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1 Introduction

The normal linear regression model subject to linear inequality constraints for the
coeflicients arises commonly in applied econometrics as well as other scientific ap-
plications. Typically the motivating economic model restricts the signs of certain
coefficients or of known linear combinations of coefficients. A well-known pedagog-
ical example is provided by Pindyck and Rubinfeld (1981, p. 44) who take up the
demand for student housing near the University of Michigan. Rent paid per person is
a linear function of the number of rooms per person, with a positive coefficient, and
the distance from campus, with a negative coefficient. (We return to this example
below.)

The subsequent empirical work in this and other linear regression models sub ject
to linear inequality constraints for the coefficients then focuses on two related but
distinct questions. First, how plausible are the linear inequality restrictions delivered
by the economic model? Second, conditional on these restrictions what is to be in-
ferred about the coefficients of the regression model? These turn out to be nontrivial
questions, and historically investigators have taken different, usually informal, ap-
proaches to these tasks. Difficulties for classical inference are discussed in Judge and
Takayama (1966) and Lovell and Prescott (1970); for classical testing in Gourieroux,
Holly, and Monfort (1982) and Wolak (1987).

This work takes up a Bayesian approach to the problem of linear regression with
linear inequality constraints on the coefficients. Extending earlier analytical work
by Davis (1978), Chamberlain and Leamer (1976), and Leamer and Chamberlain
(1976), it uses fast numerical methods for the determination of posterior moments
and probabilities, advancing the methods reported in Geweke (1986). But whereas
Geweke (1986) takes up any inequality constraints on the coefficients, this paper limits
attention to inequality constraints that are linear. The more specialized algorithms
provide faster, more accurate numerical approximations to posterior moments than
do the more general ones. In particular, when the posterior probability of linear
inequality constraints is low or the number of coefficients is large the methods in
Geweke (1986) may be slow to the point of impracticality. In contrast computation
time in the approach taken here does not increase systematically with the inverse
of the posterior probability of the inequality constraints, and increases only linearly
with the number of coefficients.

In standard notation the normal linear regression model is

yrx1 = XTxkBex1 + eTx1, €~ N(0,0%I7) (1)

where y is the vector of dependent variables, X is the matrix of explanatory variables
(regressors), and e is the vector of disturbances. There are T observations and k
explanatory variables. In the unconstrained case a standard diffuse reference prior
for the parameter vector (§/, o) is

fB0)x o™ (2)

1



The inequality constraints are expressed

akxt < Dixif < wext. (3)

In this expression the inequalities are to read line by line: a; < Z§=1 diiB; < wi(i =
1,..., k). The matrix D is composed of real numbers and is nonsingular. The vectors a
and w are composed of extended real numbers, with -0 and +oo explicitly permitted,
thus allowing single-sided inequality constraints. Since a constraint in (3) has no effect
if a; = —o0 and w; = 400, fewer than k linear inequality restrictions—perhaps only
one—may be involved. Inequality constraints on more than k linear combinations
are precluded by (3), a point to which the concluding section of the paper returns
briefly. Extending the standard reference prior of the unconstrained model the prior

distribution employed in this model is

f(B,0) x o riffEeQ, f(B,0)=0ifp ¢ Q; (4)
Q = {f:a<DB<Lw}

The next section takes up evaluation of the posterior probability of the hypothesis
(4) relative to (2). An algorithm for the evaluation of this probability based on
the Geweke-Hajivassiliou-Keane (GHK) probability simulator is constructed. (The
simulator was named by Hajivassiliou, McFadden, and Ruud (1995) in a paper that
first appeared in 1992. See also Keane (1990, 1993, 1994) and Geweke, Keane and
Runkle (1995).) Section 3 turns to the problem of inference for f—construction
of posterior means, evaluation of the posterior probabilities of regions, etc.—in the
constrained model (4). A Gibbs sampling algorithm for drawing 8 and ¢ from the
posterior distribution that builds on work in Geweke (1991, 1995) is presented. The
algorithm described in Section 3 is superficially similar to that in Geweke (1995), but
that paper treats mixed equality and inequality constraints on individual coefficients,
whereas the approach here takes up inequality constraints for arbitrary sets of linear
combinations of coefficients. Section 4 employs both methods in the two empirical
examples used in Geweke (1986). A concluding section suggests extensions of this
work.

2 Evaluating the Hypothesis of Linear Inequality
Constraints

One may take two approaches to the evaluation of the inequality constraints (3) as
a formal hypothesis. The first is to regard (1) and (2) as the maintained hypothesis,
and evaluate the posterior probability that (3) is true. The advantage of this method
is conceptual simplicity: no problems arise from the fact that (3) is not a proper prior
distribution. In particular suppose that (2) is regarded as the limit of a sequence of



proper prior distributions, e.g. 8 ~ N (8, aV), where 8 is a fixed vector, V is a fixed
matrix, and o — oo. Then the limiting posterior probability of the region defined by
(3) is correctly given as the posterior probability of (3) when the posterior density
kernel is formed as the product of (2) and the likelihood function

L(B,0) = o T exp{—[(T — k)s® + (8 — b)"(X'X)(8 — b)]/20%} (5)

corresponding to (1). (This expression employs standard notation for the least squares
estimator b = (X'X)7'X'y; s = (y — Xb)'(y — Xb)/(T — k). For details on the
derivation of (5) see Zellner (1971, pp. 65-66).) Denote this probability pop. The
disadvantage of this approach is that (1) through (4) is frequently a hypothesis com-
peting with (1) and (2) rather than a region of interest of the parameter space. For
example, if the posterior distribution of § is centered at 8 = 0 in the unconstrained
model, pgp for 8 > 0 will generally become smaller the larger is k; yet in this case
" (1) through (4) is clearly competitive with (1) and (2).

The second approach is to regard (1) and (2) and (1) through (4) as competing
hypotheses for which a posterior odds ratio is to be formed. Without loss of generality,
assume that the prior odds ratio is 1:1. If all elements of a and w are finite then the
prior distribution (4) is proper for 8 and the limit of a posterior odds ratio in favor
of (1) and (2) over (1) through (4) with a sequence of increasingly diffuse priors is
0. (This phenomenon is sometimes called the Lindley paradox and is well treated
in the literature, e.g. Lindley (1957), Press (1989, pp. 36-37) and Bernardo and
Smith (1994, p. 394).) If some elements of a are —oo and/or some elements of w
are +o0, then in general the limiting ratio formed from a sequence of increasingly
diffuse priors depends on the particular sequence chosen. Certain specific cases are of
some general interest, however. In particular if the linear inequality constraints may
be brought into the form §;8; > a;(i = 1,...,r) with § = £1, and if the sequence of
prior distributions is § ~ N (a,aly) for the unconstrained case and § ~ N (a, cly)
constrained to §;8; > a;(¢ = 1,...,r) for the constrained case, then the limiting
posterior odds ratio (as & — o0 ) is poy = 27payn.

With these considerations in mind, focus on computation of the event probability
Pap- Geweke (1986) proposed a crude frequency simulator as follows. In the context
of (2) and (5), the marginal posterior probability distribution of ¢ is provided by

(y — Xb)'(y — Xb)/0® ~ x*(T - k). (6)
Conditional on o,
B~ Nb,o(X'X)™.

Hence random draws {o®), B®}™. may be taken easily. Let d® = 1 if 8% e Q,
d® = 0if B® ¢ Q. Then Pop =30, d®/m 22 p2p @8 m — oo. Moreover, for large
m the standard error of approximation of P2 by f)’gll is given by [p2|1(1 - p2|1) /m]l/ 2,
The advantage of this method is its simplicity. Its disadvantage lies in the need to
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make many draws, m, if p2p is small; and if k is large, po.may be large enough that
the constraint hypothesis is competitive with the unconstrained model even though
pap is small.

A more efficient method for approximating pop is based on the GHK probabil-
ity stmulator, an algorithm proposed independently by Hajivassiliou and McFadden
(1990) and Keane (1990); more accessible references are Keane (1993), Keane (1994),
and Geweke, Keane and Runkle (1995). Let z = D(8 —b), a* = D(a —b), and w* =
D(w=b). Since Bl ~ N[b,0*(X'X)7Y], zlo ~ N[0,02D(X'X)™1D'|and P[a < DB <
wlo] = Pla* < z < w*|o]. Let FF' denote the Choleski decomposition of D(X'X)™
D' : F is the unique lower triangular matrix with positive diagonal elements such
that FF’' = D(X'X)™'D’. A conventional construction for z | o is then given by

zlo =0Fe, e~ N(0,I). (M

(Most software for generation of synthetic random multivariate norma.l vectors is
based on this construction.) Denote a typical row of (7) z; = o i=1 fij€s. The
probability Pla* < z € w*|s] may be decomposed

Plaj < z1 < wjylo] - Plag < 22 < wilo,a] < 23 < w]-
v+ Plaj < z; S wjlo,a; < 2z < wj(i < j)]

... Plag < zx < wilo,af < z; < w}(i < k).

The GHK probability simulator provides independent, unbiased simulations of each
conditional probability in this product. It does so by drawing #,..., Z;—;, from
the N (0,02D(X'X)1D’] distribution subject to the constraints e} < z; < w}(i =
1,..,5 — 1) and then computing Pla} < z; < c}|#1,...Z;-1]. The draws are accom-
plished by generating

& ~ N(0,1)st. aj/ofun <& Lwifofn

€2 ~ N(0,1)st. (az—ofué1)/ofe <& < (ws—0fné)/ofem

i—1
gj ~ N(O, 1)3.t. (a; - Zafj,-é,-) /O’fjj < é'j
i=1

-1
< (‘w; - Zafjifi) [ofi (8)
i=1

k-1
£ ~ N(0,1)s.t. (a,'c - dekifi) [0 fkr < &
i=1
k-1
< (w,t - Zo'fkigi) /9 ek
i=1



Let p; = Pl(a; — I ofiE)]ofi < & < (wi - i o f1:€:) [0 fijlE1 o
€;-1]. Then §; = Pla} < 21 < wilo] and E(5;) = Plaj < z; < w}|o](j > 1). The
probabilities j; may be computed by direct evaluation of the univariate standard
normal c.d.f. Because the j; are mutually independent,

k
E [Hﬁi} = P(a* <z <w'lo).
i=1

(Note that in fact it is not necessary to take the last draw in (8).)

The GHK probability simulator for p2p is therefore an iterative process with two
steps in each iteration. In the first step, (y — Xb)'(y — Xb)/(c®)2 ~ x%(T — k). In
the second step, one or more values of Hf___l pj are drawn as described in the previous
paragraph, with ¢ = ¢@; let the average of these values be denoted p*®. After
m iterations of the two steps, pg; is approximated by Pap = iy 2"®/m. Since
E[p*®|o] = E[dP|o] but 0 < p*® < 1 whereas d(i) = 0 or d® = 1, var(fop) <
var(;‘ig‘l). Hence the GHK probability simulator always provides a more accurate
approximation to P2p than does the crude frequency simulator, given the same number
of iterations.

3 Inference Subject to Linear Constraints

A related but distinct task is to find posterior moments and probabilities correspond-
ing to the restricted model (1) through (4). The posterior density for this model
is

F(B,0ly, X) o o T exp{~[(T - k)s® + (8 — b)'(X'X)(B — b)]/202}

ifg e @Q;
fB,oly,X) = 0 ifB¢Q; (9)
Q = {f:a< DB <w}

The crude frequency simulator described in the previous section may also be used
to produce draws from the posterior distribution whose kernel is given by (9). One
draws from the unconstrained posterior distribution, and accepts the draw if and
only if a < D@ < w. This algorithm again has the advantage of simplicity and the
disadvantage of inefficiency. In this section we summarize a Gibbs sampling algorithm
for generating a sequence {3, a(")} that converges in distribution to the posterior
distribution whose probability density kernel is given by (9). Supporting technical
details may be found in Geweke (1991). _ _

As in the previous section define 2 = D(8 —b), o* = D(a —b), w* = D(w — b).
The posterior distribution of (8, o) is then a simple transformation of the posterior
distribution of (z,0). The posterior distribution of o conditional on z (equivalently,
on 8 =b+ D7'z) is given by

(v — XB)' (v — XB)/a°I(8,y, X) ~ x*(T), : (10)
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which may be derived easily from (9) (Geweke 1992). The posterior distribution of z
conditional on o is

z|(o,y,X) ~ N[0,02D(X'X)7ID")] s.t. a* < z < w;
let R = 02D(X'X)71D’. The distribution of
zjl(o, 2:(6 # 9), v, X)

is univariate normal, truncated below by a; and above by wy. Following Geweke
(1991) this normal distribution has mean b; + 32;; ¢jiz; and variance h2. The vector

i — !
d= (le, vory Ci5=1y Cfg+1y oy Cjk)

is given by o/=—(R¥)71T5<J, where R¥” is the element in row j and column j of
R7l, and T9< is row j of R™! with R¥ deleted. The variance is h2 = (R¥)7%.
(These expressions follow from the conventional theory for the multivariate normal
distribution (Rao, 1965, p. 441) and expressions for the inverse of a partitioned
symmetric matrix (Rao, 1965, p. 29). Consequently,

2o,z # 3),9,X) =3 cyzs + hiej, ' (11)
i#g
E5 N(O, 1) s.t.(a;f - ZC,‘ij/hj S £4 _<_ w; - ZC,;ij/hj.
ij 7]

Expressions (10) and (11) provide an algorithm for producing draws for any ele-
ment of (z,0) conditional on all the other elements. Inference for the full posterior
distribution whose density is given by (9) may therefore be accomplished using the
Gibbs sampler described by Gelfand and Smith (1990) and Tierney (1994). Begin-
ning with any values of o and 2, ..., 2 in the support of (9), successively draw and
replace o, z1, ..., 2z using (10) and (11). Call this new draw (), ¢")) and construct
B = b+ D12, Then repeat the process, obtaining 5 and ¢(?, and continue on
in this way. Since there is a positive probability of moving from any given (ﬁ(j), a(j))
to any region of the parameter space with positive posterior probability in one it-
eration, the sequence {,B(j), a(j)} converges in distribution to the posterior distribu-
tion whose kernel density is given by (9). If the posterior expectation E[g(8,0)] of
g(B, o)exists, then g, —m™ Y 9(89), e &2 E[g(8, 0)] = g. If the posterior vari-
ance var[g(8, )] also exists, then the accuracy of the approximation of g by g,, may
be assessed by computing the numerical standard error of g,,, NSE(g,,), as described
in Geweke (1992). This variance provides an asymptotic (in m) approximation to the
sampling standard deviation of the numerical approximation based on m iterations.
Observe that the posterior mean and variance exist for g(8,0) = G, 9(8,0) = o, and

9(8,0) = o2



4 Two Examples

Two illustrations provide an indication of the absolute and relative performance of
the crude frequency simulator, GHK probability simulator, and Gibbs sampling al-
gorithm. These examples were also used in Geweke (1986), which provides more
elaborate discussion of substantive aspects.

Pindyck and Rubinfeld (1981, p. 44) provide 32 observations on rent paid, number
of rooms rented, number of occupants, sex, and distance from campus in blocks for
undergraduates at the University of Michigan. These data are used by the authors
in developing the linear regression model at several points in their text. Denote rent
paid per person by y;, rooms per person by r;, and distance from campus in blocks
by d;, and let s; be a sex dummy, one for male and zero for female. The equation
estimated is

yi = B1 + Basiri + Ba(1 — 8i)ri + Basidi + Bs(1 — s:)d; + &

The inequality constraints are 82 > 0, 83 > 0, 84 <0, G5 < 0.

~Table I
Constraint Probabilities p2p1, rent data set®

Numerical
Probability standard error Time?

Crude frequency simulator .05070 .00200 8.37
(1 evaluation per iteration)

GHK probability simulator .04810 .00126 22.83
(1 evaluation per iteration)

GHK probability simulator 04921 .00020 369.88
(25 evaluations per iteration)

2All results are based on m = 10, 000 iterations.
°In seconds. All computations were carried out on a Sun Sparc IIPC 4/40, using
compiled Fortran code with extensive calls to the IMSL mathematical and statistical

libraries.

Alternative numerical approximations to the constraint probabilities p2p are given
in Table I. All approximations are based on m = 10,000 iterations for the algorithms
described in Section 2. In each iteration one or more evaluations of P(8 € Q|o) may

7



be made. In Table I results are provided for one evaluation in the crude frequency
simulator, one evaluation in the GHK probability simulator, and 25 evaluations in
the GHK probability simulator. Note that the numerical standard error of the GHK
probability simulator with one evaluation is less than that of the crude frequency sim-
ulator (by over one-third), and the GHK probability simulator with 25 evaluations
produces a probability approximation whose numerical standard error is about one-
sixth of that with one evaluation. In terms of required computation time, however,
the GHK probability simulator is preferred: the crude frequency simulator requires
about (8.37/369.88) x (0.00200/0.00020)% = 2.26 times as much computation time
to achieve a numerical approximation of the same accuracy, while the GHK prob-
ability simulator with one evaluation per iteration requires about (22.83/369.88) x
(0.00126/0.00020)2 = 2.45 times as much computation time. Finally, the substantive
results show that the constrained model is competitive with the unconstrained model,
using the set of reference priors described in Section 2: with a prior odds ratio of 1:1
the posterior odds ratio in favor of the constraints is 2% x 0.049:1 = 0.78:1.

Table 1II
Posterior moments, rent data set®
Crude frequency Gibbs sampler Gibbs sampler
simulator (No skips) (Every 10th)

Parameter Mean s.d. NSE Mean s.d. NSE Mean s.d. NSE

B 370 356 .4 365 346 27 370 347 .7
Bs 1376 393 4 1383 384 28 1376 385 .8
Ba 1246 409 4 1250 401 3.1 1247 40.1 .7
Ba —.917 .857 .009 —.927 .843 .011 -—.922 .858 .0l1
Bs ~1.194 581 .006 —1.192 .580 .010 —1.211 .578 .004
o 4087 580 .058 40.75 579 .098 40.79 5.84 .059
o2 1703.9 499.4 5.0 1693.9 497.8 85 1608.0 507.4 5.1

Time® 131.1 12.63 118.8

2All results are based on m = 10,000 iterations.

In seconds. All computations were carried out on a Sun Sparc I IPC 4/40, using
complied Fortran code with extensive calls to the IMSL mathematical and statistical
libraries.

Posterior means and standard deviations for the coefficients §; o, and o2 are
provided in Table II. Three methods were used to approximate these moments. In the
first, the crude frequency simulator was run until m = 10,000 draws of (3, o) had been
made for which the value of 3 satisfied the constraints. This produces i.i.d. drawings



from the posterior distribution, and consequently the numerical standard error is
(10,000) Y2 = 0.01 times the posterior standard deviation. In the second method,
the Gibbs sampler was used to make 10,000 successive draws as described in Section
3. In general the Gibbs sampler produces a serially correlated sequence, and that is
evident here in the numerical standard errors that are substantially higher than are
obtained from a sequence of i.i.d. drawings from the posterior distribution, for many
coefficients. This problem can be alleviated by increasing the number of iterations,
or by recording only every nth draw: as n — oo the Gibbs sampled parameters
become serially uncorrelated and the numerical standard error approaches that of an
iid. sequence. The last panel of Table II shows the results corresponding to this
procedure with n = 10. At a cost of a 10-fold increase in computation time numerical
standard errors are reduced to values closer to those of the crude frequency simulator
than to those of the Gibbs sampler with no skips. Execution time for this modified
Gibbs sampler is still less than that for the crude frequency simulator. (Note that
the crude frequency simulator stochastically records about every 20th draw, whereas
the Gibbs sampler for the third panel of Table II records every 10th draw.)

The second example is taken from Bails and Peppers (1982). In Appendix G
they provide 60 quarterly observations on unit sales of automobiles in the U.S., and
10 explanatory variables. They consider the normal linear regression model Yy =
2}1___1 BjZt; + €, with y: denoting unit sales of automobiles at time t; z;, an intercept
term; g, personal income less transfer payments; z3;, index of consumer sentiment;
T4t, unemployment rate; zs;, index of cost of car ownership; z¢;, average miles per
gallon of current model-year cars; 27, dummy variable for automobile strikes; zg;,
depreciation rate of the stock of cars; zg, average price of a new car; Z10¢, stock
of automobiles; and z;¢, interest rate on automobile loans. (A discussion of these
variables is provided by Bails and Peppers on pp. 246-247.) We use the data exactly
as presented, except that z7; is scaled by 10%. The coefficients Sz, B3, B, and fg
are anticipated to be nonnegative; all the rest except the intercept are anticipated
to be nonpositive. In the Bails and Peppers text the model and data are used as an
instructive example of how algorithmic addition and deletion of variables can be used
in conjunction with the informal imposition of sign constraints to yield a satisfactory
final equation. The numbers of observations and regressors here seem to be typical
of the fairly common situation in which sign constraints are imposed in an informal,
descriptive regression equation.



Table II1
Constraint Probabilities P21, auto sales data set®

Numerical
Probability standard error Time®

Crude frequency simulator 20x107* 13 x 107% 15.96
(1 evaluation per iteration)

GHK probability simulator ~ 8.02 x 1075 .38 x 1075 70.52
(1 evaluation per iteration)

GHK probability simulator 9.06 x 1075 .15 x 1075 1379.93
(25 evaluations per iteration)

2All results are based on m = 10, 000 iterations.

°In seconds. All computations were carried out on a Sun Sparc IIPC 4/40, using
compiled Fortran code with extensive calls to the IMSL mathematical and statistical
libraries.

Table III provides alternative numerical approximations to the constraint proba-
bilities in the same style of presentation as Table I. Because the constraint probability
P2p is so small, the crude frequency simulator with m = 10,000 iterations provides
an unsatisfactory approximation. The GHK probability simulator provides this small
probability to one significant figure and clearly could provide it for two figures. The
crude frequency simulator requires about [(1.3x107*)/(0.38x1075)]2 x (15.96/70.53)
= 265 times as much computation time to achieve the same numerical standard error
as the GHK probability simulator. Increasing the number of evaluations by a fac-
tor of 25 leads to less than a five-fold reduction in numerical standard error. This
indicates that variation in o plays an important role in evaluation of the constraint
probability. Employing the reference prior described in Section 2, the posterior odds
ratio in favor of the constrained model is about 219 x 9 x 1075:1 = 0.092:1 when the
prior odds ratio is 1:1.
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Table IV
Posterior moments, auto sales data set®

Crude frequency Gibbs sampler Gibbs sampler
simulator (No skips) (Every 10th)

Parameter Mean s.d. NSE Mean s.d. NSE Mean s.d. NSE
iy —~7.59 2.25 06 =775 2.17 .25 ~7.70 2.23 .10
B2 0242 .0025 .0001 .0240 .0023 .0003 L0242 .0024 .0001
B3 .0405 .0125 .0003 .0403 .0125 .0008 .0410 0120 .0003
Ba —.0232 .0212 .0005 -—.0236 .0221 .0004 —.0237 .0227 .0002
Bs -3.212 1.110  .042 —3.458 1.093 .080 —3.190 1.122 024
Bs .1281 .0928 .0027 1375 .1036 .0099 .1297 .0969 .0030
B —.1282 0296 .0009 —.1277 .0306 .0004 —.1287 .0307 .0002
Bs 33.04 26.08 .90 32.36 2630 1.39 32.45 25.98 .53
Bo —.421 322 012 -.372 287 027 —.432 329 012
B1o —.0160 . 0143 .0004 -—.0146 .0128 .0010 -—.0154 .0140 .0003
B11 —.1285 .0953 .0020 -—-.1175 .0906 .0064 —.1270 .0957 .0020
o .5439 0537 .0015 .5431  .0557 .0016 .5454 .0562 .0005
o2 2987 .0599 .0016 2981  .0621 .0017 .3006 .0629 .0006
Time® 13846.24 300.15 2939.66

@Al results are based on m = 10,000 iterations.

5In seconds. All computations were carried out on a Sun Sparc I IPC 4/40, using
complied Fortran code with extensive calls to the IMSL mathematical and statistical
libraries.

Posterior means and standard deviations for the model parameters are provided
in Table IV. Results for the crude frequency simulator are based on m = 1,000 draws
of (8,0) from the support of the constrained posterior distribution. This required
over four hours of execution time. The Gibbs sampler produces drawings with very
high positive serial correlation for most parameters, and results for m = 10,000 with
no skips yield very poor approximations and these results are not shown in Table IV.
When every 10th draw is used until m = 10,000 draws have been obtained, numerical
standard errors are as high as 10 percent of the posterior standard deviation for several
coefficients. Increasing to every 100th draw lowers this error to about 4 percent. The
Gibbs sampler requires about 49 minutes to achieve this accuracy, whereas the crude
frequency simulator demands almost four hours. For this problem, the Gibbs sampler
is clearly the method of choice.
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5 Extensions

The treatment of linear inequality constraints developed in this paper may be ex-
tended and applied in models other than the normal linear regression model. The
presentation here has limited treatment to inequality constraints on no more than
k linear combinations of the k coefficients. More than k linear combinations can
be handled by combining the GHK probability simulator and Gibbs sampler with
an accept-reject algorithm. Given s > k constraints, apply the Gibbs sampler us-
ing k of the linear constraints, but accept only those draws that satisfy the other
s — k constraints, and retain the acceptance rate. The retained sample converges
in distribution to the posterior distribution. Use the GHK probability simulator to
approximate the probability of the same k constraints, and then scale it by the ac-
ceptance rate from the application of the Gibbs sampler to obtain an approximation
to D2p-

The semi-informative prior distribution with kernel density o~ 'exp{—Rf
— r)WTY(RB — r)} can be used in place of (4). Conditional on o the distribution
of (3 is still truncated multivariate normal, and consequently the GHK probability
simulator and Gibbs sampler may be applied in the same way. The only modifica-
tion of substance is that since the variance of this multivariate normal distribution is
[0 72X'X + R"U'R] ™}, the Choleski decomposition of the k x k variance matrix must
be recomputed each iteration in both the crude frequency simulator and the GHK
probability simulator. In the Gibbs sampler the vectors ¢/ must be recomputed, re-
quiring the inversion of a k x k matrix, each iteration. The times required to compute
a Choleski decomposition, and to invert a matrix, are similar and proportional to the
cube of the dimension of the matrix. Consequently when the number of regressors, k,
is large (say, k > 8) computation time with a semi-informative prior will be roughly
proportional to the number of iterations. In the automobile sales example, the crude
frequency simulator requires more than 100 times as many iterations as the Gibbs
sampler. For this case, the Gibbs sampler would clearly have been the method of
.choice had a semi-informative prior been employed.

The GHK probability simulator and the Gibbs sampler can generally be employed
in any Gibbs sampling algorithm in which the linear inequality restrictions apply
to elements of a vector whose conditional distribution is normal. This extension
applies to a wide range of models, for example the seemingly unrelated regressions
model, censored regression model, and the multinomial probit model. A particularly
interesting class of cases is formed by scale-mixture normal models. For example, the
models

ye =38 + e, €' £(0,0%v)

and , .
ye =8 +e;, &~ N(0,0%,)

are equivalent if in the prior distribution the vy are mutually independent, vv; 1~
x*(v) (Geweke 1993). Conditional on o and the v;, the distribution of 8 is truncated
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normal, and the GHK probability simulator and Gibbs sampler may be applied to
treat linear inequality constraints in the way described in this paper. Other prior
distributions for the v; produce other unconditional distributions for the disturbance
term. The methods for treatment of linear inequality constraints described in this
paper may therefore be extended to a variety of nonnormal linear regression models.
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