Discussion of

"Sources of entropy in representative agent models" by Dave Backus, Mike Chernov & Stan Zin

Monika Piazzesi Stanford & NBER

Minneapolis May 4-5, 2012

Conventional model diagnostics

- does your model have "reasonable" asset pricing implications?
- conventional answer: start with Euler equation

$$\begin{split} E_{t}\left(m_{t+1}r_{t+1}^{i}\right) &= 1 \\ &= cov_{t}\left(m_{t+1}, r_{t+1}^{i}\right) + E_{t}\left(m_{t+1}\right) E_{t}\left(r_{t+1}^{i}\right) \\ &= \rho_{t} \, \sigma_{t}\left(m_{t+1}\right) \sigma\left(r_{t+1}^{i}\right) + E_{t}\left(m_{t+1}\right) E_{t}\left(r_{t+1}^{i}\right) \end{split}$$

rearrange, get Hansen-Jagannathan bounds

$$\frac{\sigma_{t}\left(m_{t+1}\right)}{E_{t}\left(m_{t+1}\right)} \geq \text{Sharpe ratio for asset } i = \frac{E_{t}\left(r_{t+1}^{i}\right) - r_{t}^{f}}{\sigma_{t}\left(r_{t+1}^{i}\right)}$$

- measure RHS with data on financial returns compare RHS with LHS computed from your model
- nice: works even if your model does not have asset i
 e.g. Telmer 1993 heterogeneous agents with one bond

2 / 7

New model diagnostics proposed by Dave, Mike & Stan

1 take one-period kernel m_{t+1} , compute

one-period conditional entropy
$$=\log E_t\left(m_{t+1}\right)-E_t\left(\log m_{t+1}\right)$$

rough idea: $\sigma_t(m_{t+1})$ in HJ bounds

② take multi-period kernel $m_{t,t+n} = m_{t+1} \cdots m_{t+n}$, compute multi-period conditional entropy $= \log E_t \left(m_{t,t+n} \right) - E_t \left(\log m_{t,t+n} \right)$ define

horizon dependence =
$$\frac{1}{n}E\left[\log E_t\left(m_{t,t+n}\right) - E_t\left(\log m_{t,t+n}\right)\right] \\ -E\left[\log E_t\left(m_{t+1}\right) - E_t\left(\log m_{t+1}\right)\right]$$

rough idea: HJ bounds for long-horizon vs. short-horizon returns

3 / 7

More precisely: one-period conditional entropy

• rough idea: entropy is measure of dispersion of the pricing kernel is like checking $\sigma_t\left(m_{t+1}\right)$ in HJ bounds

$$\frac{\sigma_{t}\left(m_{t+1}\right)}{E_{t}\left(m_{t+1}\right)} \geq \mathsf{Sharpe} \; \mathsf{ratio} = \frac{E_{t}\left(r_{t+1}^{i}\right) - r_{t}^{f}}{\sigma_{t}\left(r_{t+1}^{i}\right)}$$

should be quantitatively large to match data on average excess returns

• In models with lognormal m_{t+1} , they boil down to the same

entropy
$$\equiv \frac{1}{2}\sigma_t (\log m_{t+1})$$

- large class of representative agent models!
 long run risk (Bansal & Yaron 2004, Hansen-Heaton-Li 2008 etc.)
 habits (Abel 1992, Constantinides 1990, Campbell & Cochrane 1999)
- diagnostic is more interesting in models that are not lognormal

More precisely: horizon dependence

rough idea: HJ bounds for long-horizon vs. short-horizon returns

horizon dependence :=
$$\frac{1}{n}E\left[\log E_t\left(m_{t,t+n}\right) - E_t\left(\log m_{t,t+n}\right)\right]$$
$$-E\left[\log E_t\left(m_{t+1}\right) - E_t\left(\log m_{t+1}\right)\right]$$
$$= -E\left(y_t^{(n)} - y_t^{(1)}\right)$$
$$= - \text{ average slope of the yield curve}$$
$$= - \text{ average (long-horizon return on long }$$
$$- \text{ short-horizon return on short bond)}$$

- determined by autocorrelation of the pricing kernel
- should be quantitatively small in absolute value in your model to match data on Government bond yields

Piazzesi () Minneapolis May 4-5, 2012 5 / 7

Perform model diagnostics

- power utility does badly on one-period entropy
- Olong run risk models (Bansal & Yaron 2004, Hansen, Heaton, Li 2008) do well on one-period entropy, do badly on horizon dependence
- ⓐ habits (= catching up with the Joneses) ratio habits $u\left(c_t/h_t\right)$ Abel 1992 do badly on entropy difference habits $u\left(c_t-h_t\right)$ Campbell Cochrane 1999 ✓
- lacktriangledown jumps/disasters: Rietz-with-time-varying-disaster-probability \checkmark

Are diagnostics tough enough?

- models that do best have least discipline: habit process, time variation in disaster prob calibrated to match stock prices
- get additional discipline from macro implications
- need *huge* disasters: 30% consumption drop (cf. Great Depression: "only" 10%)
- other counterfactual implications (e.g. value discount not premium)

Summary

- very nice paper
- provides organizing framework
 if you want to teach a single paper on asset pricing in rep agent models, this may be it.
- diagnostics are useful related to HJ bounds for short-horizon, long-horizon returns with subtle differences, mostly for models that are not lognormal
- diagnostics make two models look particularly good
 - 1. Campbell-Cochrane 1999
 - 2. Wachter (Rietz with time-varying disaster prob)
- tough enough?? discipline, numbers, other (including macro) implications
- future for rep agent models with rational expectations in asset pricing?

7 / 7