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Abstract

A number of theoretical models of technology adoption have been proposed that
emphasize technological switching, loss of expertise and subsequent technology-specific
learning. These models imply that measured productivity may initially fall and then
later rise after the adoption of a new technology. This paper investigates whether or
not this implication is a feature of plant-level data from the Colombian manufacturing
sector. We regress measures of productivity growth at the plant level on a plant-specific
measure of technology adoption and its lagged values. We find that .... .
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1 Introduction
The following points have been made in the literature on technological change:

1. Technological change is key for growth in GDP per capita.1

2. Outside of the lead countries, technologies need only be adopted not invented.
Even in the lead countries the vast majority of resources are devoted to adoption
rather than invention.2

3. Technology adoption often requires an investment in physical capital. In this case
technological change is said to be embodied or investment specific.'

4. After a production unit adopts a new technology, not all the expertise in the old
technology transfers to the new technology and there is a period of technology-
specific learning. One implication is that measured productivity growth may at
first fall and then later rise.4

Building upon these points, a number of recent papers have gone on to advance
as well as to examine the hypothesis that an increase in the rate of technology adop-
tion may lead to a temporary or even long lasting slowdown in measured rates of
economy-wide productivity growth. For example, Hornstein and Krusell (1996) use
economy-wide and sectoral data to examine the plausibility of this hypothesis as an
explanation of the slowdown in measured total factor productivity (TFP) growth that
has occured in the majority of the advanced countries since the 1970's. Greenwood
(1996) and Greenwood and Yorukoglu (1997) focus on historical experience with major
technological innovations and argue that these were associated with labor productivity
growth slowdowns at the economy-wide level as well as increases in income inequality.
They also argue that this has been occuring in the US since 1974.5

An important point to mention is that technology adoption is a decision variable for
individual production units in the economy. However, the papers by Greenwood (1996),
Hornstein and Krusell (1996) and Greenwood and Yorukoglu (1997) have neither pre-
sented nor referenced micro-evidence showing that productivity growth actually falls
or slows down at individual production units after the adoption of new technology.

1 Solow (1956) provides a theoretical argument, whereas Solow (1957) provides an empirical argument.
2 Jovanovic (1996) provides arguments for these points.
3 Solow (1960) provides an early theoretical model of vintage capital.
4 Zeckhauser (1968), Parente (1994), Jovanovic and Nyarko (1996), Hornstein and Krusell (1996) and

Klenow (1998) provide theoretical frameworks emphasizing technological switching, loss of expertise and
learning. Argotte and Epple (1990) review the large empirical literature on learning curves.

5Basu Fernald and Kimball (1997) consider a related hypothesis. In particular, they focus on the business-
cycle implications of technology improvements within sticky-price models.
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Such micro-evidence would appear to be important to assessing the above hypothe-
sis as measures of productivity change for the whole economy are, in theory, simply
complicated aggregates of productivity change at individual production units.6

To the best of our knowledge, there is relatively little existing micro-evidence doc-
umenting whether or not measured productivity growth rates fall or slow down at
individual production units after adopting new technology. Baloff (1970) among oth-
ers has presented several case studies in which plants from the US manufacturing sector
have changed products, changed the product mix or adopted new ways of mechanizing
the production process and in which the level of productivity initially falls and then
later rises. However, the main focus of the learning literature has been to document
the upside of the learning curve rather than any potential downside after a switch
in technology. For example, Bahk and Gort (1993) focus on a wide selection of new
plants in the US manufacturing sector and estimate the magnitude of learning effects.
While quite useful for many purposes, we doubt that this evidence is the most relevant
to assessing the hypothesis of Greenwood (1996), Hornstein and Krusell (1996) and
Greenwood and Yorukoglu (1997).7

In this paper we provide evidence on the hypothesis that the adoption of new tech-
nology is associated with a fall or slowdow in the measured productivity growth rate
of individual production units. To address this hypothesis, we identify the adoption
of a new technology at a particular production unit with the purchase of equipment.
A number of remarks are in order in regards to this choice for measuring technology
adoption. First, this is exactly the mechansim of economic growth and technology
adoption emphasized by Greenwood (1996), Hornstein and Krusell (1996), Greenwood
and Yorukoglu (1997) as well as by economic historians such as Rostow (1958) and
Mokyr (1992). Thus, even if equipment investment is not a perfect measure of technol-
ogy adoption embodied in equipment, it will still be useful for addressing the related
hypothesis that equipment investment is associated with a fall or slowdown in measured

6Hulten (1978) extends the growth accounting apparatus of Solow (1957) to allow for many final outputs,
many primary inputs and many intermediate goods. Measures of the shift in the production possibility
frontier arising from technological change can then be related to a weighted-sum of productivity growth rates
for the production of each final good in the economy. Alternatively, if one attempts to measure productivity
change using highly aggregated data, then this aggregate measure can still be related to productivity change
at the sector or more finely disaggregated levels (see Massell (1961) for an early example of this type of
exercise). The result is that the measure of productivity growth from aggregate data can be related, through
an accounting identity, to a weighted-sum of productivity growth at disaggregated levels as well as to some
additional terms.

71f technology adoption primarily occurs at new plants, then the Bahk and Gort evidence would be very
important. However, we conjecture that existing plants account for the bulk of technology adoption. We
make this conjecture as in the data set that we explore the vast majority of the expenditures on either
equipment investment or total investment occur at existing plants rather than new plants.
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productivity growth rates. Second, there is some evidence that equipment investment
may be a quantitatively important source of growth. For example, DeLong and Sum-
mers (1991, 1993) show that the growth rate of labor productivity across countries
is highly positively correlated with the fraction of equipment investment in GDP. In
addition, Greenwood et al (1997) argue that the bulk of postwar US growth in labor
productivity can be attributed to technological change embodied in new equipment.
Third, in plant-level data it is the case that investment, and especially equipment in-
vestment, displays a pronounced lumpy pattern at the plant level with the bulk of
plants making little or no purchases of equipment in a given year and large percentage
changes in the stock of equipment in other years.' Thus, our measure of technology
adoption has the potential to correspond to the casual notion that major technology
adoptions occur somewhat infrequently. Fourth, we do not take the position that our
measure of technology adoption will pick up all instances of measured productivity
growth at individual plants. Clearly, we will miss all productivity growth that is unre-
lated to the purchase of equipment and the subsequent learning process. For example,
changes in labor laws, changes in managerial techniques and reorganizations of the pro-
duction process may be unrelated to equipment investment and yet result in measured
productivity growth. There may also be productivity growth resulting from a similar
mechanism to the one we investigate but arising from the purchase of other types of
physical capital. As a last example, some portion of measured productivity growth
may arise from measurement error. This could happen as errors in measuring inputs
and output or the corresponding prices will be reflected in our measures of productivity
growth.

Our empirical strategy is straightforward. We focus on a data set of plants from
the Colombian manufacturing sector. For each plant present in our data set for two
consecutive years, we calculate a measure of productivity growth. We consider both
labor productivity and total factor productivity (TFP) growth as both of these have
been stressed in the literatures cited above. We then use equipment purchases as a
fraction of the stock of equipment as our measure of the degree of technological updating
of each particular plant in a given year. By regressing our measure of productivity
growth on our measure of technology adoption and its own lagged values, we address
the question posed in the title of the paper.

Discussion of results.
This paper is organized in four sections. Section 2 presents features of our data

set, properties of plant-level productivity growth and properties of our measure of
technology adoption. Section 3 presents our main results. Section 4 concludes.

8Doms and Dunne (1998) and Cooper et al (1995) document this fact with US data, whereas Ospina
(1994) and Isgut (1997) document this fact with Colombian data. In section 2.3 of this paper we also
provide some evidence for the lumpy behavior of equipment investment.

ir
k
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2 Background Facts

2.1 Description of Data Set
The Colombian Statistics Department (DANE) conducts an annual survey of plants in
the Colombian manufacturing sector called the Encuesta Anual Manufacturera. DANE
surveys all firms listed in the Industry directory. These firms are then required to report
on all their plants with at least 10 employees. Our data set covers the period 1974-1991.
In a typical year our data set has between 6,000 and 8,000 plants. Over this period we
have data on 14,181 distinct plants.

For each plant, data is collected on (1) employment and employee compensation,
(2) capital inputs, (3) intermediate input, (4) production and (5) various other infor-
mation. Employment is divided in six categories: proprietors, managerial, professional,
employees, technicians and apprentices. Professionals are skilled workers in charge of
managing production. Employees are administrative managers, secretarial workers,
accountants, drivers and others who are not directly in charge of production. Techni-
cians are directly in charge of the production process. The data indicates the number
of employees of each of the above six types listed in the payroll as of (or nearest to)
November 15. This measure includes those employees temporarily absent from work
during the year.

Capital inputs are divided into five categories: buildings, machinery, office equip-
ment, transport equipment and land. For each capital input there is data on book
value, purchases of new capital, purchases of used capital, own production of capital,
sales of capital, depreciation and revaluation. The data on bookvalues for a particular
year are end-of-period values.

There are two different output measures in our data set: gross production and
value added. Gross production is measured as the sum of the value of the production
of finished goods, changes in the value of goods in the process of production, value of
raw materials or electricity sold, income received for services performed for others and
indirect taxes caused during the year. Value added is measured as gross production
less intermediate consumption. Intermediate consumption is measured as the sum
of the value of raw materials consumed, energy consumed, materials sold without
transformation, services performed by others and indirect taxes caused during the
year. All of these data are reported on an annual basis.9

An important feature of the data set is that DANE assigns each plant a plant iden-
tification number. Thus, it is possible to track individual plants over time, This means
that a plant-specific measure of productivity growth can be calculated. Our measures
of productivity growth are total factor productivity growth and labor productivity

9See DANE (1991, pp. 16-17) for more explanation of these definitions.
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growth, where labor productivity is measured using real value added per unit of labor
input .1°

Our analysis focuses on the collection of plants present in all years of the data set
that are not excluded by any of the following two criteria. 11 First, we exclude any
plant for which any of the data needed to calculate TFP or labor productivity growth
rates are missing. This data includes employment and employee compensation for each
type of labor input, bookvalue of capital for the first year a plant appears in the data,
investment data for each type of capital input, intermediate input expenditure and gross
production. In addition, we require strictly positive values for gross production, value
added, capital services, intermediate input, total employment, total compensation and
the real value of the stock of machines and office equipment. Second, we exclude plants
for which either the plant identification number is missing or repeated or for which the
industry classification code is missing.

Figure 1 describes the size distribution of plants that are in our balanced panel
after applying the above exclusion criteria. There are a total of 2158 plants in our
data set each year. In any year of the data about half of these plants have less than
50 employees, whereas about 5 percent of the plants have 500 or more employees.

Insert Figure 1 Here

2.2 Productivity Growth Facts
This section characterizes some features of the distribution of TFP and labor produc-
tivity growth rates. The measurement of TFP growth rates is described in detail in
the Appendix. Figure 2 plots the distribution of TFP growth rates in each year of our
data. Figure 2 shows that in each year (i) the median TFP growth rate is about zero,
(ii) the TFP growth rate distribution is rougly symmetric about a value of zero with
the vast majority of the plants having a TFP growth rate lieing between 40 and —40
percentage points and (iii) there are a small percentage of plants (typically less that
half of one percent) that have a TFP growth rate either greater than 100 percent or
smaller than —100 percent. This last finding is represented in Figure 2 by plotting all

111 For a discussion of the methodology of the Encuesta Anual Manufacturera see DANE (1991). For a
detailed examination of properties of this data set see Huggett, Ospina and Torres (1998). Research based
on versions of this data set has been conducted by Roberts and Tybout (1996), Isgut (1996) and Kugler
(199?) among others.

"We focus on the balanced panel in order to minimize on measurement error in the calculation of labor
productivity and TFP growth. We conjecture that plants that partially shutdown in a given year occur less
frequently in the balanced than in the unbalanced panel. We suspect that productivity growth rates for these
plants may be quite sensitive to the mismeasurement of the value of goods in the process of production.
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plants with a growth rate of less than —100 percent at —1 and all the plants with a
growth rate exceeding 100 percent at 1.

We now comment upon the extreme growth rates in the tails of Figure 2. First, the
variability of TFP growth rates is substantially greater at the plant level than what is
observed in more highly aggregated data (e.g. industry or sectoral data). For example,
TFP growth rates are typically between 0 and 10 percent when we calculate TFP
growth rates for the Colombian manufacturing sector over the period 1975-90 using
aggregate measures of outputs, inputs and factor shares. Second, although intuitively
implausible, a straightforward application of a discrete-time version of Solow's growth
accounting equation can produce TFP growth rates smaller than —100 percent. We
have individual cases with growth rates as low as —50, 000 percent. This can occur
when input growth rates are large and positive and when output growth rates are not
quite so large. 'We have examined a number of the cases of extreme negative TFP
growth rates and have found out that in these cases output increased by a couple
of hundred percentage points whereas intermediate input increased at much greater
rates.12

Insert Figure 2 Here

Figure 3 plots the distribution of labor productivity growth rates. Labor productiv-
ity is calculated by dividing to real value of value added by labor input. Our measure
of labor input is described in the Appendix. Labor productivity growth rates display
the following patterns: (i) the median labor productivity growth rate each year is close
to zero, (ii) the distribution is skewed to the right in each year and (iii) a small fraction
of plants in each year have a productivity growth rate exceeding 100 percent. One im-
portant difference between Figure 2 and Figure 3 is that by the construction of labor
productivity it is impossible to have a labor prductivity growth rate of less than —100

percent when a plant produces positive output. Interestingly, it is the case that in
each year a small fraction of plants experiences labor productivity growth rates close
to —100 percent. This reflects the dramatic fluctuations occuring in plant-level data.
We note that both the dramatic positive and negative productivity growth rates are
smoothed out when one analyzes more highly aggregated data.

Insert Figure 3 Here

120utput is measured by gross production which measures both changes in the value of finished goods as
well as changes in the value of goods in the process of production. Thus, the negative residuals are not due
to not measuring goods in the process of production, although potentially the problem may have to do with
poor measurement of the value of these goods.
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2.3 Equipment Investment Facts
This section describes the pattern of plant-level gross equipment purchases as a share
of the stock of equipment. This variable is the key explanatory variable that we use as a
measure of technology adoption. Our measure of equipment consists only of machinery
and thus does not include investment in office equipment, transport equipment or
structures. Investment in machinery is by far the largest component of investment in
physical capital. In particular, in all years of our data machinery investment makes up
between 70 and 80 percent of the combined investment in machinery, office equipment,
transport equipment and structures.

We now focus on documenting the lumpy behavior of equipment investment. Figure
4 presents for several years the distribution of plants by equipment purchases as a
fraction of the stock of equipment. Figure 4 shows that that the distribution is quite
similar in all the years examined. Figure 4 also shows that in a given year about 25
percent of the plants make purchases of equipment of less than 10 percent of the value
of their equipment stock and more than 50 percent of the plants make purchases of less
than 20 percent of their equipment stock. Due to depreciation, many of these plants
will in net terms not expand the value of their stocks of machinery. The last point that
Figure 4 makes is that in any given year between 5 — 20 percent of the plants make
purchases that increase their equipment stock by 50 percent or more and between 2 — 8
percent of the plants make equipment purchases that more than double their stock of
equipment.'

Insert Figure 4 Here

3 Results
We attempt to answer the question posed in the title of the paper by means of a re-
gression which highlights the impact of current and past technology adoption decisions
on current, plant-level productivity growth. The equation that we estimate is provided
below in equation (1). In this equation yl is productivity growth of plant i at time
t, whereas x is our measure of technology adoption of plant i at time t. Equation
(1) states that productivity growth of a specific plant is the result of a time-varying
industry effect (Ei,t a;Dot ) plus the effect of current and past technology adoption
decisions embodied in equipment investment (Eh Oks zt _ k ) plus an additional term 4

13 See Cooper et al (1995) for similar but less dramatic results for their sample of large plants in the US
manufacturing sector. See Ospina (1997) and Isgut (1997) for a more detailed analysis of lumpy investment
in Colombia.
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picking up all other sources of variation in measured productivity growth. The time-
varying industry effect is captured by time-specific industry dummies D ui taking the
value 1 if plant i is in industry j at time t and the value 0 otherwise. The parameter
Ok describes the effect on current productivity growth due to equipment purchases k
periods ago.

71

Y1	 aimit 4- E Ok -k
	 (1)

j,t

We will now discuss our thinking about our choice of controling for other sources
of productivity growth through a time-varying industry effect. First, we argue that
the inclusion of an industry-specific fixed effect is warranted. The basic argument is
that many of the measured changes in plant-level productivity growth are likely to be
specific to particular industries and arise from either disembodied technological change
or from industry-specific errors in the measurement of plant-level productivity growth.
The first type of effect could arise from changes in labor laws affecting labor efficiency
that are specific to a particular industry or to disembodied innovations either in product
quality or in the production process that are specific to an industry. The second type
of effect could arise from unmeasured changes in the quality of factor inputs that are
specific to a particular industry or from changes in industry output prices that are
not picked up perfectly in our 4-digit, industry-level price indicies. As many of these
effects may be largely one-time effects rather than filtering out evenly through time,
this suggests that we allow for industry effects that are time varying.

3.1 Productivity Dynamics: Baseline Results
In this section we estimate the technology adoption parameters 03o, ..., )3n ) as well
as the time-varying industry effects. As theoretical considerations do not put any
restrictions on the maximum lag length n, we provide estimates of the technology
adoption parameters for several lag lengths. The lag lengths we consider vary from

= 0 where only current period technology adoption decisions impact current period
productivity growth to It, = 4 where technology adoption decisions four years in the
past still impact current period productivity growth.14

We begin by focusing on the ordinary least squares estimators of the technology
adoption parameters and industry effects. Under the usual assumptions of the linear

"Bahk and Gort (1993) present evidence for plant-specific learning effects related to capital investments
of up to 5 — 6 years after a plant begins operations for plants in the US manufacturing sector. This suggests
that several lags may be needed to capture the effects of technology adoption and learning.
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model (i.e. errors el are (1) zero mean, (2) uncorrelated cross-sectionally and over
time, (3) uncorrelated with the regressors and (4) homoscedastic) it is known that the
least squares estimators are the linear unbiased estimators with the smallest variance.
If the errors are normally distributed, then this estimator is minimum variance among
all unbiased estimators. The results of the ordinary least squares (OLS) estimates are
provided in Tables 1 and 2 below.15

Table 1:
TFP Dynamics

Erki,-.0 Pk XI

Lag
Length lb ,31 02 /33 04 R2

Number of
Observations

n	 0 -.010 .005 30375
(.14)

n	 1 -.011 .002 .005 28350
(.14) (.75)

n t= 2 -.015 .003 .002 .005 26325
(.10) (.73) (.78)

n	 3 -.021 .005 .002 .005 .005 24300
(.06) (.58) (.78) (.94)

n = 4 -.022 .006 .002 .000 .001 .005 22275
(.07) (.58) (.83) (.98) (.92)

p-values are indicated in parenthesis below the point estimates

15 We allow for industry dummies up to the 3-digit level of the ISIC code.
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Table 2:
Labor Productivity Dynamics

yi = Ej,t c ; Dijt + EicLn Axi-k +

Lag
Length
n 0

n = 1

n = 2

n = 3

n = 4

p-values are indicated in parenthesis below the point estimates

Summary:
1. For the TFP growth regressions, the point estimates of the contemporaneous

effect is small and negative. The estimates suggest that doubling the stock has a
contemporaneous effect of lowering TFP growth by 1 - 2 percent. None of the point
estimates are different from zero at standard significance levels (i.e. 1 or 5 percent
levels).

2. For the TFP growth regressions, the point estimates of the lag effects are small
and not significantly different from zero.

3. For the labor productivity regressions, the point estimates of the contempora-
neous effect are large negative numbers but are not significantly different from zero.

4. For the labor productivity regressions, the lag effects vary widely in magnitude
but are not significantly diferent from zero.

3.2 Productivity Dynamics: Robustness
The main issues to investigate are described in the following questions:

1. Are the previous estimates sensitive to "extreme" observations?
2. Are the results sensitive to controling for productivity growth due to investment

in structures or office equipment?
3. Is there evidence for heterogeneity in productivity dynamics across industries?

fib 01 02 ,133 N R2
Number of

Observations
-.151 .013 30375
(.93)
-.171 -.015 .013 28350
(.93) (.99)
-.228 -.014 .283 .013 26325
(.92) (.99) (.89)
-.348 -.016 .323 -.164 .013 24300
(.91) (.99) (.88) (.94)
-.379 -.027 .435 -.187 -,009 .013 22275
(.91) (.99) (.87) (.94) (.99)
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4. Is there evidence for a non-linear response of productivity growth to our measure
of technology adoption?

3.2.1 Sensitivity to Extreme Observations

The reader will recall from Figures 2 and 3 in section 2.2 that measured productivity
growth rates take on extreme values in all the years of the data. One way to exam-
ine the sensitivity of the results in the previous section is simply to remove some of
these observations without changing the regression methodology. We do this below
by removing all plants from the data set that have a TFP growth rate exceeding 1 in
absolute value in any period. Tables 3 and 4 report the results of this exercise.

Table 3:
TFP Dynamics -Excluding plants with Extreme TFP Growth Rates

yt = E,,t aIptit Ek=e Ok4:- k + 4

Lag
Length go 131 132 /33 Qa R2

Number of
Observations

n = 0 -.005 .203 26535
(.00)

n --.--- 1 -.005 .002 .210 24766
(.00) (.01)

n	 2 -.004 .003 .000 .206 22997
(.00) (.00) (.62)

rt	 3 -.005 .003 .001 .001 .205 21228
(.00) (.00) (.50) (.14)

n	 4 -.005 .003 .000 .000 .000 .212 19459
(.00) (.01) (.68) (.89) (.32)

p-values are indicated in parenthesis below the point estimates
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Table 4:
Labor Productivity Dynamics -Excluding Plants with Extreme TFP

Growth Rates
Y;	 a'tDi3t 4- EL° /31,et_ k + 4

00 Si $2 03 134 R2
Number of

Observations
.004
(.67)

.023 26535

.006 .000 .023 24766
(.59) (.98)
.006 .002 .006 .022 22997
(.60) (.84) (.52)
.012 .002 .010 .000 .020 21228
(.44) (.83) (.38) (.98)
.007 .007 .011 -.001 .000 .018 19459
(.68) (.65) (.31) (.93) (.98)

Lag
Length
72 = 0

rz = 1

n = 2

n = 3

n = 4

p-values are indicated in parenthesis below the point estimates

Another way to deal with extreme observations is to use a regression methodology
that is much less sensitive to such observations than ordinary least squares. One such
methodology is the quantile regression methodology described by Koenker and Bassett
(1978). One advantage of quantile estimators relative to OLS estimators is that when
the regression error terms are drawn from a distribution with fatter tails than the
normal distribution, then quantile estimators can have substantially lower variances
than OLS estimators. An examination of the error terms indicates that they are far
from being normal.

3.2.2 Sensitivity to Expanding the Controls

3.2.3 Heterogeneity Across Industries

3.2.4 Presence of Non-linear Response
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4 Appendix
4.1 Measuring Productivity Growth Rates
Following Solow (1957), we assume that at each point in time a plant operates a
constant returns to scale production function Yt F(Xt ,t) and that plants behave
competitively. In this formulation, plants produce Yt units of output using a vector of
inputs Xt . Under the assumptions stated above, Solow derived the following growth
accounting equation for calculating what is now called total factor productivity growth
F/F. 16 The equation states that at time t the rate of shift of the production function
F/F at the current input vector equals output growth less a weighted average of
the growth rates of the factor inputs, where the weights are given by factor shares
(w 1 , wiv ). Solow's factor shares are shares of output, whereas the factor shares used
here are shares of cost. The cost share approach is slightly more general in that one
need assume only competition in input markets rather than competition in input and
output markets (see Hall (1991)).

TFPGrowtht ELF irt /Yt — E caiki /X?

To measure productivity growth at the plant level we have to empirically imple-
ment the growth accounting equation from the previous section. The first step is to
approximate the growth rates in the equation with yearly growth rates as indicated
below:

TFPGrowtht =	 E 4 1330 /X%1
t

The second step is to indicate how we measure each of these variables. We measure
Y by the value of nominal gross production measured in the data set divided by the
industry-specific output price index. We measure three separate factor inputs: labor,
capital and intermediate input. We measure the real value of intermediate input by
the nominal value of intermediate input measured in the data set divided by the price
index for intermediate input. As we do not have a price series for intermediate input
we use the GDP deflator for this purpose.

Our measure of labor input L t at a particular plant at time t is the weighted sum
of the number of employees 14 of type j at that plant at time t: Lt 1414 . The
weights are chosen so as to measure the efficiency of labor input type j at the particular
plant at time t. Thus, ill is the wage per type j worker at the particular plant at time

16A dot over a variable denotes a time derivative.
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t divided by the average wage per type 1 worker in the economy at time t. We choose
"unskilled workers" to be the type 1 worker. We measure wages by total compensation
per worker per year. We note that this way of measuring labor input allows for plant-
specific variation in the weight of each worker type while fixing the weight of type 1
workers in the entire economy at at value of 1 each year. This allows us to capture
potential differences in labor efficiency of different worker types across plants arising
from (i) differences in hours worked or (ii) differences in human capital.

We measure total capital services KSt at a particular plant at time t as the sum of

the capital serivices of each type of capital: KSt --,Ei .5[1(1 4- nu ] (6 ) r). This is the
standard way that capital services is constructed from an underlying measure of the
real capital stock of each capital type IC (see Griliches and Jorgenson (1968)). Note
that we use the average of the real value of the capital stock at the beginning of period
t and period t 1 in order to calculate the measure of the capital stock most relevant
for computing capital services during period t. We can distinguish five types of capital
in our data set: structures, equipment, office eqiupment, transportation equipment and
land. We will indicate how we calculate Kt for each capital type in the next section. We
set the interest rate at r = .05 and the depreciation rates (6j) of structures, machinery,
office equipment, transport equipment and land at (4.61, 12.56, 13.32, 18.92, 0). With
the exception of land which we have assumed does not depreciate, these estimates come
from the work of Pombo (1998, Table 3.1) for the Colombian manufacturing sector.

We measure the weights c4 as the average share of input j in total costs of a
particular plant in period t and t 1. As we observe the nominal cost of all inputs
except capital services, some assumption needs to be made to calculate cost shares.
We construct a common nominal price of capital services each year so that at this
price the nominal value of gross production in a given year for all plants in our sample
equals the nominal value of all input costs for all plants in our sample. This amounts
to assuming that there are no aggregate profits each year for the entire manufacturing
sector.

4.2 Measuring the Real Value of Capital
Our procedure for creating a series for each plant measuring the real value of type j
capital stock at the beginning of the period is as follows. The first year a plant appears
in our data set we define the real value of capital of a particular type as the bookvalue
divided by the investment price deflator of that type of capital. In all subsequent
years we set the real value of capital equal to the previous year's value of capital after
depreciation plus the deflated net purchases of capital. If a plant temporarily shuts
down operations in year t 1, then net purchases of capital are assumed to be zero.
Our procedures are summarized by the following two equations.

18



1. First Year in Sample: Kt BVt)
2. Subsequent Years: Kto r-- Ki2 (1— 5)+(PN? + PU1 +OP/ — S1)/pit

Kt - real beginning of period value of capital
Birt - beginning of period book value
PNt - purchases of new capital
PUt - purchases of used capital
OPt - own production of capital
St - sales of capital
6.7 - depreciation rate of type j capital
pi - Investment price deflator of type j capital

We have price deflators for structures, equipment and transport equipment. The
GDP deflator is used to deflate office equipment and land. Depreciation rates are set at
the values calculated in Pombo (1998) that were described previously in the Appendix.
We note that our procedure for assigning real capital values in the first year of the data
set may introduce large errors. In particular, bookvalues for older plants may measure
the nominal value of capital poorly even though the accounting procedures attempt to
account for price changes through a revaluation term. This should be less of a problem
for later years. Since our data for a given year on bookvalues are end-of-year values,
we use this end-of-year value as a beginning-of-period measure of the bookvalue for
the following year. This means that we only measure the capital stock in the year
immediately after the first year that a plant appears in the data set. An implication of
this fact and the fact that we use period t and period t + 1 capital to measure capital
services during period t is that we can construct the basic data on inputs and outputs
only for 1975-90.
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