = Etu
′(ct+1).

Since the optimal allocations in period t are recursive in
(

b̃1,t−1, uc(ct−1)
)

, the optimal alloca-

tions after T̄ can be found by solving the following optimization problem

max
{c1,c2,l1,b̃}

ET

∞
∑

t=T̄ +1

βt−T̄ −1 [α1 (c1,t − h(l1,t)) + α2u(c2,t)] (28)

subject to the constraints that the sequence
{

b̃i,s

}

i,s>T̄
is bounded and

c2,t − c1,t + b̃t + h′(l1,t)l1,t =
1

β
b̃t−1, (29)

c1,t + c2,t + gt = l1,t, (30)

uc,t = Etuc,t+1, (31)

uc,T = ū (32)

Equation (31) implies that uc,t is a supermartingale and therefore converges. It cannot

converge to zero, since then c2,t would diverge to infinity and violate (30) (this follows since c1,t
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is bounded from below and l1,t cannot diverge to infinity). Therefore, uc,t and c2,t both converge

to finite values, so c2,t → c∗2. Consumption of agent 1, c1,t, is then determined as a residual from

(30) and follows the same Markov process as gt.

In the appendix, we show that the Lagrange multiplier ηt on constraint (29) must converge

to some finite value η∗. Then the first order conditions for c1,t imply that the multiplier on the

feasibility constraint (30), λt, must also converge to a finite value λ∗ = α1 − η∗. The first order

condition for l1

h′(l1,t)

(

α1 − ηt

(

1 +
h′′(l1,t)l1,t
h′(l1,t)

))

= λt

implies that l1 converges to some l∗.

At this stage it is helpful to consider particular histories st explicitly. Pick any st such

that sT̄ < st. Choose any s∞ > st and substitute repeatedly into (29) for all sk that satisfy

st ≤ sk < s∞ to get

∞
∑

k=0

βk
[

2c2

(

st+k
)

+
(

h′(l1(s
t+k))− 1

)

l1(s
t+k)

]

+

∞
∑

k=0

βkg
(

st+k
)

+ lim
T →∞

βT b̃
(

st+T +1
)

=
1

β
b̃(st).

(33)

If we choose t sufficiently large, the first integral is sufficiently close to a constant for almost

all possible paths sk. But different paths of sk lead to different values of
∑∞

k=0 β
kg
(

sk
)

, which

implies that for some s∞ > st, limT →∞,st+T+1<s∞ βT b̃
(

st+T +1
)

6= 0. This implies that b̃
(

st+T +1
)

is unbounded along that history, which leads to a contradiction.

Proposition 5 reveals key forces. The government wants (a) to smooth labor distortions

caused by taxes, and (b) to smooth consumption of the risk-averse agent. To smooth labor

distortions, the government should keep the marginal tax on labor constant across all realizations

of st. To smooth consumption of the risk averse type 2 agent, the government could (i) keep

transfers Tt constant by borrowing from or lending to the risk-neutral type 1 agent in response

to shocks to gt; or (ii) let Tt fluctuate and have the risk-averse agent borrow from or lend to the

risk-neutral type 1 agent to smooth consumption. With incomplete markets, the government

cannot do either of these things perfectly. There is always a long enough sequence of bad shocks

so that either in case (i) the government runs into its borrowing limit and must adjust the

distorting tax rate to raise more revenues; or in case (ii) the risk-averse type 2 agent runs into

his borrowing limit and can no longer smooth his consumption, in which case the government

must adjust the distorting tax rate to help the type 2 risk-averse agent smooth consumption.

This example indicates that optimal allocations will generally be history dependent, in the

sense that allocations in period t will depend not only on the current realization of gt but also

on the entire history of shocks gt−1. In the next section, we show that the same insights continue
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to hold with flexible nonlinear tax systems, and that this implies that the optimal distortions

τ t are generally history-dependent as in AMSS and Barro (1979).

4 Distortion smoothing more generally

[Numerical example goes here. Highlight history-dependence, how b̃ behaves over

time]

5 Simple non-linear taxation

The previous section studied affine taxation. Figure 1 indicates that affine taxes are a good first

approximation to the U.S. tax system, but more that refined approximations are better. So in

this section, we relax the assumption that taxes are affine and allow them to be an arbitrary

function of current labor income. We do not allow other taxes. We will show that while such

non-linear taxes allow more redistribution and achieve higher welfare, the main lessons from our

study of affine taxes prevail.

With simple non-linear taxes, an agent’s budget constraint (4) becomes

ci,t + bi,t = θili,t − Tt(θili,t) +Rt−1bi,t−1 (34)

and the government budget constraint becomes

gt +Bt =

I
∑

i=1

πiTt(θili,t) +Rt−1Bt−1. (35)

A competitive equilibrium with simple non-linear taxes can then be defined analogously to

Definition 1.

Section 3 emphasized two sets of results. First, the net distribution of initial assets
{

b̃i,−1

}

i>1

rather than {bi,−1}
I
i=1 determines welfare under the optimal allocation, so that government assets

Bt can be set to zero in all states without loss of generality. Second, optimal allocations are

generally history dependent. For example, it is easy to show that in the AMSS-like economy of

section 3.5, consumption of the risk averse type may fluctuate initially as he faces interest rates

β−1, but then it either converges to a constant, or the interest rate diverges from β−1 as the

consumption of the type 1 agent hits its lower bound c. Both of these conclusions continue to

hold when taxes are non-linear. Consider a tax schedule Tt (yt) for which
{

c∗i,t, l
∗
i,t, b

∗
i,t, B

∗
t , R

∗
t

}

t

is part of a competitive equilibrium. Construct an alternative tax schedule T̂t(y) that supports

the same equilibrium allocations but set government debt to zero. Define the alternative tax
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schedule T̂t as

T̂t (y) = B∗
t + Tt (y)−R∗

t−1B
∗
t−1.

When consumers face taxes and prices
{

T̂t(y), R
∗
t

}∞

t=0
, exactly the same

{

c∗i,t, l
∗
i,t

}

i,t
are available

to them as when they face {Tt(y), R
∗
t }

∞
t=0 and vice versa. To see that, consider any sequence

{ci,t, li,t, bi,t}i,t that satisfies (34) for {Tt(y), R
∗
t }

∞
t=0 with {bi,t}i,t being bounded. Define

{

b̂i,t

}

i,t

as

b̂i,t −R∗
t−1b̂i,t−1 − T̂t (θili,t) = bi,t −R∗

t−1bi,t−1 − Tt (θili,t) .

This implies that

b̂i,t = (bi,t +Bi,t)−R∗
t−1 (bi,t−1 +Bi,t−1) +R∗

t−1b̂i,t−1

= (bi,t +Bi,t)−R∗
−1 (bi,−1 +Bi,−1) .

Since {bi,t}i,t is bounded, so is
{

b̂i,t

}

i,t
. Therefore,

{

ci,t, li,t, b̂i,t

}

i,t
is a feasible allocation under

{

T̂t(y), R
∗
t

}∞

t=0
and hence the same

{

c∗i,t, l
∗
i,t

}

i,t
must be optimal for taxes {Tt(y)}t and

{

T̂t(y)
}

t
.

Summing across agents i and using the asset market clearing condition (6), we can conclude

that the new government debt
{

B̂t

}∞

t=0
satisfies B̂t = 0 for all t. We can also prove the second

part of Proposition 1 for this setting.

It is also easy to see that the optimal simple non-linear taxes leads to history-dependent

allocations. Consider again the AMSS-like economy of section 3.5. In periods when the allocation

is interior, the marginal utility of consumption of agent 2 will follow a martingale (31). This,

together with the fact that total output is bounded from above, implies that c1,t will either

converge to a constant or that c2,t will hit its lower bound, in which case the interest rate Rt will

differ from β−1. Either of these situations implies that for the same realization of government

expenditures gt, allocations for small t will generally differ from the allocations for large t. In

the following section, we show that there is a sense in which the same conclusions continue to

hold more generally in economies with incomplete markets.

6 Constrained optimum and more general taxes

The history dependence of the optimal allocations under affine and simple non-linear taxes

described in sections 3 and 4 contrasts with the history independence of constrained optimal

allocations, which can be thought of as optimal allocations with a sufficiently rich set of tax

instruments. In this section, we first characterize constrained optimal allocations and show that

they are not history dependent, so that allocations in period t depend only on the realization of
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shock gt but not on the history gt−1 or the time period. Then we identify features of a tax system

that are required to implement a constrained optimal allocation as a competitive equilibrium

with taxes. We will show that generally such a system effectively completes markets by making

returns on assets state-contingent. We conclude by showing that when the government is not

able to complete markets through tax policies, optimal allocations are history dependent.

6.1 Constrained optimum

A recent literature on optimal taxation, sometimes referred to as the New Dynamic Public

Finance (NDPF), approaches taxes from a different angle than does a Ramsey analysis.9 The

NDPF literature makes explicit assumptions characterizes optimal allocations that respect infor-

mation gaps between agents and the government. Then it studies taxes and other interventions

that decentralize an optimal allocation.

In the spirit of the NDPF, we assume that θ is private information and that the government

observes labor θl and c for each agent. Constrained optimal allocations solve the mechanism

design problem

max
{ci,t,yi,t}

E0

I
∑

i=1

αiπi

∞
∑

t=0

βtU i

(

ci,t,
yi,t
θi

)

(36)

subject to the incentive constraints

E0

∞
∑

t=0

βtU i

(

ci,t,
yi,t
θi

)

≥ E0

∞
∑

t=0

βtU i

(

cj,t,
yj,t
θi

)

for all i, j (37)

and the feasibility constraint
I
∑

i=1

πici,t + gt =

I
∑

i=1

πiyi,t. (38)

Let ηi,j be Lagrange multipliers on (37). Let W i (ci,t, yi,t) be defined as

W i (ci,t, yi,t) =
(

αiπi + ηi,i
)

U i

(

ci,t,
yi,t
θi

)

−
∑

j 6=i

ηj,iU
j

(

cj,t,
yj,t
θi

)

.

Then we can re-write the optimization problem (36) as

max
{ci,t,yi,t}

min
{ηij}

E0

I
∑

i=1

∞
∑

t=0

βtW i (ci,t, yi,t)

subject to (38). This problem is equivalent to solving a sequence of static problems for each

realization of gt. Therefore, the optimal allocation depends only on the realization of g, but not

on the time period t or the history gt−1.

9For a survey, see Golosov, Tsyvinski, and Werning (2007) Kocherlakota (2010).
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6.2 Decentralization of the optimum

In this section, we show that while constrained optimum allocations do not depend on history, the

taxes that decentralize those allocations generally do. Moreover, such taxes complete markets

either by making the returns on assets state-contingent or by effectively eradicating all asset

trades.

We consider a general non-linear tax Tt (yt,Xt) where Xt is a vector of additional agent-

specific variables, and ask what information this vector should contain. The vector Xt will

not be unique, since, for example past labor incomes and asset returns are equivalent ways

of tracking labor income and consumption. Still, we will highlight common features a “fully

optimal” tax system Tt (yt,Xt) must have.

As in the previous section, we assume that agents begin with initial debt holdings {bi,−1}i

and that each period they are able to trade a one-period bond with non-state-contingent return

R. The budget constraint of an agent is the same as (34) except that Tt (yt) is replaced with

Tt (yt,Xt) . We modify the definition of a competitive equilibrium with these more general taxes

accordingly.

We have the following

Proposition 6 (i) Constrained optimal allocations can be decentralized as a competitive

equilibrium with tax Tt

(

yt, bt−1, F
(

{ys}
t−1
s=0

))

where F
(

{ys}
t−1
s=0

)

is some function of previous

labor earnings.

(ii) The marginal tax on debt
∂Tt(yt,bt−1,F({ys}t−1

s=0))
∂b

must be either a function

of
(

yt, F
(

{ys}
t−1
s=0

))

or a non-linear function of bt−1, and we are free to set

Tt

(

yt, bt−1, F
(

{ys}
t−1
s=0

))

= yt +max {Rtbt, 0} if bt 6= 0.

Most of the results are easy to see. Let
{

cspi,t, y
sp
i,t

}

i,t
be the constrained optimal allocation.

There are in general many tax systems that implement this allocation, for example, one that

sets T (yt, bt−1, yt−1, ..., y0) = yspit − cspi,t if vector (yt, bt−1, ..., y0) =
(

yspi,t, 0, y
sp
i,t−1, ..., y

sp
i,0

)

and an

arbitrarily high number for all other (yt, bt−1, ..., y0) . This assures that an agent can choose only

among sequences
{

cspi,t, y
sp
i,t

}

i,t
that are compatible by construction.

The optimal allocation
{

cspi,t, y
sp
i,t

}

i,t
generally has the property that agents’ marginal rates

of substitution are not equalized

βEtU
i
c

(

cspi,t+1, y
sp
i,t+1/θi

)

U i
c

(

cspi,t, y
sp
i,t/θi

) 6=
βEtU

j
c

(

cspj,t+1, y
sp
j,t+1/θj

)

U j
c

(

cspj,t, y
sp
j,t/θj

) .
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As a result, marginal returns on assets
∂Tt(yt,bt−1,F({ys}t−1

s=0))
∂b

cannot be linear in asset hold-

ings and must either depend on an agent’s income, which typically will make them be state-

contingent, or else be non-linear. Debt plays no useful role, since, as part ii of Proposition 6

indicates, the government can implement the optimum by taxing away all of an agent’s income

from assets if his debt differs from zero. Thus, the planner effectively completes asset markets

either by making returns state-contingent or by shutting them.

6.3 History-dependent taxes when asset taxes are not available

The optimal tax schedule described in section 6.2 requires that the government can observe and

tax assets of the households. When the government can do that, all impediments to optimality

coming from preexisting debts and market incompleteness vanish. In period 0, the government

can effectively redistribute assets as it wants and then can use asset taxes to assure that the

distribution of assets never changes. There is never a distribution of asset holdings that is

inefficient or that prevents the government from achieving the constrained optimal allocation.

One objection to this characterization of an optimal tax policy is that in practice asset

holdings of the households are not easily observed because many financial transactions are

anonymous and hidden from the government. That makes taxation of assets difficult. In this

section, we discuss the implications for optimal taxation that follow from a government’s inability

to tax assets when nevertheless it has access to an arbitrary non-linear tax Tt (yt, ..., y0). Since

consumption taxes can replicate asset taxes, we rule them out.

In the appendix, we state an optimal tax problem for general non-linear labor income taxes

Tt (yt, ..., y0) . We also characterize a particular example that exhibits the same features encoun-

tered in Section 5, namely, that distortions and allocations generally depend on the history of

past shocks and the initial distribution of net assets
{

b̃i,−1

}I

i=2
. The example is basically a vari-

ant of the AMSS-like economy of Section 3.5 where both agents can now work. We show that

in that economy either the consumption of agent 1, c1,t, must eventually hit the lower bound,

as in the case of affine taxes, or the consumption of agent 2, c2,t must initially fluctuate but

eventually converge to a constant. Both of those cases imply that optimal taxes and allocations

depend not only on the current g but also on its history.

This example highlights the following general features of the incomplete markets models.

When the government’s ability to tax assets is limited, the distribution of assets
{

b̃i,t

}I

i=2
are

key state variables that influence optimal allocations. When an aggregate shock occurs, the

distribution
{

b̃i,t

}I

i=2
changes endogenously. Expenditures gt affect agents’ decisions about how
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much to save in period t,
{

b̃i,t

}I

i=2
. When markets are incomplete, the ex post return on these

assets in period t+1 does not depend on the shock gt+1. As a result, there is history dependence

in the optimal allocations and there are distortions not present under the optimal mechanism

design allocation of section 6 or in economies with complete markets. This result is very robust

to a variety of assumptions about the tax structure so long as the government’s ability to tax

assets state-contingently or nonlinearity is limited.

6.4 Role of debt markets?

Proposition 6 shows that debt markets play no useful role when taxes are sufficiently flexible,

and in particular when they can depend on the entire history of labor earnings. For then the

government can effectively shut the debt market by taxing away all income if it observes that

the agent uses this market. The government can then provide all insurance through the tax

code.

An optimal tax schedule can be less extreme. Various decentralizations popular in the

literature use a continuous but non-linear tax on asset income, such as Werning (2012) or

XXXX. Despite being continuous, these taxes effectively achieve the same goal as attained in

the extreme example in Proposition 6: they make it prohibitively costly for agents to depart

from the allocation assigned by the planner. This result is not surprising, for it is known (see,

for example, Golosov and Tsyvinski (2007)) that welfare in the mechanism design problems is

lower when agents can trade freely or face linear returns on assets.

In the economy with affine taxes considered in section 3.5, debt markets played an important

role. They allowed the agents and the government to smooth consumption and distortions in

response to the aggregate shocks.

The contrasting roles of debt markets in these two situations induces us to ask, “when are

debt markets useful?” In general, unrestricted debt markets play two roles, one that is welfare

decreasing, another that is welfare enhancing. Optimal non-linear income taxes are generally

not convex. When agents can freely trade assets, they can convexity their budget sets. On

the one hand, private asset trading improves the utility of each individual agent but it reduces

the government’s ability to redistribute and therefore lowers social welfare. This is why in the

mechanism design problems it is welfare decreasing for agents to trade behind the planner’s

back. On the other hand, when the tax system is less than perfect, trading assets usually

cannot provide an agent with an optimal amount of consumption smoothing. The affine taxes

in section 3.5 illustrate that. If agents could not trade among themselves, consumption of the

risk averse agent, c2,t, would fluctuate much more, leading to welfare losses.
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Allowing taxes on current income to be non-linear, as in Section 5, helps the government

provide more insurance to agents through the tax code, although less than perfectly. As a

result, whether welfare is higher in the economy in which agents can trade assets freely or in the

economy in which agents cannot trade assets depends on which force dominates. It is easy to

construct examples in which one or the other of these economies has higher welfare depending on

the redistributive objectives of the government or the nature of the aggregate shocks. [should

we actually put an example of that?] This highlights a general point. The more restricted

is the available set of tax instruments, the more important it is for the agents to be able to trade

assets freely. We conjecture that this point would be more important in economies with richer

shock structures.
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7 Appendix

7.1 Proof of Lemma 1

We prove a slight more general version of our result. Consider an infinite horizon, incomplete

markets economy in which an agent maximizes utility function U : R
n
+ → R subject to an

infinite sequence of budget constraints. We assume that U is concave and differentiable. Let

p(st) be a price vector in state st with pi(s
t) denoting the price of good i.We use a normalization

p1
(

st
)

= 1 for all st. There is a risk-free bond.

Let b(st) be the agent’s bond holdings, and let e
(

st
)

be a stochastic vector of endowments.

Consumer maximization problem

max
xt,bt

∞
∑

t=0

βt Pr
(

st
)

U(x
(

st
)

) (39)

subject to

p
(

st
)

x
(

st
)

+ b
(

st
)

= p
(

st
)

e
(

st
)

+R(st−1)b
(

st−1
)

(40)

and
{

b
(

st
)}

is bounded.

The Euler conditions are

Ux(s
t) = U1(s

t)p(st) (41)

Pr
(

st
)

U1

(

st
)

) = βR(st)
∑

st+1≥tt

Pr
(

st+1
)

U1

(

st+1
)

.

Proposition 7 Consider an allocation {xt, bt} that satisfies (40), (41) and {bt}t is bounded.

Then {xt, bt} is a solution to (39).

Proof. The proof follows closely Constantinides and Duffie (1996). Suppose there is some other

budget feasible allocation x+ h that maximizes (39). Since U is strictly concave,

E0

∞
∑

t=0

βtU(xt + ht)− E0

∞
∑

t=0

βtU(xt) (42)

≤ E0

∞
∑

t=0

βtUx(xt)ht

To attain x+ h, the agent must deviate by ϕt from his original portfolio bt such that {ϕt}t

is bounded, ϕ−1 = 0 and

p(st)h
(

st
)

= R
(

st−1
)

ϕ(st−1)− ϕ(st)
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Multiply by βt Pr
(

st
)

U1(s
t) to get:

βt Pr
(

st
)

U1(s
t)p(st)h

(

st
)

= U1(s
t)R

(

st−1
)

ϕ(st−1)− U1(s
t)ϕ(st)

= βt Pr
(

st
)

U1(s
t)R

(

st−1
)

ϕ(st−1)− βtR(st)
∑

st+1≥tt

Pr
(

st+1
)

U1

(

st+1
)

ϕ(st)

where we used the second part of (41) in the second equality. Sum over the first T periods and

use the first part of (41) to eliminate Ux(xt) = U1(s
t)p(st)

T
∑

t=0

βt Pr
(

st
)

Ux(xt)h
(

st
)

= −
∑

sT

Pr
(

sT
)

βTU1

(

sT+1
)

ϕ(sT ).

Since {ϕt}t is bounded there must exist ϕ̄ s.t. |ϕt| ≤ ϕ̄. By Theorem 5.2 of Magill and Quinzii

(1994),

lim
T→∞

T
∑

t=0

βt Pr
(

st
)

Ux(xt)h
(

st
)

= 0.

Substitute this into (42) to show that h does not improve utility of consumer.

7.2 Proof of technical details of Proposition 5

In this appendix we show that c2,t and ηt must converge to finite values.

Equation (31) implies that uc,t is a supermartingale and therefore converges. It cannot

converge to zero, since then c2,t would diverge to infinity. Since c1 ≥ c, constraint (30) can only

be satisfied if l1
(

st
)

→ ∞, but then (29) would imply that b̃t → −∞ violating boundedness.

Therefore, uc,t and c2,t both converge to finite values, so c2,t → c∗2.

The first-order conditions for b̃ imply that

ηt = Etηt+1.

Thus, ηt is a martingale. But does not necessarily have to be bounded, so we cannot apply a

standard martingale convergence result. We use a different argument to prove our result.

Let βt Pr
(

st
)

η(st), βt Pr
(

st
)

λ(st), and βt Pr
(

st
)

ζ(st) be Lagrange multipliers on (29), (30),

and (31), respectively. The first-order conditions for c1,t and l1,t are

α1 − η(st) = λ(st)

and

α1h
′(st)− η

(

st
) [

h′′(st)l(st) + h′(st)
]

= λ(st).
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These conditions imply that if l(st) converges, so does η(st). We shall show that if η(st) does

not converge, then l(st) must converge, which will establish a contradiction.

Combine the first-order conditions for c1,t and c2,t to get

α2uc(s
t) +

(

ζ(st−1)− ζ(st)
)

ucc(s
t) = α1 − 2η(st). (43)

Since uc(s
t) and ucc(s

t) converge to finite values, if η(st) does not converge to a constant,

neither does ζ(st−1)− ζ(st). Rewrite (43) as

ζ(st) = ζ(st−1) +
α2uc(s

t)− α1

ucc(st)
+ 2

η(st)

ucc(st)
. (44)

Choose a t sufficiently large that α2uc(st)−α1

ucc(st)
and ucc(s

t) are close to being constants. Since

η(st) is a martingale that does not converge, we can find an ε > 0 and a history ŝ∞ such that

∣

∣

∣

∣

α2uc(s
k)− α1

ucc(sk)
+ 2

η(sk)

ucc(sk)

∣

∣

∣

∣

> ε for sk ∈ ŝ∞

for infinitely many k. Then from (44) |ζ(st)| → ∞ for any st ∈ ŝ∞.

Rewrite (28) as

max
{c1,c2,l1,b̃}

∞
∑

t=0

∑

st

βt Pr
(

st
) [

α1

(

c
(

st
)

− h(l1
(

st
)

)
)

+ α2u(c2
(

st
)

) +
(

ζ
(

st−1
)

− ζ
(

st
))

uc
(

st+1
)]

(45)

subject to constraints (29), (30) and a requirement that sequence
{

b̃t

}

is bounded. This problem

is recursive. We can find the optimal allocations
{

c1
(

st
)

, c2
(

st
)

, l1
(

st
)

, b̃
(

st
)

}

for st > sm for

some sm if we take the sequence of multipliers
{

ζ
(

st
)}

st>sm
and b̃(sm) as given to solve

max
{c1,c2,l1,b̃}

∞
∑

t=m+1

∑

st>sm

βt Pr
(

st
)

[

α1

ζ (st−1)

(

c
(

st
)

− h(l1
(

st
)

)
)

+
α2

ζ (st−1)
u(c2

(

st
)

) +

(

1−
ζ
(

st
)

ζ (st−1)

)

uc
(

st+1
)

]

(46)

subject to constraints (29), (30) and a requirement that sequence
{

b̃t

}

is bounded. Denote by

βt Pr
(

st
)

η̂(st) and βt Pr
(

st
)

λ̂(st) the Lagrange multipliers of this re-normalized problem. The

first-order conditions for this problem with respect to c1, l1, and c2 are

α1

ζ (st−1)
− η̂(st) = λ̂(st), (47)

α1

ζ (st−1)
h′
(

st
)

− η̂(st)
[

h′′(st)l(st) + h′(st)
]

= λ̂(st). (48)

Combine these equations to get

α1

ζ (st−1)
h′
(

st
)

− η̂(st)
[

h′′(st)l(st) + h′(st)
]

=
α1

ζ (st−1)
− η̂(st).
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Consider a history ŝ∞ and choose sm ∈ ŝ∞. We know that |ζ
(

st−1
)

| → ∞. Suppose that

h′(st) remains bounded. Then the above equation implies that l(st) converges to a value l̂ that

satisfies

h′′(l̂)l̂ + h′(l̂) = 1.

The assumptions of the theorem imply that this value is unique. This establishes that η(st)

converges. Alternatively, suppose that h′(st) → ∞. Substitute (30) into (29):

2c2
(

st
)

+ g(st) +
(

h′(l1(s
t))− 1

)

l1(s
t) =

1

β
b̃(st−1)− b̃

(

st
)

.

Since b̃(st) is bounded, the right side of this expression is bounded. Both g(st) and c2(s
t)

are finite, so
(

h′(l1(s
t))− 1

)

l1(s
t) must remain bounded, which rules out the possibility that

h′(st) → ∞. This completes the proof.

7.3 Addition details for Section 6.3

First, we provide a general discussion of the optimal tax problem described in Section 6.3.

The planner chooses I state-contingent bundles of pre-tax labor income {yi,t}i,t and after tax

labor income {xi,t}i,t . Each agent chooses his preferred bundle and re-trades at market clearing

interest rates Rt.

The problem of agent i who chooses a bundle j is

Vi
(

{xj,t, yj,t, Rt}t
)

= max
{c,b}

E0

∞
∑

t=0

βtUi

(

cji,t,
yj,t
θi

)

s.t.

cji,t + bji,t = xj,t +Rt−1b
j
i,t−1.

By standard arguments, allocations ci,t are characterized by the budget constraint, Euler

condition
∂Ui

(

cji,t,
yj,t
θi

)

∂c
= βRtEt

∂Ui

(

cji,t+1,
yj,t+1

θi

)

∂c

together with a constraint that
{

bji,t

}

t
are bounded for all i, j.The interest rates {Rt}t clear the

asset markets when all agents choose their allocations optimally.

By revelation principle, we can cast this problem as a mechanism design in which all agent

choose their allocations truthfully subject to the incentive constraints

Vi
(

{xi,t, yi,t, Rt}t
)

≥ Vi
(

{xj,t, yj,t, Rt}t
)

for all i, j.
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The IC constraint is equivalent to

E0

∞
∑

t=0

βtUi

(

cii,t,
yi,t
θi

)

≥ E0

∞
∑

t=0

βtUi

(

cji,t,
yj,t
θi

)

for all i, j

cji,t + bji,t = xj,t +Rt−1b
j
i,t−1

∂Ui

(

cji,t,
yj,t
θi

)

∂c
= βRtEt

∂Ui

(

cji,t+1,
yj,t+1

θi

)

∂c
∑

i

πici,t + gt =
∑

i

πiyi,t for all t

bji,t ≥ B.

The last condition is a no Ponzi game condition. The planner chooses the allocations
{

cji,t, b
j
i,t, yi,t, Rt

}

t,i,j
that satisfy these constraints and maximize

max
{cji,t,b

j
i,t,yi,t,Rt}

t,i,j

E0

∞
∑

t=0

∑

i

αiπiβ
tUi

(

cii,t,
yi,t
θi

)

We characterize a version of the AMSS-like economy set up in Section 3.5. Unlike that

section, we assume that the risk averse agent can work, his productivity is θ2 and his utility is

given by u(c)− h2

(

y
θ2

)

. We assume that the planner assigns a sufficiently high Pareto weight

on agent 1 so that it is agent 2 incentive constraint which binds.

Similarly to the discussion of Section 3.5, two cases are possible. The equilibrium can either

be interior, in which case c1,t is always above c, or constraint (19) eventually binds. The latter

case automatically implies history-dependence of allocations, so we consider the former case.

The optimal tax problem is

max
{cji,t,b

j
i,t,yi,t,Rt}

t,i,j

E0

∞
∑

t=0

βt
[

α1

(

c1,t − h1

(

y1,t
θ1

))

+ α2

(

u(c2,t)− h2

(

y2,t
θ2

))]

subject to

E0

∞
∑

t=0

βt
(

u(c2,t)− h2

(

y2,t
θ2

))

≥ E0

∞
∑

t=0

βt
(

u(c12,t)− h2

(

y1,t
θ2

))

c2,t + b2,t = x2,t +
1

β
b2,t−1

u′ (c2,t+1) = Etu
′ (c2,t+1)

c12,t + b12,t = x1,t +
1

β
b12,t−1

u′
(

c12,t+1

)

= Etu
′
(

c12,t+1

)
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c1,t + b1,t = x1,t +
1

β
b1,t−1

c1,t + c2,t + gt = y1,t + y2,t

bji,t ≥ B.

There are a few redundant equations there. Without loss of generality we can set b1,t = 0

for all t in which case c1,t = x1,t. Moreover it is clear that the Lagrange multiplier on the second

constraint must be zero. Therefore we have

max
{cji,t,b

j
i,t,yi,t}t,i,j

E0

∞
∑

t=0

βt
[

α1

(

c1,t − h1

(

y1,t
θ1

))

+ α2

(

u(c2,t)− h2

(

y2,t
θ2

))]

s.t.

E0

∞
∑

t=0

βt
(

u(c2,t)− h2

(

y2,t
θ2

))

≥ E0

∞
∑

t=0

βt
(

u(c12,t)− h2

(

y1,t
θ2

))

c12,t + b12,t = c1,t +
1

β
b12,t−1

u′ (c2,t+1) = Etu
′ (c2,t+1)

u′
(

c12,t+1

)

= Etu
′
(

c12,t+1

)

c1,t + c2,t + gt = y1,t + y2,t

Guess that both Euler constraints do not bind. Take the first order conditions

α1 − η12,t = λt (49)

u′ (c2,t) (α2 + µ) = λt (50)

µu′
(

c12,t
)

= η12,t (51)

η12,t = Etη
1
2,t+1 (52)

From (52) η12,t is a martingale, therefore from (49) λt is a martingale, and therefore u′ (c2,t)

and u′
(

c12,t
)

are martingales, which confirms out guess. Moreover, u′ (c2,t) , u
′
(

c12,t
)

, λt and η
1
2,t

must all converge. Next we discuss what they must converge to.

Note that since λt converges to a constant, the first order conditions for y2,t and y1,t imply

that they also converge to constants. Since c2,t converges to a constant, c1,t must fluctuate to

offset fluctuations in gt. If c1,t fluctuates, then u
′
(

c12,t
)

→ 0 and therefore η12,t → 0. This implies

that in the long run this economy converges to the constrained optimum allocations discussed

in Section 6.1. Intuitively what happens is that as c1,t fluctuates, the agent 2, if he deviates,
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accumulates infinitely large amount of assets. When he does that, smoothing fluctuations in c1,t

have no effect on his welfare, and we get back to the fully constrained optimum allocations.

Note that c2,t cannot be constant in all t. If it were, then c12,t would also have to be constant

in all t, which is impossible since c1,t must fluctuate.
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