Assortative Learning

Jan Eeckhout^{1,2} Xi Weng²

¹ ICREA-UPF Barcelona – ² University of Pennsylvania

NBER – Minneapolis Fed November 19, 2009

Motivation

Sorting and Turnover

- Sorting: High ability workers tend to sort into high productivity jobs: Positive Assortative Matching (PAM)
 - ⇒ Becker's (1973) theory of matching
- But, Becker is silent on turnover: job turnover tends to happen early in the life cycle
 - ⇒ Jovanovic (1979): canonical turnover model (learning)
- Assortative Learning: unified approach to sorting and job turnover:
 - Different learning rates across firms ⇒ trade off wage vs. experimentation in better job (e.g., lower wage at top firm)
 - Is there sorting: Higher types ⇒ in more productive firms?
 - Evolution of wages, turnover? Wage distribution?

Assortative Learning

- Like a two-armed bandit, but with:
 - 1 Large population continuum of experimenters
 - 2 Correlated arms (general human capital)
 - 3 Endogenous payoffs (determined by equilibrium prices)
- Wage setting: spot market wages; no contingent contracts

Related literature

- 1 Labor-learning literature
 - Jovanovic (1979, 1984), Harris and Holmström (1982), Felli and Harris (1996), Moscarini (2005), Papageorgiou (2009)
- 2 Matching and Reputations
 - Anderson-Smith (2009): no PAM under SupM: set up of two-sided learning and symmetry ⇒ no learning under PAM
- 3 Continuous time games
 - Sannikov (2007, 2008), Faingold and Sannikov (2007), Faingold (2007), Sannikov and Skrzypacz (2009)
- 4 Experimentation and bandit problem
 - Bergemann and Välimäki (1996), Bolton and Harris (1999), Keller and Rady (1999), Cripps et al. (2005)

Results

- 1 PAM unique equilibrium allocation under supermodularity, even with different learning rates across firms
- 2 Equilibrium efficient (despite incomplete markets/contracts)
- 3 Can account for increasing wage variance over life cycle; turnover and human capital accumulation
- 4 Theory: new no-deviation condition from sequential rationality (one-shot deviation principle) ⇒ condition on second derivative of value function

Model setup

- Time is continuous, $t \in (-\infty, +\infty)$
- A unit measure of workers and a unit measure of firms
- Firms: infinitely lived, type y ∈ {H, L}, observable, and the fraction of H type firms is π
- Workers: type x ∈ {H, L}, not observable, both to firms and workers ⇒ information is symmetric
- Birth and death of workers, both at exogenous rate δ
- A newborn worker is of type H with probability p₀ and of type L with probability 1 − p₀
- Worker's entire output history is observable to all agents in the economy ⇒ common belief about the worker type p∈ [0, 1]: probability that x = H

Preferences and production

- Workers and firms are risk-neutral and discount future payoffs at rate r > 0
- Output is produced in pairs of one worker and one firm (x, y). Utility is perfectly transferable
- Expected output for each pair is denoted by μ_{xy} . We assume: $\mu_{Hy} \ge \mu_{Ly}$, $\forall y$ and $\mu_{xH} \ge \mu_{xL}$, $\forall x$
- Strict Supermodularity SupM (submodularity SubM with <):

SupM: $\mu_{HH} + \mu_{LL} > \mu_{LH} + \mu_{HL}$

Information

- Expected output is not perfectly observable, only the distorted variable (output) X is observed
- The realized cumulative output X_t is assumed to be a Brownian motion with drift μ_{xy} and common variance σ^2 (starting upon entry):

$$X_t = \mu_{xy}t + \sigma Z_t$$

Both parties face the same information extraction problem

Equilibrium

- Denote expected values for firms and workers by V_{γ} , $W_{\gamma}(p)$ and wages by $w_{\gamma}(p)$
- Spot market wages. Not condition on future actions/realiz.

Definition

In a (stationary) competitive equilibrium, there is a competitive wage schedule $w_y(p) = \mu_y(p) - rV_y$ for firm y = H, L and worker p chooses firm y with the highest discounted present value. The market clears such that the measure of workers working in the L firm is $1 - \pi$ and the measure of workers working in the H firm is π .

Benchmark case: no learning

Claim

Given a distribution of p, F(p). Under SupM, PAM is the unique (stationary) competitive equilibrium allocation: H firms match with workers $p \in [\underline{p}, 1]$, L firms match with workers $p \in [0, \underline{p})$, where $F(\underline{p}) = 1 - \pi$. The opposite (NAM) holds under SubM.

Belief updating

Lemma

(Belief Consistency) Consider any worker who works for firm y between t_0 and t_1 . Given a prior $p_{t_0} \in (0,1)$, the posterior belief $(p_t)_{t_0 < t \le t_1}$ is consistent with the output process $(X_{y_t})_{t_0 < t \le t_1}$ if and only if it satisfies

$$dp_t = p_t(1 - p_t)s_y d\bar{Z}_{y,t}$$

where

$$s_y = \frac{\mu_{Hy} - \mu_{Ly}}{\sigma}, \ y = H, L$$

• Denote: $\Sigma_y(p) = \frac{1}{2}p^2(1-p)^2s_y^2$

Value functions

Worker's value function (from Ito's Lemma):

$$rW_{y}(p) = \mu_{y}(p) - rV_{y} + \Sigma_{y}(p)W_{y}''(p) - \delta W_{y}(p)$$

where $\mu_{y}(p) = p\mu_{Hy} + (1 - p)\mu_{Ly}$

- Given linear output, learning value from option to switch y
- The general solution to this differential equation is:

$$W_{y}(p) = \frac{\mu_{y}(p) - rV_{y}}{r + \delta} + k_{y1}p^{1-\alpha_{y}}(1-p)^{\alpha_{y}} + k_{y2}p^{\alpha_{y}}(1-p)^{1-\alpha_{y}},$$

where
$$\alpha_y = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{2(r+\delta)}{s_y^2}} \ge 1$$
.

Equilibrium characterization

Value functions

- 1 For any possible cutoff *p*:
 - Value-matching condition: $W_H(p) = W_L(p)$
 - Smooth-pasting condition: $W'_H(\overline{p}) = W'_L(\overline{p})$

On-the-equilibrium path conditions

- 2 Lemma 1: equilibrium value function W_y strictly increasing
- 3 Lemma 2: equilibrium value function W_y strictly convex From: positive option value of learning and linear pref.

Equilibrium characterization

No-deviation condition

Lemma

To deter possible deviations, a necessary condition is:

$$W_H''(p) = W_L''(p)$$
 (No-deviation condition)

for any possible cutoff p.

- On equilibrium path, assume p > p match H, p < p, L
- One-shot deviation: p > p worker with L for dt, then back H
- The value function for a deviator is:

$$ilde{W}_L(
ho) = w_L(
ho)dt + e^{-(r+\delta)dt}[W_H(
ho) + \Sigma_L(
ho)W_H''(
ho)dt] \ \lim_{dt o 0} rac{ ilde{W}_L(
ho) - W_H(
ho)}{dt} = w_L(
ho) - w_H(
ho) + [\Sigma_L(
ho) - \Sigma_H(
ho)]W_H''(
ho)$$

• Let $p \rightarrow p$, then this is negative provided:

$$W_H''(p) \leq W_L''(p)$$

Equilibrium characterization

Uniqueness result

Theorem

PAM is the unique stationary competitive equilibrium allocation under SupM. Likewise for NAM under SubM

• Cannot have p_1, p_2 :

$$p < p_1$$
 $p \in [p_1, p_2]$ $p > p_2$

Ergodic distribution

Parameters: $s_H = 0.15, s_L = 0.05, p_0 = 0.5, \pi = 0.5, \delta = 0.01.$

Equilibrium Payoffs, Value Functions

Surprising Implication of No-Deviation Condition

Firm-Dependent Volatility σ_{y}

Existing setup:

$$X_t = \mu_{xy}t + \sigma Z_t$$

H firms are superior in signal-to-noise ratio (from SupM):

$$s_H = \frac{\mu_{HH} - \mu_{LH}}{\sigma} > \frac{\mu_{HL} - \mu_{LL}}{\sigma} = s_L,$$

Surprising Implication of No-Deviation Condition

Firm-Dependent Volatility σ_y

Existing setup:

$$X_t = \mu_{xy}t + \sigma_y Z_t$$

H firms are superior in signal-to-noise ratio (from SupM):

$$s_H = \frac{\mu_{HH} - \mu_{LH}}{\sigma_H} > < \frac{\mu_{HL} - \mu_{LL}}{\sigma_L} = s_L,$$

- Suppose instead that noise is firm-dependent: σ_y , then it is possible that $s_H < s_L$
- Note: we cannot have worker-dependent volatility σ_{x} from Girsanov's Theorem

Surprising Implication of No-Deviation Condition Firm-Dependent Volatility σ_V

• Value function depends on s_v via $\Sigma_v = \frac{1}{2}p^2(1-p)^2s_v^2$:

$$rW_{y}(p) = \mu_{y}(p) - rV_{y} + \Sigma_{y}(p)W_{y}^{"}(p) - \delta W_{y}(p)$$

- Intuitively: W_H smaller than W_L?
- Inuition is Wrong:
 - 1 Wages are endogenous \Rightarrow change as Σ_{ν} changes
 - 2 No-deviation: $W''_H = W''_L$
 - \Rightarrow Effect of learning is same in both firms irrespective of σ_y
- This result follows from sequential rationality + competitive price setting

The Planner's Problem

Proposition

The competitive equilibrium decentralizes the planner's solution that maximizes the aggregate flow of output.

- Surprising? Suppose $s_H^2 \to 0, s_I^2 \to \infty$
- Then: always allocate entrants to L firm to reveal type, even if not PAM
- But does not help efficiency, from martingale property

Labor Market Implications

Wage Variance over Life Cycle

Mean of posteriors:

$$\mathbb{E} p(t) = \int_0^{\underline{p}} p f_L^T(p,t) dp + \int_p^1 p f_H^T(p,t) dp = p_0.$$

Our interest is with the variance of this distribution, which can be written as:

$$Var(p,t) = \int_0^{\underline{p}} p^2 f_L^T(p,t) dp + \int_p^1 p^2 f_H^T(p,t) dp - p_0^2.$$

Proposition

The variance of beliefs, wages will eventually increase

- Standard learning model: wage variance decreases
- Evidence: variance over the life cycle increases and is concave (see e.g., Heathcoate, Violante and Perri 2009)

Labor Market Implications

Human Capital Accumulation

- In addition to learning unknown type, workers accumulate HC over life cycle
- Model prediction: wages of low types fall; counterfactual
- Assume: w.p. λ , a worker x becomes experienced and produces $\mu_{xy} + \xi_x$. The value functions are:

$$rW_{y}^{e}(p) = \mu_{y}(p) + \xi(p) - rV_{y} + \Sigma_{y}^{e}(p)W_{y}^{e''}(p) - \delta W_{y}^{e}(p)$$

$$rW_{yy}^{u}(p) = \mu_{y}(p) - rV_{y} + \Sigma_{y}^{u}(p)W_{yy}^{u''}(p) + \lambda W_{y}^{e}(p) - (\delta + \lambda)W_{yy}^{u}(p)$$

$$rW_{LH}^{u}(p) = \mu_{L}(p) - rV_{L} + \Sigma_{L}^{u}(p)W_{LH}^{u''}(p) + \lambda W_{H}^{e}(p) - (\delta + \lambda)W_{LH}^{u}(p)$$

• Two cut-offs $\underline{p}^u, \underline{p}^e$ – need to show that $\underline{p}^u > \underline{p}^e$ given value functions

Proposition

Assume supermodularity and $\xi_H \simeq \xi_L$. Then $p^e < p^u$.

Labor Market Implications

Human Capital Accumulation

The expected tenure $\tau_{V}(p)$ satisfies the differential equation:

$$\Sigma_{\nu}(p)\tau_{\nu}^{\prime\prime}(p)-\delta p=-1,$$

with solutions (similar for $\tau_H^e, \tau_L^u, \tau_L^e$):

$$\tau_H^u(p) = \frac{1}{\delta} \left\{ 1 - \left(\frac{p}{\underline{p}^u} \right)^{1/2 - \sqrt{1/4 + 2\delta/(s_H^u)^2}} \left(\frac{1 - p}{1 - \underline{p}^u} \right)^{1/2 - \sqrt{1/4 - 2\delta/(s_H^u)^2}} \right\}$$

Proposition

(Tenure) Assume supermodularity and $\xi_H \simeq \xi_L$. Then, $\tau_L^u(p) > \tau_L^e(p)$ for $p < \underline{p}^e$ and $\tau_H^u(p) < \tau_H^e(p)$ for $p > \underline{p}^u$. For $p \in (\underline{p}^e, \underline{p}^u)$, there is a cutoff such that $\tau_L^u(p) < \tau_H^e(p)$ for p higher than this cutoff and $\tau_L^u(p) > \tau_H^e(p)$ for p smaller than this cutoff.

 Turnover very low p higher when e; for very high p, higher when u; intermediate depends on "closeness" of cutoff

Robustness

I. Generalized Lévy Processes

Conjecture

SupM ⇒ PAM true for any Bayesian learning process

- From the Martingale Property; but need to solve W(p)
- Lévy process (compound Poisson): λ_{xy} arrival jumps, then

$$(r + \delta + [p\lambda_{Hy} + (1-p)\lambda_{Ly}])W_y(p) = \ W_y(p) + [p\lambda_{Hy} + (1-p)\lambda_{Ly}]W_{y'}(p_h) \ -p(1-p)(\lambda_{Hy} - \lambda_{Ly})W_y'(p) + \Sigma_y(p)W_y''(p)$$

where $p_h = \frac{p\lambda_{Hy}}{p\lambda_{Hy} + (1-p)\lambda_{Ly}}$, y' is firm that matches with p_h

• In the absence of jumps, the posterior follows:

$$dp = -p(1-p)(\lambda_{Hv} - \lambda_{Iv})dt + p(1-p)s_v d\bar{Z}$$

• Can solve ODE + No-deviation holds: $W''_H(p) = W''_I(p)$

Proposition

Given the Lévy process, PAM is a stationary competitive equilibrium allocation under strict supermodularity.

Robustness

II. Non-Bayesian Updating

• Let belief updating: $dp = \lambda_y p dt$ for p < 1, and dp = 0 when p = 0. Then:

$$(r+\delta)W_{\nu}(p) = W_{\nu}(p) + \lambda_{\nu}pW_{\nu}'(p)$$

We can solve the ODE. Equilibrium requires:

$$W_H(\underline{p}) = W_L(\underline{p})$$
 (Value Matching)
 $W'_H(\underline{p}) = W'_L(\underline{p})$ (Smooth-pasting)

• If $\lambda_I > \lambda_H$, PAM requires that

$$\frac{\mu_{LL} - rV_L}{r + \delta} > \frac{\mu_{LH} - rV_H}{r + \delta}$$
$$\frac{\lambda_H - \lambda_L}{r + \delta} \frac{\Delta_H}{r + \delta - \lambda_H} [\underline{p} - (\underline{p})^{\frac{r + \delta}{\lambda_H}}] < 0$$

 Let Δ_L → Δ_H, r + δ → 0, λ_L large, then equality cannot be held ⇒ PAM not an equilibrium

Conclusion Economic implication

- Wages change faster in firms with faster learning
- Turnover is decreasing in tenure + different for experienced
- The wage could be increasing (H worker) or decreasing (L worker) in tenure
 - Relative to trend if there is human capital accumulation
- Can fully characterize wage distribution
- The variance of wage distribution is increasing in tenure

Conclusion Theoretical Implication

- New no-deviation condition: from sequential rationality (holds trivially in standard bandit problem; from VM & SP)
- Show that uniqueness of cutoff equilibrium is restored
- SupM ⇒ PAM even if signal-to-noise ratio dominates in L
- Robust to general Bayesian Learning

Assortative Learning

Jan Eeckhout^{1,2} Xi Weng²

¹ ICREA-UPF Barcelona – ² University of Pennsylvania

NBER – Minneapolis Fed November 19, 2009

Comparative statics

Claim p_0 is strictly increasing in p_0 and decreasing in π .

Ergodic distribution

• Ergodic density f_y satisfies Kolmogorov forward equation

$$0 = \frac{df_y(p)}{dt} = \frac{d^2}{dp^2} [\Sigma_y(p) f_y(p)] - \delta f_y(p)$$

with general solution:

$$f_y(p) = [f_{y0}p^{\gamma_{y1}}(1-p)^{\gamma_{y2}} + f_{y1}(1-p)^{\gamma_{y1}}p^{\gamma_{y2}}]$$

where

$$\gamma_{y1} = -rac{3}{2} + \sqrt{rac{1}{4} + rac{2\delta}{s_{y}^{2}}} > -1 \ \ ext{and} \ \ \gamma_{y2} = -rac{3}{2} - \sqrt{rac{1}{4} + rac{2\delta}{s_{y}^{2}}} < -2.$$

- The Kolmogorov forward equation is only valid for p ≠ p₀ and there is a kink in the density function at p = p₀.
- There are two cases: $p < p_0$ and $p > p_0$.
- Note: entry from a non-degenerate distribution around p_0 , but hard to solve differential equation explicitly

Equilibrium conditions

$$W_{H}(\underline{p}) = W_{L}(\underline{p}) \qquad \qquad \text{(Value Matching)}$$

$$W'_{H}(\underline{p}) = W'_{L}(\underline{p}) \qquad \qquad \text{(Smooth-pasting)}$$

$$W''_{H}(\underline{p}) = W''_{L}(\underline{p}) \qquad \qquad \text{(No-deviation)}$$

$$\Sigma_{H}(\underline{p}+)f_{H}(\underline{p}+) = \Sigma_{L}(\underline{p}-)f_{L}(\underline{p}-) \qquad \qquad \text{(Boundary condition)}$$

$$\int_{\underline{p}}^{1} f_{H}(p)dp = \pi \qquad \qquad \text{(Market clearing H)}$$

$$\int_{0}^{\underline{p}} f_{L}(p)dp = 1 - \pi \qquad \qquad \text{(Market clearing L)}$$

$$\frac{d}{dp}[\Sigma_{L}(p)f_{L}(p)]|_{\underline{p}-} = \frac{d}{dp}[\Sigma_{H}(p)f_{H}(p)]|_{\underline{p}+} \qquad \text{(Flow equation at \underline{p})}$$

$$f_{H}(p_{0}-) = f_{H}(p_{0}+) \qquad \qquad \text{(Cont. density at p_{0})}$$

• 8 eq., 9 unknowns: V_L , V_H , k_L , k_H , p, f_{H0} , f_{H1} , f_{H2} , f_{L0} (indeterminacy of prices V_L as in Becker)

Existence and uniqueness

Theorem

Under strict supermodularity, for any pair $(p_0, \pi) \in (0, 1)^2$, there exists a unique PAM cutoff \underline{p} . Moreover, $\underline{p} < p_0$ if and only if:

$$\left(\frac{p_0}{1-p_0}\right)^{\gamma_{H1}-\gamma_{L2}} \frac{\delta/s_H^2}{\delta/s_L^2} \frac{\int_{p_0}^1 p^{\gamma_{H2}} (1-p)^{\gamma_{H1}} dp}{\int_0^{p_0} p^{\gamma_{L1}} (1-p)^{\gamma_{L2}} dp} < \frac{\pi}{1-\pi}.$$

Equilibrium Payoffs

- As in the frictionless case, there is indeterminacy in equilibrium payoffs.
- As usual, we assume $\mu_{LH} > \mu_{LL} = 0$ and then we can normalize $V_I = 0$.
- V_H is uniquely given by:

$$rV_{H} = (\mu_{LH} - \mu_{LL}) + \frac{\alpha_{H}(\alpha_{L} - 1)(\Delta_{H} - \Delta_{L})\underline{p}}{\alpha_{H}(\alpha_{L} - 1) - (1 - \underline{p})(\alpha_{L} - \alpha_{H})},$$

where

$$\alpha_y = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{2(r+\delta)}{s_v^2}} \ge 1.$$

The Planner's Problem

Proof

- 1 Consider *N* cutoffs (generic. odd): $0 < p_N < \cdots < p_1 < 1$
- 2 Suppose $p \in (p_n, p_{n-1})$ match with L
- 3 move $(p_n, p_{n-1}) \rightarrow (p_n \epsilon_2, p_{n-1} \epsilon_1)$, s.t. ϵ_1, ϵ_2 satisfy market clearing
- 4 Only change f_L in $(\tilde{p}_n, \tilde{p}_{n-1})$ to \tilde{f}_L ; keep all other f_H , f_L
- 5 Martingale property

$$\mathbb{E}_{\Omega_H} p + \mathbb{E}_{\Omega_L} p = \int_{\Omega_H} p f_H(p) dp + \int_{\Omega_L} p f_L(p) dp = p_0$$

6 Then $\mathbb{E}_{\Omega_H} p - \mathbb{E}_{\tilde{\Omega}_H} p > 0$ since by construction

$$\int_{p_{n-1}-\epsilon_1}^{p_{n-1}} f_H(p) dp = \int_{p_n-\epsilon_2}^{p_n} f_H(p) dp$$

7 Lemma: Higher $\mathbb{E}_{\Omega_H} \rho$ (\Leftrightarrow lower $\mathbb{E}_{\Omega_I} \rho$) \Rightarrow higher output