Trend and Cycle in Bond Premia

Monika Piazzesi

Martin Schneider Stanford & NBER Stanford & NBER

Minneapolis, October 10 2008

Motivation

• stylized fact: excess returns on long bonds are predictable

Motivation

stylized fact: excess returns on long bonds are predictable

- definitions
 - \log $\frac{1}{2}$ excess return on zero coupon bond of maturity n years, held for 1 year

 $=\log$ price next year $-\log$ price today -1 year interest rate

 $= p_{t+1}^{(n-1)} - p_t^{(n)} - i_t^{(1)} := rx_{t+1}^{(n)}$

- predictability: premium $\hat{E}_t r x_{t+1}^{(n)}$ moves around

 \hat{E}_t computed from statistical model -> "statistical premium" e.g., fitted value from regressing $rx_{t+1}^{(n)}$ on time-t variables

Motivation

• stylized fact: excess returns on long bonds are predictable

- = statistical premium $\hat{E}_t r x_{t+1}^{(n)}$ moves around; e.g.
 - higher after recessions, lower at end of booms
 - higher in 1980s, lower in 1970s

 \implies puzzle: why did investors not exploit predictability? Two candidate answers:

- 1. historical expectations $\neq \hat{E}_t r x_{t+1}^{(n)}$
- 2. historical expectations = $\hat{E}_t r x_{t+1}^{(n)} = (\text{compensation for risk})_t$
- most models: only 2.
- This paper: model of both; evidence of 1. from surveys

This paper

- investors learn about dynamics of interest rates, inflation, real activity
- learning process determines
 - 1. subjective forecasts $E_t r x_{t+1}^{(n)}$ compare to survey data
 - 2. subjective risk
- Euler equation: $E_t r x_{t+1}^{(n)} = (\text{compensation for } \text{subjective risk})_t$
- decompose statistical premium

$$\hat{E}_t r x_{t+1}^{(n)} = \left(\hat{E}_t r x_{t+1}^{(n)} - E_t r x_{t+1}^{(n)}\right) + (\text{compensation for subjective risk})_t$$
forecast difference

Message

decompose statistical premium

$$\hat{E}_t r x_{t+1}^{(n)} = \left(\hat{E}_t r x_{t+1}^{(n)} - E_t r x_{t+1}^{(n)}\right) + (\text{compensation for subjective risk})_t$$
forecast difference

- Movements in forecast difference
 - forecasts lag behind trends, do not react much to sudden changes
- ⇒ forecast differences low in 70s, high in 80s, countercyclical.
- Movements in compensation for subjective risk
 - with recursive utility, relevant risk is Cov (bond returns, news about growth)
 - risk increases over 1970s, drops later
- ⇒ subjective premium slow-moving, high in 80s

Outline

- 1. Stylized facts about survey forecasts
 - (a) pictures for one bond, one forecast horizon
 - (b) compress info from forecasts for many maturities, horizons (using factor model)
- ⇒ forecasts made as if level & slope of yield curve more persistent
- ⇒ subjective premium much less volatile, cyclical, especially for long maturities
- 2. consumption based asset pricing model with learning:

learning explains forecast differences and subjective risk premia

Related Literature

predictability regressions

Fama & Bliss 1987, Campbell & Shiller 1991, etc.

statistical analysis of interest rate survey data

Froot 1989, Kim & Orphanides 2007, Chernov & Mueller 2008

role of survey expectations in other markets

Frankel & Froot 1989, Gourinchas & Tornell 2004, Bacchetta et al. 2008

asset pricing with recursive utility

Epstein & Zin 1989, Bansal & Yaron 2004, Hansen, Heaton, Li 2008

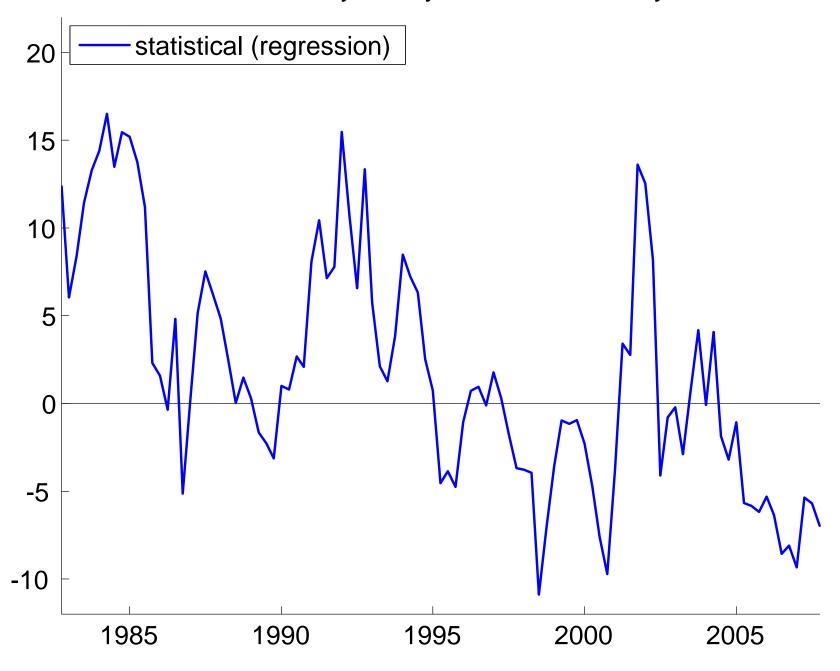
Properties of Survey Forecasts

- 2 datasets: Goldsmith-Nagan surveys 1970-1986 & Bluechip surveys 1983 today
- each quarter, 40 market participants are asked about their interest-rate expectations
- look at median, max horizons: 2 quarters for GN, 1 year for Bluechip
- ullet decomposition for bond of maturity n years, held for horizon h years

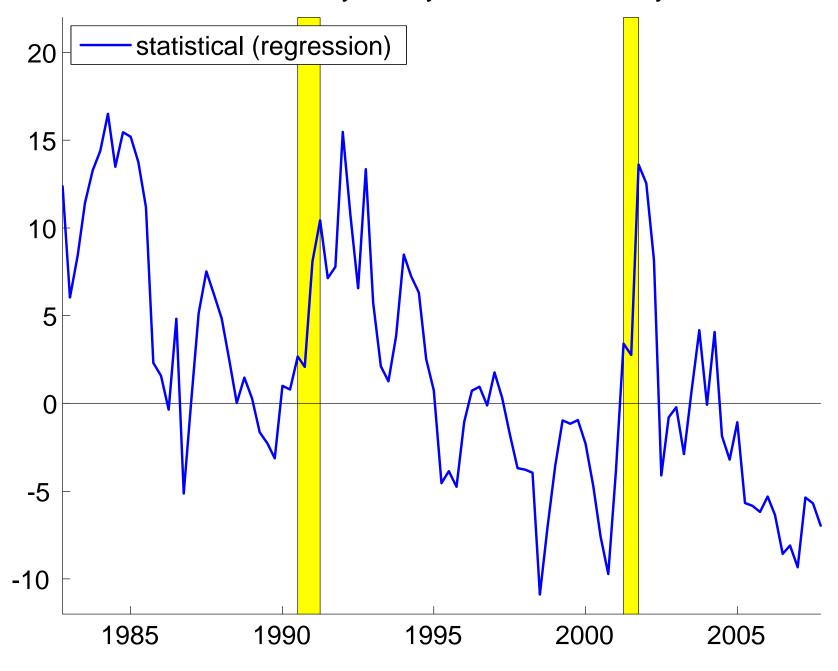
$$\hat{E}_t r x_{t+h}^{(n)} = \left(\hat{E}_t r x_{t+h}^{(n)} - E_t r x_{t+h}^{(n)}\right) + (\text{compensation for risk})_t$$

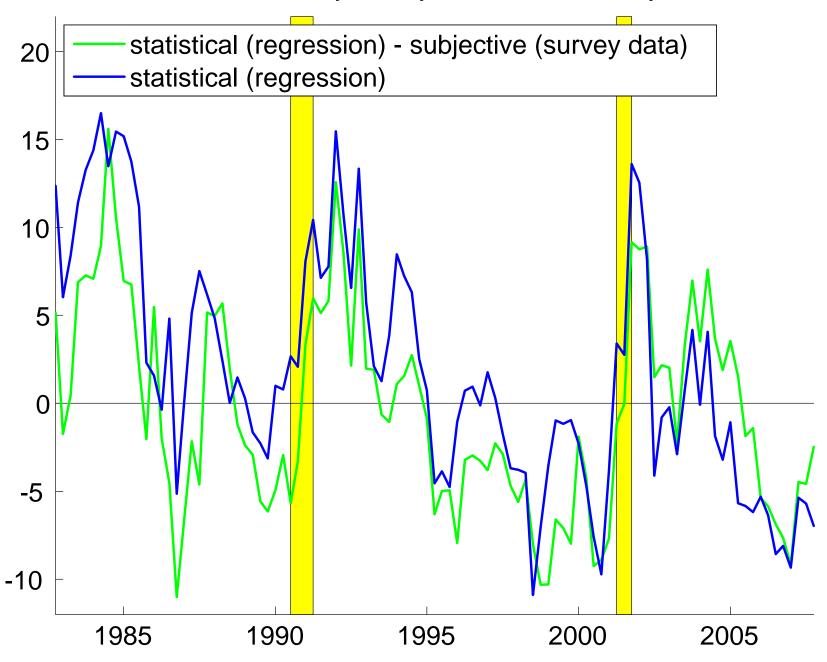
- measure $\hat{E}_t r x_{t+h}^{(n)}$ with regressions
- measure $E_t r x_{t+h}^{(n)} = E_t p_{t+h}^{(n-h)} p_t^{(n)} i_t^{(h)}$ with interest-rate surveys $E_t p_{t+1}^{(n-1)} = -(n-1) E_t i_{t+1}^{(n-1)}$

example: n = 11 years, h = 1 year for Bluechip



Premia, maturity = 11 years, horizon = 1 year





Outline

- 1. Stylized facts about survey forecasts
 - (a) pictures for one bond, one forecast horizon
 - (b) compress info from forecasts for many maturities, horizons (using factor model)
- ⇒ forecasts made as if level & slope of yield curve more persistent
- ⇒ subjective premium much less volatile & cyclical, especially for long maturities
- 2. consumption based asset pricing model with learning:

learning explains forecast differences and subjective risk premia

Compressing info

- goal: combine info in forecasts for all dates, bond maturities, forecast horizons
- quarterly state space system:
 observables are interest rates, inflation, consumption growth

observables
$$_t = \mu_z + \phi_z$$
 factors $_{t-1} + \sigma_z e_t$ factors $_t = \phi_f$ factors $_{t-1} + \sigma_f e_t$

statistical forecasts

$$\hat{E}_t \left[\mathsf{observables}_{t+h} \right] = \mu_z + \phi_z \left(\phi_f \right)^h$$
 factors

• assume same functional form for survey forecasts

$$E_t \left[\mathsf{observables}_{t+h} \right] = \mu_z + \phi_z^* \left(\phi_f^* \right)^h \quad \mathsf{factors}_t$$

 \bullet estimate ϕ_z^*,ϕ_f^* from survey forecast data

 \Longrightarrow survey forecasts look like from system with more persistent level, slope

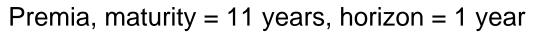
Comparison of subjective & statistical premia

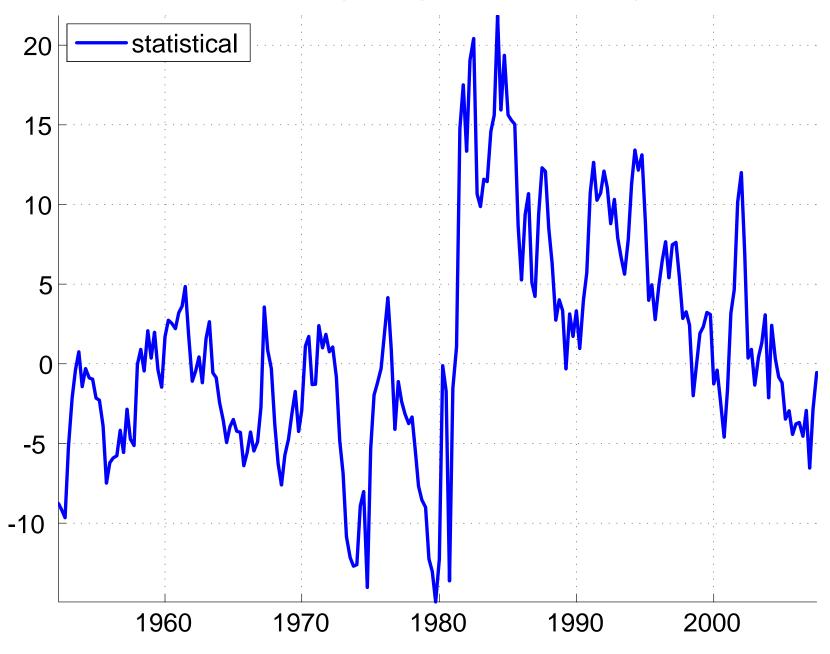
maturity 10 years

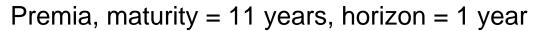
subjective premium

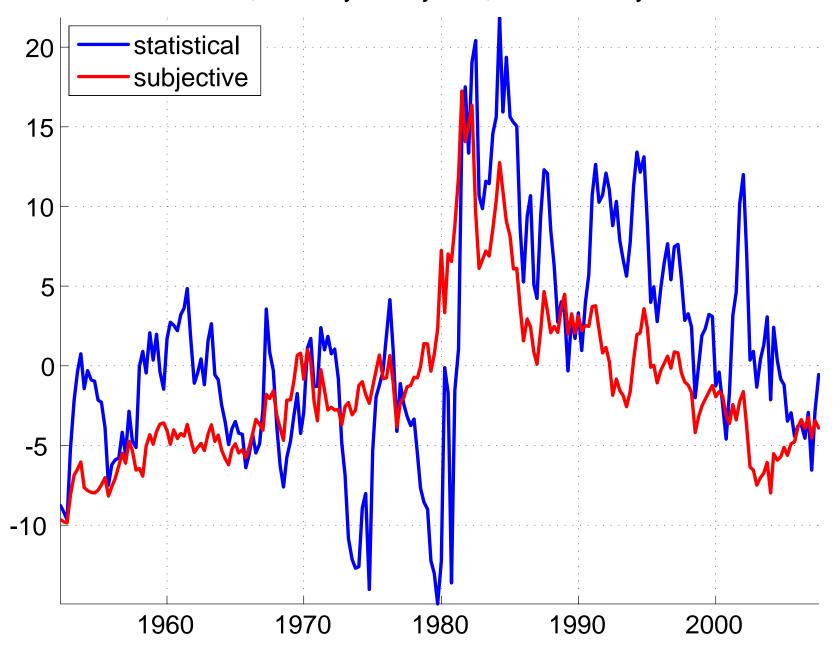
statistical premium

6.44 94 31









Outline

- 1. Stylized facts about survey forecasts
 - (a) pictures for one bond, one forecast horizon
 - (b) compress info from forecasts for many maturities, horizons (using factor model)
- ⇒ forecasts made as if level & slope of yield curve more persistent
- ⇒ subjective premium much less volatile & cyclical, especially for long maturities
- 2. consumption based asset pricing model with learning:

learning explains forecast differences and subjective risk premia

Consumption based asset pricing

- Beliefs: adaptive learning
 - cond. distribution of cons. growth, inflation, interest rates for every date t
 - estimate linear state space system (geometric downweighting of past data with forget factor v)
 - use price variables to capture conditioning info, use in Euler equation checks
- Preferences: recursive utility (Epstein-Zin 1989)
 - special case: intertemporal elasticity of substitution = 1.

$$\ln V_t = (1 - \beta) \ln C_t + \beta \ln \mathsf{CE}_t (V_{t+1})$$

$$CE_t(V_{t+1}) = E_t(V_{t+1}^{1-\gamma})^{1/(1-\gamma)}$$

– aversion against persistence $\gamma>1$

Nominal pricing kernel (in logs)

- Euler equation: for a nominal return R_{t+1} , must have $E\left[\exp\left(m_{t+1}\right)R_{t+1}\right]=1$
- With normal homoskedastic shocks, linear state space system:

$$m_{t+1} = \text{const.} - \Delta c_{t+1} - (\gamma - 1) (E_{t+1} - E_t) \sum_{\tau=1}^{\infty} \beta^{\tau} \Delta c_{t+1+\tau} - \pi_{t+1}$$

- Agents want more consumption if
 - low consumption growth
 - bad news about future consumption growth
- Agents dislike assets that pay off little if lo growth, hi inflation or bad news about growth
- Compensation for risk = Cov(return, m)
 - expected return higher if higher Cov (return, news about growth)
 - nom. n-period interest rate higher if higher Cov (inflation, news about growth) over lifetime of bond.

Euler equations for bonds

For a nominal return $R_{t,t+h}$, must have $E\left[\exp\left(\sum_{i=1}^{h}m_{t+i}\right)R_{t,t+h}\right]=1$.

1. Holding period = maturity: log return = interest rate satisfies

$$i_t^{(h)} = -\frac{1}{h} E_t \left[\sum_{i=1}^h m_{t+i} \right] - \frac{1}{2} \frac{1}{h} Var_t \left[\sum_{i=1}^h m_{t+i} \right]$$

 $i_t^{(h)}$ higher if higher cov (inflation, news about growth) between t and t+h

2. Holding period < maturity: log excess return

$$E_{t}\left[p_{t+h}^{(n-h)}\right] - p_{t}^{(n)} - hi_{t}^{(h)} + \frac{1}{2}Var_{t}\left[p_{t+h}^{(n-h)}\right] = -cov_{t}\left(\sum_{i=1}^{h} m_{t+i}, p_{t+h}^{(n-h)}\right)$$

 cov_t higher if higher cov $(p_{t+h}^{(n-h)}, \text{ news about growth})$

Can evaluate cond. moments under agent's subjective belief for every t & check errors

Results

Decompose statistical premium

$$\hat{E}_t r x_{t+1}^{(n)} = \left(\hat{E}_t r x_{t+1}^{(n)} - E_t r x_{t+1}^{(n)}\right) + cov_t \left(m_{t+1}, r x_{t+1}^{(n)}\right)$$
forecast compensation for difference subjective risk

- ullet Subjective beliefs implied by learning \longrightarrow movements in forecast difference, subjective risk
- ullet Pick preference parameters eta, γ to fit Euler equations
- Time variation in subjective, statistical risk premia

Results: subjective beliefs from learning

Forecasts

- fit survey forecasts better than statistical model
 (MAE drops for most forecast horizons, maturities)
- forecast differences:
 (statistical minus surveys) versus (statistical minus learning):
 learning tracks change in sign around 1980, many cyclical movements

Subjective Risk

- Cov_t (bond price, news about growth) high & positive after 70s, negative later
- Cov_t (inflation, news about growth) high after 70s, lower later

Forecast differences

4 qtr statistical minus subjective risk premium; 40 qtr bond 15 10 5 -5 -10 -15 -20 surveys -25 learning 1975 1980 1985 1990 1995 2000 2005

Preference parameters

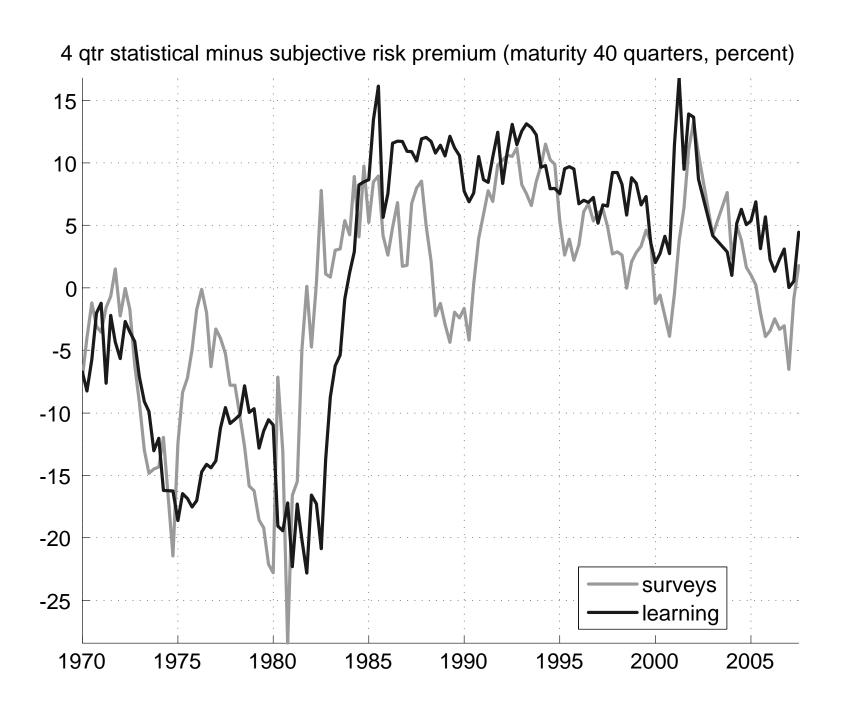
- Horizon h = 4 quarters.
- Consider three Euler equations
 - 4 and 40 quarter interest rate
 - excess return for holding 40 quarter bond over 4 quarters
 (express in terms of forward rates)
- Select β, γ to match equally weighted sum of squared errors
- For comparison, use statistical model as belief, and log utility

Euler equation errors

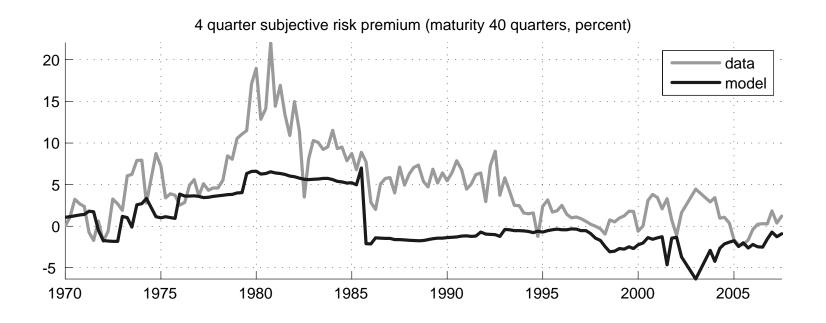
Table 8: Euler Equations Errors

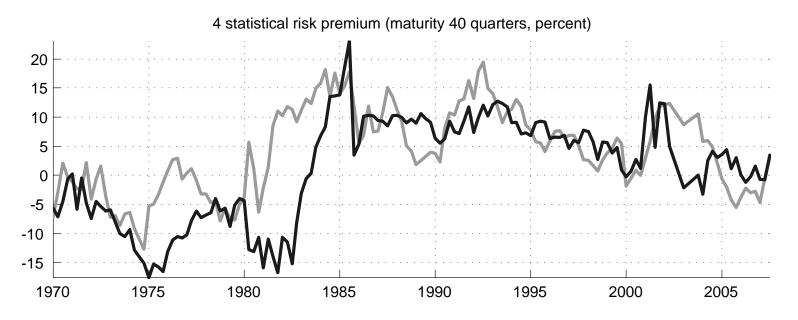
model	Preferences		Euler equation errors Mean absolute error (% p.a.)		
statistical belief	eta	γ	$i_t^{(4)}$	$i_t^{(40)}$	$f_t^{(36,4)}$
log utility	.9970	1	1.97	1.70	0.83
Epstein-Zin	.9961	26	1.96	1.69	0.86
learning $v=.95$	0066	80	1 76	1 21	0.62
Epstein-Zin	.9966	80	1.76	1.21	0.62

Forecast differences



Subjective and Statistical Risk Premia





Message

decompose statistical premium

$$\hat{E}_t r x_{t+1}^{(n)} = \left(\hat{E}_t r x_{t+1}^{(n)} - E_t r x_{t+1}^{(n)}\right) + cov_t \left(m_{t+1}, r x_{t+1}^{(n)}\right)$$
forecast subjective
difference risk premium

- Movements in forecast difference
 - forecasts lag behind trends, do not react much to sudden changes
- ⇒ forecast differences low in 70s, high in 80s, countercyclical.
- Movements in (subjective) risk premium
 - with recursive utility, Cov (returns, news about growth) drives premia
 - high interest rates, inflation bad news for growth, more so after 1970s
- ⇒ subjective premium slow-moving, high in 80s