Exercise 8: A Steady State Distribution Model Edward C. Prescott February 14, 2002

People

max
$$E\{\sum_t \beta^t \theta_t u(c_t)\}$$

subject to

$$c_t + m_{t+1} \le y + m_t$$

where

- i. real cash balances $m \in \{0,1,2,3,...,m_{max}\}=M$
- ii. *u* is strictly increasing and strictly concave;
- iii. 0<*β*<1;
- iv. y is a lot bigger that 1 and a lot smaller than m_{max} ;
- v. a person's θ_t are i.i.d. over time and belong to a finite set of strictly positive real numbers Θ . The biggest θ is denoted θ_{max} ;
- vi. the probability that $\theta_t = \theta$ is $\pi(\theta)$ for $\theta \in \Theta$;
- vii. the $\{\theta_t\}$ processes are "independent" across individuals and there are a large number of individuals so laws of large numbers hold.
- a. Write down the dynamic programming optimality equation. Let $m_{t+1} = g(m_t, \theta_t)$ be the optimal policy function if the price level is constant.
- b. Prove that for any m_0 in M, the sequence $\{m_{t+1} = g(m_t, \theta_{max})\}$ converges to 0.
- c. Let x(m) be the fraction of people with real cash balances m belonging to M. Write down the system of equations which specify what next period's fractions x'(m') would be if everyone uses the policy function $g(m,\theta)$.
- d. Prove that the distribution of people as indexed by m converge to a limiting distribution x^* which is independent of x_0 . By prove I mean state a theorem and verify that the conditions for the theorem to hold are satisfied for this problem.
- e. Let M^s be the money supply and P the price level. They are constant over time. State the equilibrium condition that determines P given M^s.