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ABSTRACT

Stochastic inflation affects the risk characteristics, measured by the equity premium and
the correlation of the equity's return with consumption, in a fundamental way. The
riskiness of a dollar—denominated asset depends on two conditional covariances: the
covariance of the marginal rate of substitution (MRS) with the equity price and the
covariance of the MRS with the rate of appreciation in the purchasing power of money.
The second covariance may take either sign which becomes significant when the risk
characteristics of the dollar—denominated asset are compared with the risk characteristics
of an indexed asset constructed in a real version of the model.

The effects of stochastic inflation on the assets' risk characteristics are studied in a
parameterized version of a cash—in—advance asset—pricing model. The growth rates of the
endowment and monetary transfer evolve according to a VAR. The equity price is a
geometric distributed lead of log-normally distributed random variables; an algorithm to
express the price as an explicit function of the state variables is described.

The views expressed herein are those of the author and not necessarily those of the
Federal Reserve Bank of Minneapolis or the Federal Reserve System. This paper is
preliminary and is circulated to stimulate discussion. It is not to be quoted without the
author's permission.




How are asset prices affected by stochastic inflation? To answer this question, the
risk characteristics of several assets are studied in real and monetary versions of a pure
exchange, representative agent, asset—pricing model. The risk characterisiics of an asset
are summarized by the equity premium, which measures the difference between the equity
return and the return to a risk—free agset, and by the f—coefficient, which measures the
correlation of the equity return with the marginal rate of substitution in consumption.

Money is incorporated by way of a cash—-in—advance constraint. Stochastic monetary
transfers affect the real value of dollar-denominated assets by way of an inflation tax.
Risk averse agents assess the inflation tax in their decision making which affects the
determination of the equilibrium asset prices. If the cash-in-advance _constraint binds
resulting in unitary velocity, the random inflation tax is the only mechanism by which
random money growth can affect real equilibrium asset prices in the model described in
Section 2. The effects of the inflation tax on asset prices are determined by studying the
assets' risk characteristics.

The effect of the inflation tax on asset prices is illustrated by comparing and
simulating real and monetary versions of the model. The simulations show that, for
identical endowment streams, the expected equity return in the monetary model is
uniformly less than the expected equity return in the real model. Moreover, the monetary
model's equity premium when compared to the real model is larger and displays much
greater volatility. These results hold when the conditional covariance of the marginal rate
of substitution (MRS) with the rate of appreciation in ’shé purchasing power of money is
positive.

A key variable that determines the behavior of the risk premium and the
p-coefficient is the conditional covariance of the intertemporal marginal rate of
gubstitution with the rate of appreciation in the purchaging power of money. This
covariance can take either sign depending on the sign of the conditional covariance of the
contemporaneous endowment and monetary shocks. Because the conditional covariance of

the MRS with the rate of appreciation in the purchasing power of money can take either



sign, the f~cocfficient of the dollar—denominated asset may be smaller (in absolute value)
than the f~coefficient of the inflation—indexed asset (in absolute value), other things being
constant.

The risk characteristics of a nominal bond, a bond that pays with certainty one unit
of the currency one period hence, are also examined. The conditional covariance of the
MRS with the rate of appreciation in the purchasing power of money determines the risk
premium of the nominal bhond. The time—varying risk premium affects the Fisher
equation in important ways. The inflation premium can be quite large; for example the
simulation summarized in Table 5 results in average inflation premiums of 1.37 percent.

The effect of stochastic inflation on the rigk characteristics of several agsets is
described in Section 1. Determining the magnitude of these effects is difficult without
formulating an explicit model. A model is described in Section 2; it is a parameterized
version of the models devised by Lucas (1978,1980,1982). There i3 a representative agent
with preferences described by a time-additive, isoelastic utility function. In the monetary
vergsion, the equity holder receives at the end of each period a dollar—denominated
dividend whose return i8 subject to two sources of uncertainty: endowment uncertainty
and a random inflation tax. The growth rate of the endowment good and the monetary
transfer evolve over time according to a covariance stat.ionary bivariate autoregressive
process. A recursive scheme is devised in order to express the equity price and its
conditional expected value as explicit functions of the state variables. The solution
method can be used to evaluate geometric distributed leads of log-normally distributed
random variables. The equity price and its return are not log-normally distributed and
the conditional variance of the equity price is heteroscedastic and displays a motion over
time that cannot be described by a smooth autoregressive process. The model and the
solution method are described in Section 2. Comparative dynamics and simulations are
reported in Section 3.

The effects of stochastic inflation on stock prices have been studied by Fama (1933),
Fama and Gibbons (1983), LeRoy (1984a,1984b), and Stulz (1986). The effect of




time-varying inflation on the Fisher equation has been studied by LeRoy (1984a,1984b)
and Svensson (1985). The point that inflation affects the underlying risk characteristics of

a stock has been made by Stulz (1986).

I. Agset Refurns and Inflation

The main question to be addressed is: How does stochastic inflation affect the risk
characteristics of an asset? The risk characteristics are defined as the risk premium,
which is the difference between the asset's return and the return to a certain risk—{ree
asset, and the correlation of the asset's return with consumption. The risk characteristics
are determined by studying the empirical implications of the intertemporal, discrete—time,
representative agent model devised by Hansen, Richard, and Singleton (1981). The price
and return of two special assets, an agset whose return is perfectly correlated with the
marginal rate of substitution and an asset whose return dis:plays zero correlation, are used
to characterize the risk premiums of other assets and to evaluate the effect of inflation on
stock returns.

When the assets are in zero net supply, a discrete—time, asset—pricing model with an
infinite-lived, representative agent and an exogenous endowment will result in an

equilibrium asset—pricing equation of the form

(1.1) U'lyyagy = FEU (v g (G 754 1) 0 < <

where y, i3 the exogenous endowment at time t, U'(yt) is the diminishing marginal utility
from consuming the endowment, ait is the equilibrium real price of equity i at time t, Et
is the expectations operator conditioned on information at time {, and ait is the real
dividend paid to the holder of asset i that is available for consumption in period t. An
example of this type of model is provided in the next section. The ex post real return to

equity i is
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i _ -1
(1.2) L+ Ry = @ tdie)(ay)

If the time t dividends are paid in dollars at the end of the period and are unavailable
for consumption expenditures until the next period, the real value of the dividend will
depend on the inflation shock between t and t + 1. Let 7, 11 denote the gross inflation
-1

rate at t + 1; the real value of the dividend at t + 1 is «

t—[—ldjt and the equilibrium

condition is

' _ 1
03) U(r)ay, = 08, (U054 )G+ 7 1)
where qjt denotes the equilibrium price of equity j when the dividends are paid in dollars.
The return is
(1.4) 14+ BRI = (47 de)(as)
) t+1 jb+1 +1758747
Two special assets, a perfectly—correlated asset and a zero-correlated asset are

introduced next. Let S, 41 denote the marginal rate of substitution

i d)

U
(1.5) S, =08 v,

An asset that is perfectly correlated with the marginal rate of substitution has a price qi’

that satisfies

8 _ 2
(1.6) % = ESyi1

8

in equilibrium. Let (1+R{ 41

) be the return to this asset so that

8 2 -1
(1.7) LR =8, E St



An asset that displays zero correlation with S pays one unit of the consumption good

with certainty at time t + 1 and has a price qg, where

(1.8) ¢ =ES

0

in equilibrium. Its return (1+R; +1

) satisfies

0 a1
L+ ER = ES )

Hansen, Richard, and Singleton {1981) show that the intertemporal CAPM implies:

RS )
0 ary (Ry gy
P1 R -R =
(P1) BylRY 1 Reyql= R (1+Rt+l)
cov (Rtl RS )
0 t+17 i1
(P2) B[R}, R, ) = -
[ 1+RY ]
oAl
_ﬁtEt[ 1" -{-1]
where
. COV (Ri JR )

s 5
vary (Ry | )

and cov, and var, denote the conditional covariance and conditional variance,
respectively. )

The coefficient ﬁ; measures the riskiness of an asset because it measures the
corrclation of the agset's return with consumption. An agset i3 risky if the negative

covariance of the asset return with the marginal rate of substitution is large in absolute



value. The perfectly correlated asset has a [—coefficient equal to unity whereas the
zero—correlated asset has a zero F—coefficient since, by definition, the covariance of S with
RV is zero. Notice from (P2) that the risk premium for the perfectly correlated asset is
negative since Et(1+R% +1) is positive! If asset i has a pegative pB-coefficient,

covt(R Ri +1) is negative and the asset is risky in the sense that the conditional risk

i
t-+1°
premiom Et[R; _H—R? +1] is positive. If asset i has a pogitive F—coefficient, the

i 8 : . ' ‘s : i R0 .
t+1R¢41) 18 positive and the asset's conditional premivm E[R, ,-R; +1] is

negative. This means that the asset is a good hedge against future uncertainty.

cov, (R

The equity premiums and the risk characteristics of the monetary and real models
are now compared.

An equity that is a claim to the nominal endowment stream :j=0,...} paid

Py ¥4t
at the end of the period, where p; +] is the nominal price per unit of the endowment and

iy i is the endowment, has a real price qi that satisfies
-1
(1.10) U'(yy)a, = BB U (y, )9 7 qy)
and a return
q _ -1 -1
(1.11) L+ Ry = (g tmpygdey)

Substituting (1.11) into the equilibrium first order condition (1.10) results in

(1+RY

(1.12) 1=E, [S t+1)]‘

t+1
This expression can be rewritien using the covariance as

q _ 0
Et(1+R )= Et(l—kRH_1

b1 ) [l—covt(S

q
t+1’Rt+1)]



50 that the conditional equity premium is .
0 0 q
(1.13) B[Ry Ry y 1] = (1B Ry )eovy (S R y)-

From (P2), the conditional equity premium is also

|- cov,[R
t-+1" +1 E

q 8
£ 41 Bypr

14 E
. I +Rg, ]

Al

After some simpilification, the conditional covariance of the equity return and the return

to the perfectly correlated asset is

q
(1.15) covt(Rt+1,

8 2 -1 -1
Ri1) = (4B S ] [tho"t(sw1”rt+1)+c°"t(qz+1’st+1)}'
Since

8 _ 2 -1
(1.16) B (1+R 1) = B8, o1 (BSiL )

b

substituting (1.15) and (1.16) into (1.14) results in

_1 _1
(L17)  E,[R} (9,874 [¥pe0%; (St+1”rt,+1)+co"t(qt+113t+l)]

RO, j=-=
t+1 t+1 1
Etst—l-l(EtSt-{—l)

_1 )
= q) " 1+E Rt+1][ ¥4V Sy 1T )iF Covt(qt+1’st+1)]‘

By substituting (1.17) into (1.13), the conditional covariance of the return with the

marginal rate of substitution is expressed as

q -1
(1.18)  covy(8y 4 Ry 1) = (g)” [ 0¥y Sy 1M 1) 00V (941 18y 11) |-
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The expression cevt(St +1,7rgj_1) is the conditional covariance of the marginal rate of
substitution with the rate of appreciation in the purchasing power of money. The
conditional equity premium is a decreasing function of the conditional covariances on the
right-hand side of (1.18). The sign of cov,(5; +1,ﬂ'€_}_1) can be positive or negative. To
see this, notice that, by assumption, the marginal utility U'(yt +1) s decreasing in y, , 4

so that S i3 decreasing in y, a1 The rate of appreciation in the purchasing power of

t+1
money nﬁ_l generally hag a positive partial correlation with output and a negative partial
corrclation with the monetary transfer. Since the monetary transfer and the endowment
may be correlated, as in the case of a negatively-sloped Phillips curve, the simple
correlation of the endowment with the rate of appreciation in the purchasing power of
money may be positive or negative. Hence, the sign of covt(St +1,7r;_1) can be positive
or negative. For the model described in the next section,,the sign of COVt(St _H,W;il) is
ghown to depend on the sign of the covariance of the contemporaneous endowment and
monetary shocks and on the size of this covariance relative to the variance of the
endowment shock. If the contemporaneous covariance is positive, so that a large
endowment shock tends to coincide with a large monetary transfer, as in the case of a
negatively—sloped Phillips curve, and if it is large in absolute value relative to the
variance of the endowment shock, the covariance covt(St +1’”€—1H) is positive. If the
covariance is positive, a dollar—denominated dividend that comes in periods of low
marginal utility also tends to come in a period when the inflation tax is high, other things
being constant. The converse of this statement is also true. An increase in the covariance
covt(St +1’WE-IH) will decrease the conditional equity premium {1.17), other things being
constant.

-

The other important covariance in (1.18), covt(S 4, Jrl), is a complicated function

t+1
of the model's state variables and parameters. For a markov economy, the effect of
changes in the endowment on the asset price is generally indeterminate; this
indeterminacy occurs because of the information about the future that is signaled by the

current endowment realization.?




The effect of stochastic inflation on asset returns ig illustrated by comparing the
equity that is a claim to the nominal endowment stream to the equity that is a claim to
the real endowment stream. An equity that is a claim to the real endowment stream

{v +j’j=1’2""} has an equilibrium price q; that satisfies

(1.19) Ul(yt)at = ’BEtU'(yt+I)@t+l+yt+l)

and a return

(1.20) L Ry = @ty @)

The conditional equity premium for the real endowment model is

(1.21) E, R, - —R? bl = —(1+R? L p)eov (L+REL 18, )

covy (4R 15 Ry yy)

E, (1+R

t+1)

where the second equality uses (P2). The conditional covariance is

(1.22)  cov (T{%ﬂ’ +1) = ﬁtEtSEH]_I [covt(sw1’qt+1)+covt(st+1*yt+1)]'
Substituting (1+R{, ;) and (1.21) into (1.22) results in

(128 BRE Ry ] =G (R, ) [covt(st—H’at+l)+covt(st+1’y t+1)]'

The most striking difference between the conditional risk premiums of the two models
(1.23) and (1.17) is reflected in the conditional covariances of the marginal rate of

substitution with the time (t4-1) real value of the dividend. The conditional covariance
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cov, (8 | 1%y +1) is always negative, whereas the conditional covariance covt(St +l,'ﬂ'€_1l_l)
can take either sign, as discussed earlier.

The first important result is that the f—coefficients for the two types of equities, one
of which is a claim to the nominal endowment stream and the other of which is a claim to
the real endowment stream, are different. In particular, the dollar—denominated equity
may act as & hedge against future uncertainty in the sense that its S—coefficient may be
smaller in absolute value than the corresponding g—coefficient for the real endowment
model.

In an economy that has many dollar—denominated assets, there is a distribution of
asset returns at each point in time with each asset differing in riskiness as measured by its
fB~coefficient. The F-coefficient can take either sign as can the correlation of the asset's
return with inflation. To see this, consider a monetary model with {~types of assets that
are in zero net supply with dollar—denominated dividend payments. The equilibrium first

order condition for asset i is (1.3} and the return is (1.4). From (1.9),

P00 1 dored o0
(124) B[Ry, Ry 1= BE(RE R ]

s

_ -l 0 -1
=~g5) [HERg ] [ditco"t(stﬂ’”tﬂ)+°°"t(qit+1’st+1)]'

As described earlier, the two conditional covariances in (1.25) can take either sign.

Asg the cov, (S increases, all else constant, the f—coefficient will increase.

-1
ACHRELINEY
Consider the following four examples of the relationship between inflation and the equity's

return.

) -1
Case I: covt(St+1,1rt+1) > 0.
In this case, periods when marginal utility is below its conditional mean (higher than

expected endowment) are likely to occur when inflation is above its conditional mean.
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Case (I2) cov,(R!, RS, ) > 0.

1741

The equity return tends to be below its conditional mean when the endowment is
above its conditional mean. Since covt(St +1,w€i1) ig positive, the equity return and
inflation will tend to be negatively correlated. The S—coefficient for the asset is positive
which corresponds to a negative equity premium. The asset is a hedge against future

uncertainty despite the negative correlation between inflation and the equity return.

Case (L.b) Covt(Rt-Jrl’R?—{-l

The return to asset i tends to be above its conditional mean when the endowment is

8
b1 and hence Rt+1

Since the endowment and inflation are positively correlated, the equity's return and

) < 0.

above its conditional mean (S are below their conditional means).
inflation tend to be positively correlated. The F—coefficient for the asset is negative and
its risk premium is positive so that the asset is risky despite the positive correlation

between inflation and the cquity return.

_ -1
Case II: cov(S,, {,m 1) > 0.

Periods when marginal utility is above its conditional mean (lower than expected
endowment) tend to occur when inflation is above its conditional mean.

Case (IL2) cov, (R}, RS, )> 0.

S e 2

Since inflation and the endowment tend to be negatively conditionally correlated, the
positive conditional covariance of the returns will result in a positive correlation between
the equity return and inflation. The fF—coefficient is positive and the risk premium is

negative so that the asset is a hedge against future uncertainty.
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8
t+1’Rt+1

Since the equity return tends to be above its conditional mean when the endowment

Case (I1.b) cov,( )< 0.

is above its conditional mean, the S—coefficient is negative and rigsk premium is positive.
The equity's return is negatively correlated with inflation. -
The underlying assumption in the four examples is this: since the sign of

cov (RE LA +1) is the same as the sign of cov, (S and since the sign of

t+1’7rt+_1)’

i . . i
oovt(R T t+l) is the same as the sign of covt(Rt+1’St+1)’

covt(Rt +1™ +1) can be determined indirectly. In fact, there are other possibilities and

the sign of

so this list is not exhaustive.
The covariance of the equity return (1+R%) with inflation in the single—asset, real and
monetary versions of the model described in Section 2 are computed explicitly and

reported in Section 3.

minal
A nominal asset of particular interest is & one period,bond that pays with certainty

one unit of the currency one period hence. The nominal price B, of the bond satisfies

U'lyy)By, = BB, [U'(yt+1)wgi1]

and the nominal interest rate is

L+ig = (B

The expected real return is

1+ By = (14 )L‘terl

-1 -1
E t+1[Et 1yl
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The risk premium of the nominal bond is defined by

E. 7 -1
[1‘ R ] _- LM L41 ) 1
bl il E.S -1 E{;St_*_1
totH1 t-{-l
= BB Ry, t+1]

The J-coefficient for the nominal bond equals zero only if the marginal rate of
substitution and the rate of appreciation in the purchasing power of money are
uncorrelated.

The sign of ﬁ; depends on the sign of covt(r Upon examining this

$
i+ 1R
covariance more carefully, one finds that

covyfr, 1 RS 11 = cov (8 7y MBS ES 7yl
and so it becomes apparent that the j-coefficient and hence the risk premium have the
game sign as covt(St +17r€_}_1). In general, the risk premium on the nominal bond is
time-varying; this has important implications for extracting real interest rates from
nominal rates by use of a Figher equation.

The effect on the Fisher equation of the presence of a time-varying risk premium is
summarized in three cases:
Case L. cov,(S,, 71 ,) > 0.

The covariance covt(rt,Rf +1) is positive, the risk premium is negative and the
f-coefficient is positive so that the nominal bond is a hedge against future uncertainty
relative to the zero—correlated asset. Approximating the zero—correlated asset return by

gubtracting ex post inflation from the nominal interest will underpredict the real return

0
Rit1:
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-1\ _
Case 2. covy (S, ;7 +1) = 0.

In this case, the f—coefficient and risk premium equal zero. Computing rY

41 by use

of the Fisher equation will result in a good approximation.

-1
Cage 3. covt(St+1,art+1) < 0.
The covariance covt(rt,Ri +1) is negative and hence the F—coefficient is negative and
risk premium is positive. The nominal bond is riskier than the zero—correlation asset.
Approximating the zero—correlated asset return by use of the Fisher equation will

overpredict the real return Rg 1

The time series properties of the risk premium for the nominal bond are described in
Section 3 for a particular time series model of the endowment and monetary shocks and

parameterization of preferences.

2. The Meodel and the Solution Method S

Two versions of a pure endowment representative agent model are described in this
section. In the first versiom, currency is incorporated by way of a cash-in-advance
constraint. The dividend is paid in units of currency. The second version is a real model
in which the dividend is paid in units of the endowment good. In both instances, the
cquilibrium equity price is a geometric distributed lead of log-normally distributed
random variables. An iterative scheme to express the equity price as an explicit function
of the model's state variables is described.

The growth rate of the nonstorable endowment and the growth rate of the monetary
transfer evolve over time according to a covariance stationary, bivariate autoregressive
process. The innovations are normally distributed; as a result the levels of the
endowment shock and the monetary transfer are log-normally distributed. The process is

specified fully below.
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Each member of the identical and fixed popula:tion maximizes an isoelastic
time—additive utility function over an infinite planning horizon. The representative agent
carries wealth from the previous period in the form of equities, which are fractional claims
to the current and future dollar—denominated dividend stream, and in the form of
currency Mt—l' All variables are expressed as per capita.

At the beginning of each period and prior to any trading, the realizations of the
monetary and endowment shocks, (1+w) and A respectively, are observed by all; the
lump—sum monetary transfer WtMt +1 is made. The agent's post—transfer, pre—trade

currency holdings are
(2.1) M

where (14w, ) is the current realization of the stochastic money growth rate. Let ¢, =
(1-I~wt)_1 for notational convenience.

The endowment at time t, denoted as y,, evolves over time according to

(2.2) Vi =AYl

where )‘t ig the endowment shock at ¢.

The exchange of currency, equities, and goods takes place in two phases. In the first
trading phase, currency holdings and asset holdings are adjusted; the agent divides his
post—transfer wealth between currency MIt), where each currency unit has value (pt)_1 in
units of the time t endowment, and equity shares z; wheré the real equity price at time t
is q;-

Goods trading and nominal dividend collection takes place during the second trading
phase. Consumption purchases must be financed with currency acquired in the first

trading phase; the constraint is
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D
(2.3) i S My

where ¢, is real consumption purchases. The dollar—denominated dividends collected are

t
PiZ¥4 and, by construction, these funds are unavailable for spending in the current
period. If the constraint (2.3) is binding, the dollar denominated, pre—transfer, pre—trade

wealth at t -+ 1 is

(2:4) zlpgy 1Pt

and the post—transfer, pre—trade nominal wealth is

(2.5) Z [Py 1P e My

The maximization problem solved by the representative agent and the equilibrium

conditions can now be stated fully and precisely. The representative agent solves

w J—
) ,Bt(l%y)c}; 7},0<ﬂ<1,7>0

max E
0 {t=0

D
{z,, ¢ MY}

subject to the constraint (2.3) and

D
t—1"Pt—1%—1
by

D
WM, S My

pt _pt

M

+ +

+ tht

Yi-1Pi11
(2.6) %4 l—pt—““ +C1t

where Et denotes the expectations operator conditioned on information at time t. The

first order conditions are summarized by

Vg, = = -1
¢ 'y = BBy [Ct-H] [zt(”tHy t+qt+1)]'
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There are three market—clearing conditions. The first is that all output is consumed, or

¢, =¥y The second is that all claims are held, or z, = 1. The third is that all money is

t
beld at the end of the period. If the constraint (2.3) is binding, M7 equals M, in
equilibrium.

Let g(.) and p(.) denote the equilibrium equity price function and the equilibrium
consumption goods price function and let 8 denote the state vector at time t. If markets

are cleared and if the constraint (2.3) is binding, the equilibrium consumption goods price

function is

M

t.

A binding constraint will result if nominal interest rates are nonnegative or equivalently

the price of the nominal bond

. 1—
By = BB [ 11%41]

ig less than one. This imposes some restrictions on the parameter space which are difficult
to determine analytically; some conditions are described in the Appendix. The

equilibrium first order condition is
— — ‘_1
(28) vy 'alsy) = BBy | [’Tt+1y t+‘1(3t+1)]

_ B v
= PBy¥it1 [y t+1¢t+1+q(3t+1)]

where the second equality follows from (2.1), (2.2), and (2.7).

The equilibrium equity price function is assumed to be a fixed function of the current
state vector. Solving for an explicit equity price function requires the evaluation of the
conditional expectation in (2.8). To this end, the following assumption for the exogenous

state variables is made.
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(Al) Assumption. The motion of (fn A, fn §) is described by the bivariate system

G gl &) [6 m] [aA] G m] [RAL
by % Py G| [l dy| Tty Gy by
b3 mg| [0 Aa] [V
N ¥y O| by i u b

Let fn A and fn ¢ denote the deviation from the conditional mean of & A and & ¢,

regpectively. The bivariate process (n A, /i §) is assumed to have a Wold moving

*

average representation

fn Xt

(2.10) 1,

= C(L)

214,
2oy,

where Zyyr Zoy are jointly fundamental, L denotes the lag operator and C is a matrix

polynomial in L. Furthermore, zi‘; = [th’ZZt] is normally distributed with
variance—covariance matrix
cr% 0
(2.11) Ezlz, =
£t 2
0 o5

The linear least squares projection errors are

(2.12) A - P[En ’\tl fn ’\t—l""’ i q)t-l""] = CyZy; + Cpo%g =V

G =Pl Q] & Ay o Gy, ] = €2y + CopZoy =1y

s0 that the variance—covariance matrix of the projection errors is
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2 2 2 2 2 9 = 9
(2.13) % Ovu| _ |19 T C12% C11%91%1 T C12%02%
2 2 2 2 2 2 2

%vu %u 1169191 1 C199909 C91 07 T+ G990

The state vector at time t is
5, = (MpypAps pAgob P 10 9)-

Computing an Explicit Solution

A method to express the equilibrium equity price as an explicit function of the state
vector 18 now described. It is an iterative procedure by which a geometric distributed lead
of lognormally distributed random variables can be evaluated.

The equilibrium first order condition is

(2.14) vy alsy) = BB [Yzll(yt+1¢t+1+‘1(st+1)]'

Define the function h by

(2.15) h(s,) = ¥, Ta(s,);

then (2.14) can be transformed into a linear equation in the function h, or

(2.16) h(s;) = BE [h(5t+1)+3’€+1¢n+1]

where p = 1 v for notational convenience. Equation (2.16) may be solved forward as

(2.17) h(s,) = Ett_glﬁjyf 0 +j}.

An assumption to ensure that (2.17) is well-defined is more conveniently stated below.
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The linearity of a conditional expectations operator permits (2.17) to be evaluated
term by term. In doing so, the following property of a log-normally distributed random

variable is used repeatedly; the property is

2
(2.18) B =B (afx, ) +5var(tax )

where var, i the conditional variance and a is a positive or negative scaler. Applying
(2.18) to each term in (2.17) allows h to be evaluated iteratively; this process is

summarized by the following theorem.

Theorem 1. Assume that lim fA. <1 where Aj is defined below. Under the distribution
JHo

assumption (A1), the equilibrium equity price is
(2.19) alsy) = ytjEIAjAt Az P B

where
_ 2 2
Aj+1 = Aj,{')‘ exp [(aj+p) [§0+.5(a.j+p)av] +dj(BO+.5djau)+(aj+p)djcrvu}

241 = 51(a.j+p) + bj + djzbl

L)

Cipp = 63(aj-l~,a) + djqu

ey = szj + ’fj + ?72(8.]-+p)
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f 93dj + ?73(a,j+p)

1T
and
(2.21) Aj=fexp [9(50+'503)+00+‘50121+pauv}
a; = pb; + .
by = péy + ¥y
¢ = p53 + ¢3
dy =png +0;
ey = plly + by
£, =png+ b

Proof. The proof is in the Appendix.o

The rational expectations price {2.19) can be approximated arbitrarily well with the
following algorithm for fixed parameter values, a fixed sample realization {A,,¢,} and

initial values (yO,MO).

Algorithm

1. Define (A )asin(221) Let

b, ¢ f
1_ a1 1 1 1
ht AT A LA 2¢t q)t 192
and set I*It = h%.

1021~
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2. Use the system of deterministic linear difference equations (2.20) to define (A2,a,2—f2)

and set

3*2 9
B = Ayh, A, 1)‘1: 2‘1’1; ¢t 1¢t—2

Use this to compute
2 _ 1l 2
Ht = Hy + ht'

-th

3. Repeat step 2 for each iteration so that, at the j iteration,

. . . b c. d. e. f. .
J— )1 - 3 A PR R j
Hi =H; " +hi{= E A At ,\t A 0y 0 b o + by

4.  Repeat step 3 using (2.20) for increasing values of j until

(222)  max|H}-HI"| = max|h?| <
¢ ¢

where ¢ is a predetermined small and positive constant. Let N denote the iteration
number at which (1.22) is satisfied; then (Hlt\Iyg') is an arbitrarily good approximation to
the rational expectations price (2.19). The approximation error is an increasing function
of ¢.

The conditional expected value of the equity price cap also be computed iteratively.

From (2.19), the conditional expected equity price is

jo.r)

a b
(228)  Byayyy =Fy {yt+1j21AJ’\t+1t t1¢t—1—1¢t ] 1}

J+1 bj cj dj ej fj
=B, > 2 A% N A1y 310 P
since Vir1 = ’\t 11 The linearity of the expectations operator permifs the

term—by—term evaluation of (2.23), which results in a recursive exponential system that is

described in the next theorem.
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Theorem 2. Assume that lim JA. < 1 where A is defined in (2.20). If (Ap) are

oo

distributed according to (A1), the conditional expected equilibrium price is

% Aaj,\g
=y B.
tj=1 7't

N C. . e, .
i 36298
E t21 Moy Py e

tdt+1

where

BJ =A. exp[(a +1)8+. 5(a. +1) + 5d o +(aj+1)dja\' ]

3, = 8 (agk1) + by + ¥y,

62(a,j+1) + ¢+ zbzdj

Ej = 53(a,j+1) +* ¢3dj

Hj = Bldj + nl(aj+1) + e

EJ = 92dj + nz(aj—l—l) + fj

fj = 93dj + n3(aj-|-1).
Proof. The proof is in the Appendix. ¢

For fixed parameters and a fixed sample of the state variables, the conditional
expected equity price can be evaluated using the algorithm described earlier by computing
the (Bj,Ej—fj) at each iteration.

The equilibrium equity price and its conditional mean, while geometric leads of

log-normally distributed random variables, are nof log-normally distributed. The
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conditional variances of the equity price and return are heteroscedastic and do not vary

according to a simple linear autoregressive process.?

A Real Model

In the real version of the model, a different type of asset is exchanged. A purchase of
an cquity share at time t is a claim to the future dividend stream; it differs from the
monetary model since the equity of that model is a claim to the current and future
dollar—denominated dividend stream. The first order condition for the real model is

15 = gelv 7. (@
(2.24) Yy qt_ﬁE[yt+1(qt+1+yt+l)]

where 51; denotes the value of the equilibrium price function q(.) evaluated at the current
state. There are two market—clearing conditions: all goods are consumed (¢,=y,), and all
claims are held (z,=1).

(A2) Assumption: The endowrnent process evolves according to

= )

Vi1 = M1

where

(2.25) & A =ay+ oA+ fn Mgt g fn ’\t-—2

t+1

+a'4€n)\t_3+et+1

and e is an independently and identically distributed normal random variable with zero

mean and finite variance ag.

The representative agent's wealth, measured in units of time t + 1 goods, is

21V 1]
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Recall that the post—transfer pre—trade wealth of the agent is

PyYy M

Pyt1

W1 ™y

(2.26) z T o SN
|

+

t e

in the monetary model. Using (2.7), the second term in (2.26) is

M, ( e

-1 _
W My Py g) T = W Y (W

so that (2.26) is expressed ag

Wi M

-1 t
zy[m g ¥y q] + Dy o]

=41t g1
in equilibrium. The models are meaningfully compared because the posti~transfer,
pretrade real dividend income available for spending is equal in the two models for the
identical endowment stream. As explained in Section 2, the assets' prices and returns are
different and display different risk characteristics.

The equilibrium equity price and its conditional expected value can be computed

iteratively using the algorithm described earlier.

Comparative Dynamics and Simulations

The analysis provided in Section 1 of the risk characteristics of the real and
dollar—denominated assets demonstrates that there are important differences between the
two types of assets as measured by the risk premium and the f—coefficients. An
important source of the difference is in the sign and magnitude of the conditional
covariance of the marginal rate of substitution with the dividend currently available for
gpending. It is difficult to determine analytically whether the covariance is important

empirically. A meaningful comparison is possible if the conditional expected equity
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premium and the F-coefficient are computed for each model using the same realization of
the endowment process and fixed parameter values (7,5). Of course, two different
probability models are assumed to generate the realized endowment process; for the
monetary model, (A1) is assumed to describe the motion of A and (A2) is assumed to
describe the motion of A for the real model.

The procedure for simulating the endowment shock and monetary transfer is now
described. Two realizations of standard normal random variables (2.2, ) of length 203

are drawn. The variance—covariance matrix (2.13) selected is*

2
g a 003159 —.003247
(31) v vu —
o Cr2 =003247 .00532
viu u

and a Cholesky decomposition is used to compute (cll,clz,cm,cm) in (2.13). This results
in two sequences of normally distributed shocks {ut’vt} that are contemporancously
correlated but serially uncorrelated. Initial values for the state vector 8, are selected.

Parameter values for the system (2.9) are chosen; these values are reported in the tables.

6 6. 0
_ ||
% | %

The sample {ut’vt}’ initial state Sg» and fixed parameters are used to generate a

The time series process is

ﬂnz\t v

g,

b
in ¢t—1

t
Uy

(3.2) +

realization {§;,A;} which is then used to compute the prices and returns to a variety of
assets. The formulas for the assets in the monetary model are contained in Table 1. The
simulations are contained in Tables 3 and 5.

By setting 7, equal to zero in (3.2), the time series model describing the evolution of

At is
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(3.3) A =6+6mA 4 +v,

where v, is a serially uncorrelated, log—normally distributed random wvariable. To

1
gimulate the real model, the same sample realization {Xt’vt} and initial state 84 are used
as data. The time series mode] (3.3) describes the motion of the endowment shock. The
asset prices and returns for the real model are computed with the pricing formulas

summarized in Table 2; the simulations are reported in Table 4.

Monetary Model: Comparative Dynamics

The variables of interest in the monetary model are the conditional covariance of the
marginal rate of substitution with the purchasing power of money, the conditional
covariance of the marginal rate of substitution with the equity price, and the conditional
expected returns of the equity, the perfectly correlated asset and the zero—correlated asset.
The distribution assumption (A1) for (fn A, f §) is made; the explicit formula for each
variable is contained in Table 1. Some comparative dynamics results are now

summarized.

1. The return to the perfectly corrclated asset that is evaluated in Table 1 under

distribution assumption (Al) is: decreasing in B; increasing in &y decreasing 03;

indeterminate in 7.
2. The return to the zero correlated asset, also evaluated in Table 1, is: decreasing in 5;
increasing in §.; decreasing in cr%; indeterminate in 7.

- 8 0 . s . . . .

3. The conditional mean Et[Rt +1"Rt -%-11 i3 increasing in :50, decreasing in f, and
decreasing in 03.

4. The conditional variance of the perfectly correlated asset is state independent,

(Sy 070

¢ +1”’TE _}_1) depends directly on

increasing cr‘%, and increaging in 7. The sign of cov,

the sign of
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(3.3) exp[—*y(av+ avu)] -1
o, <0andif [ogyl > 03, then (3.1) is positive.

5. The conditional variances of RO and RY are gtate dependent as is the F-coefficient.
The equity return is not lognormally distributed even though the endowment is, and

its conditional variance is state—dependent.

6. The risk premium of the nominal bond, equation 9 in Table 1, is state dependent and

time—varying. It is decreasing in S and its sign depends on the sign of

-1
t+ 17T +1

heteroscedastic variance.

cov, (S ). The risk premium is log—normally distributed with a conditionally

Real Model: Comparative Dynamics

The variables of interest for the real model are the conditional covariances of the
marginal rate of substitution with the dividend and with the equity price and the
conditional expected returns of the equity, the perfectly correlated asset and the zero
correlated asset. The formula for each variable is contained in Table 2. Some

comparative dynamic results are now summarized.

1. The conditional covariance covt(St +1”\t +1) is negative, increasing in § and o, and

decreasing in 02.

e
2. The conditional expected returns ,Et(l-}-Rz +1) and Et(l+R2 +l) are decreasing in f,
increasing in &, and decreasing in ag.
3. The conditional expected premium Et[RE _H--R? +1] is decreasing in f, increasing in

«, and decreasing in org.
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The conditional covariance of the equity return with the return to the perfectly
correlated asset is & function of the conditional covariances of the marginal rate of
substitution with the current dividend and the marginaf rate of substitution with the
equity price. The covariance of the MRS with the equity price for the monetary model

can be shown to equal

(34)  covildyy 184 q) = Wtjzl’\f, A1 Ao 0 10 G5B exp(=18y+-579]
where

a. = 51(a.j+p) + bj + "bldj
b, = 2(a+p)+c +¢2d
c. = (a +0) + ¢3

ej = ﬂzdj + nz(aj+p) + fj

4y )

au+(a ~Ap)d.o

o)

and Aj’ Bj’ (ajufj) are defined in (2.20) and (2.21). Obviously, this covariance is a

complicated function of the model's parameters and state variables. This covariance can

C = A, exp[(a, +p)éyt 5(a +p) o, an 5dj

be computed iteratively uging the algorithm described earlier. The conditional covariance

cov (R

t+l’ 1) is computed as
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—RY

q
R b+1

0
t+1 JE(1+R; 1)

8
cov,(R t41

— _E.(RY
t+17 ) =E(R

t+1
which follows from (1.16).
The conditional covariance of the equity return and inflation can be computed

iteratively by observing that

-1 -1
Covy [(qt) (qt+1+ft+13’t)’”t+1]

| -1

=(qy) {Et(qt+1’ft+1+yt)‘Et[(qt+1+ﬂt+1yt)] Et”t+1}

and that

o a. b.c. d. e {.
Py dg d gyl

ytjEIAj’\t-l—l’\t Ap1®e 110 Py

E =E,

.

t944-1Tp 1

This conditional expectation can be evaluated using the approach described in the proof of

Theorem 2.5

imulation

The simulation results for the monetary model are reported in Table 3. The
simulation results for the real model are reported in Table 4. The information in the two
tables is comparable because the identical endowment realization and initial state is used
for both tables. The preference parameters are fixed at y = 2.00 and 8 = 0.95.

The conditional expected equity returns for the monetary model are uniformly less
than the conditional expected returns for the real model. The conditional risk premiums
of the monetary model are uniformly greater than the conditional risk premiums of the

real model. The S—coefficients are negative and the equity of the monetary model is less

risky than the equity of the real model since [f4| < |#%|. The conditional covariance
covt(S,vr_l) in Table 3 is positive and the term covt(S,/\) is negative in Table 4 as

predicted.
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In the monetary model, the risk premium of the nominal bond is negative and
time—varying. This means that the nominal bond is a hedge against future uncertainty
and that the Figher equation will yield a poor approximation to the zero—correlated return
rC,

The simulation results for the monetary model reported in Table 3 assume that
0,y = —0-003247. As discussed, this covariance is an important determinant of the risk
characteristics of a dollar-denominated asset. To determine how the results change if this
covariance i8 positive, the parameter values reported in Table 3 with the exception that
o, = 0.003247 are used to generate another realization {ut,vt}. The same initial state s,
is used to generate a sample {/\t,qat}. The formulas summarized in Table 1 are used to
evaluate the asset prices and returns. The results are reported in Table 5. As predicted,
the conditional covariance of MRS with the inverse of inflation is uniformly negative.
The conditional equity premium is uniformly greater when 0,y > 0 than when Tyy < 0.
The risk premium on the nominal bond is positive and in the range of 1.37 percent. This
again implies that the approximation of the zero-correlated asset return by use of the

Figher equation is biased.

4. Conclugion

The effect of stochastic inflation on stock prices ig explored using the empirical
implications of the intertemporal CAPM described by Hansen, Richard, and Singleton
(1981). The result is that stochastic inflation affects the risk characteristics, measured by
the equity premium and the correlation of the asset's return with consumption, in a
fundamental way. The riskiness of a dollar—denominated asset depends on two
conditional covariances: the covariance of the MRS with the equity price and the
covariance of the MRS with the rate of appreciation in the purchasing power of money.
The second covariance may take either sign depending on the covariance of the

endowment process and the monetary transfer. This becomes significant when the
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rigkiness of the dollar—denominated asset is compared with the risk characteristics of the
indexed asset constructed in a real version of the model.

Currency is incorporated into a pure endowment representative agent model by way
of a cash—-in—advance constraint. Timing of trade and information acquisition is such that
the constraint is binding under the hypothesis that nominal interests are nonncgative in
all states. Alternative model specifications that result in a potentially nonbinding
constraint are studied by Svensson (1985), for examplge. The growth rates of the
monetary transfer and the endowment are assumed to evolve according to a bivariate
autoregressive process with normally distributed error terms. As a result of this
assumption and the parameterization of the utility function, the equity price is a
geometric distributed lead of log-normally distributed random variables. An algorithm to
express the equilibrium equity price as an explicit function of the state variables is
described.

Comparative dynamic results and simulations of the real and monetary versions of
the model are presented and discussed in Section 3. The simulations reinforce the
conclusion that stochastic inflation has an important effect on the risk characteristics of
the assets. The particular model used minimizes the role of money in the economy; if
stochastic inflation affects the risk characteristics in thfs model, the effect should be

magnified a3 velocity is allowed to vary and production decisions are introduced.
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Footnotes

IThe covariance is

8 _ 2 -1 2
0ovy(Ry 4158 11) = (BiSi 1) [Etst+1_{EtSt+1) ]
a2 -l 8
= (BSi4)  var(Byy ) >0

2This point is illustrated by Lucas (1978) for a pure exchange markov economy that
is stationary in the endowment level.

3The conditional variance of the price,

_ ~ 2
vary(qy 1) = Ey [(qt-{-l B4 1) ]’

can be shown to equal

® a.+a. B+B c+c 'dr+Z:TJ e+e T+I

7% J
vary(qy ) = LEIISIAIAJAt ORI NP A AP AP

exp [ [(ai+1+aj+1)] 60+(di—lfdj)00:|'

exp[[(aj-z—l) +(&i+1)] 2(.5)03+.5(ci-fcj)20121]

2 2 2,,2, 2 2
—-exp[[(aj—i-l) +(a;+1) U(.5)0V+(cj+ci).50u]}.
This variance is state—dependent and does not display any smooth autoregressive
structure.

“These values are estimated from the Mehra—Prescott data (Mehra and Prescott

1985) and are reported in Labadie (1988).
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5T'he solution is

- ~r

® a. b, ¢ d. & .
mv B BN LG e
171 =T 2 P Mt Apa O 9 9

E

where

B.=A. exp[a, 60+ 5&2 2

: i (d -1)6 +.5(dj 1) au+a,j(dj 1)0‘uv]

c =45 a + z{)3(d -1)

d.=0,(d.-1
| 1(dj )+n1a,J -+ eJ

50 that

q _ -1
covi(Re 4 1pmp1) = (4p) [yt+tht+1’%+1 B (14+R, ) tt+1]

where

Bym o =By 1b01)

— 2 2
= exp [—( 00+ §O)+.50u+.5av+avu]

{A51+¢1A62+¢2/\63+¢3 Hl+n1 6’2+?]2 g +ry3
t t~1 t—2 t t—1 t—2

and B, (1+R , |} is defined in Table 2.

t+1)
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Appendix

Proof of Th
The first term in (2.14) is

p Al 2P e
FEY: 11011 = BB A 116y
where

2 2
BYYEYE 4 10y y 1 = Arf exp [9(50+'5P‘7v)+6’0+'5"u+9"uv]

p51+¢1 p52+1b2 p§3+1,b3 ¢pnl+r91 pn2+02 pn3+6’3
t t—1 -2 t t—1 -2 :

The coefficients are used to define (Al;al—fl) in 2.18.

The second term in (2.14) is

p _R2.0a 0l AP
ﬁQEtyt+2¢a+2 = 52YtEt[)‘t,+1’\t+2¢t+2]

= ,Bzyt exp pﬁo—{— 5p2 2 90+.50121+pauv)
ptaq bl d
Edi41 Ay 1¢t+1¢t ¢t 1)

= ﬁyfA1 exp[(al+p)50+(al+p)2.503+d1(00+d1.50121)+(&1+p)d10'uv]

b f
4y 2 % 2
MM 2¢t ¢ 1 ¢
wlhere

g = bop + 9y + 6 [p(1+61)+¢1] + (0, +pn) ¥

=b, + 6 (aj+p) + d; ¥
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by = pbg + 15 + 6, [p(1+61)+¢1] + (8 +om )ty
= ¢y + fy(a;+p) + dy 9y

Co = [(1+51)+zb1] + (0+om ) ¥g
= ba(a;+p) + d; ¥y

dy = Oy + p1g + 8,(0;+pn;) + [p(1+§1)+1,b1] n
=e; + §;d; + n(a;+p)

ey = g + png + O5(8+pmy) + [p(1+61)+¢1] Ty
=1; + O5d; -+ nya;+p)

fo = 03(0,+pmy) + 1y [ﬂ(1+51)+¢1]
= O3d; + nal(a;+p).

Evaluation of the third term results in

Pr 1P _BInp Ap P
g V1B A 1abt3 = By 21 130 oM 1 1043

p(146,) 4+, p(1+8)+t, p(1+8,)+7
_ 0 1 1 2 2 3 3
= PYIAEX, Ap1 At

91 +P7?1 82 +PW2 63+P773
t+2 t+1 t
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p+a1 prho

= PyPA.E A 1Ac1
YA Appe A

OpioBir®y
bs C
2 2 ey
= By{AgE ’\t+1 ¢t+1 P ‘1’
a, b C d, e f
_p, 33 b3 g dy o3 Ig
=¥eAg AT AT Ao &7 T 0o

Since there is nothing special about the second and third iterations, the recursive scheme
defined by (2.17) and (2.18) follows.
To determine if
lim BA. < 1,
R

the steady state of the system must be examined. Define -

(¢3+¢2+¢1)(ﬂl+7?2+7?3)
R R R Ey Ay N

Then the steady state of the system (2.17) is:
a= _p_J, J
1 —
??3'!' 772"' U
77,7 14

172 73

b= (6+8) |1 + (yrwg)d

C="i—__—j'+ ¢3d
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e = (8yt+0g)d + (ngt75) T2

Map
f——f?d-l-—-—‘]r

The agsumptions made are

i 1—01~02—03<1
ii. J#1

i, JT_%J’ <w
in addition to the agssumptions in Al. The term
[(aj+p) [5 +. 5(a +p)o ] (9 +. 5df’u)]
will tend to a constant K as j + . If
K <1 .
then the sum in Theorem 1 converges.

Proof of Theorem 2
Equation (2.20) is

b
E.q =y j+1
N tLE A’\t+1 A At 1¢t+1¢t 9, 1}
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h

Evaluation of the jt term results in

a. b, ¢. d. e, {.
J+1,70,7) PP
Bt Ay A Godn 9 0

_ 2 2 2 9
= A; exp[(aj+1)50+.5(a.j+1) o2 0 +.5 jau+(aj+1)djcrvu]

J

Ai)j+51 (aj+1)+dj¢1 ,\:j??(aﬁl“dj% /\fi;a.+1)+dj¢3

e.+d.0+(a.+1)n, f.+d.$ +(a.+1)n' d.f,-+(a:+1)p
1 2 2
¢tJ J ] I ¢tJ_ . J J ¢t{23 73

which determines the linear deterministic system of exponents defined in Theorem 2.
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Table 1

Formulas for Variables in the Monetary Model Expressed as
Explicit Functions of the Current State Variables and Parameters

Lo covy(Sy415 t+1) = cov (BN ]2 s+1%41)
A§1p+¢l/\62p+¢2/\§3p+¢3 nlp+ﬂl n2p+6‘2
= P4y t—1 {2 b t-1
ngpt Oy 2

2 2 2
q>t T exp(p60+00+.5au) [exp(p .5av-|—pavu)—exp[crvu+.5(l+7 )02”.

o - -1
2. B4Ry, )= (BS, ) = (BB ]))

-1 6, & }

={[6exp( Yo+ 57 2] (A 1/\t21/\t 2‘1’ ¢n-1¢’t—2)

s\ _ -1
3. B(HRE ) = BSy(BSEy)”

b &

1 b3 M "
= (020,

Ty —Y
0, 10,00 ex|18-(15)707)
_1 »
4 B+REL ) = Bylag A Bpqd(a)
e | 2 2
=q; |Bq 1y exp(50+00+.5au+avu+.5av)

6+ A‘Sz""@”z /\53"*‘% b1+ny ptny Ogtng
i 21 Moo Oy =1 P2

where E is defined in (2.20).

1% +1
2 2 v o =7 \2] 2 9
5. vary(R,q) = (B ) Et[(mt-z-l BBA 1) ] = 1-exp(-7"0y)-

5 11[;3 )'y

RO 1o 1%
6. ByRy Ry ql=5(0 A2 1)‘t N L)

exp(76;) [e:m [—(1-5)7203] — exp(=57° 0‘2,)] :
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Table 1 continued

. -1 -1 _ P -1
o4 =(BS gm ] = BB AL 6]

2 -
= [)’_1 [exp(p60+.5p Go—i- 5cru+pauv)] L

poytiby Pyt ity pbytiby 0y+pny Ootong Ox+png =)

Ay -1 App O Gy o 7
g

8. 1+4+Er ]

i1 = [B¢S

)
tt+1 = BEA b1l B4t

 [pew[rtyrst2atormy ]| It e o

tot+1 t+1

0 ,_ -1 -1 -1 |
9. Et[rt+1‘Rt+1]—Et[(EtStﬂ“tH) T~ (BeSiqr) ]

&, &
={ﬁeXP(“T§O+-5'}’20€)]_1 lf\t21)‘t32¢t¢ q)t_g]’r

[exp [7( 03+ qu)] —1]

Note: (1) is the covariance of the MRS with the inverse of gross inflation. (2) is the
expected return to the zero—correlated asset. (3) is the expected return to the perfectly
correlated asset. (4) is the return to the equity in the monectary model. (5) is the
variance of the perfectly correlated return. (6) is the expected risk premium of the
perfectly correlated return. (7) is the nominal interest rate. (8) is the expected real
return on the nominal bond. (8) is the expected premium on the real return to the
nominal bond. All covariances and expectations are conditioned on information available
al time t.
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Table 2

Formulas for Variables in the Real Model Expressed as
Explicit Functions of the Current State Variables and Parameters

Q& o
1. cov(SH_l, t—l—l) = (A 1At21Af32 t—3) Pexp(pa )[exp( 5,0 ¢ —exp[ 1+~/2)a ”

0 9 9. @ Q& 124 a
2. B4Ry, ) = pexn(rap=57700) (0 1A 22 Box B

1,,%,% 3
3. (1+Rt+l) z;( A 212 oA ) exp('raﬁ—l 5720'

q o\ =l *,% ,% %
L E(HRE, ) =(gp) [ LAV YEIP Y Wt

ig defined in Theorem 2.

where tht 11
8 2 2
5. var(Rt+1) —exp(—7"0y,)-
0 1 “”1 “2 @y 2 2 2
6. BIRE, 1 RY, 1= 30, 23 )Y en(rag)[exp(-5920)- exp(-5426%) |

Note: (1) is the covariance of MRS and the endowment shock. (2) is the expected return
to the zero-correlated asset, 83) is the expected return to the perfectly correlated asset.
(4) is the expected return to the equity in the real model, (5) is the variance of the return
to the perfectly correlated asset. (6) is the risk premium on the perfectly correlated asset.
All covariances and expectations are conditioned on information at time t.
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Table 3
Monetary Model, 7 = 2.00, g = 0.95

gRY  BRLRY  Er  E[-RY

Subsample % % % % cov(S,7 1) lix:
1 7.538 8463 6.673  —01877 00299 ~681
2 6.248 .4939 5.735  —.01861 00319 -.371
3 6.403 4466 5.938  -.01864 00321 -.335
4 6.900 6705 6.210  —.01869 .00309 -.502
5 7.239 8531 6.367  —.01872 .00299 —.638
6 7.147 7956 6.333  -.01871 .00302 —.594
7 6.751 .5848 6.147  —.01868 - .00314 —.438
8 7.494 .9234 6.552  ~01875 .00296 —.689
9 6.894 6578 6.217  —01869 .00310 —.492
10 7.421 9497 6.453  —.01873 .00294 -.709
11 7.449 8964 6.53¢  —.01875 00297 —.669
12 7.336 7702 6.547  —.01875 00303 ~-.575
13 6.956 7003 6.237  -.01869 00307 —.524
14 7.112 7416 6.352  —.01872 .00305 -.555
15 7.095 71278 6.348  —.01871 .00306 ~544

var(R%) = 0.012556 . o

*Each subsample i3 of length 10 and sample averages are reported. The parameter values
are: 00 = —0.01382, 91 = 0.519, ¥; = 0.0189, 6, = 0.00705, §, = 0.105968, n; = 0, 0'3 =

0.00532, 03 = 0.003159, and o, = ~0.003247. The time series model is (3.2); the initial

state is yq = 1, fn A_; = —0.0285, fn ¢ ; = 0.04237. The variables in the columns are:

conditional expected equity return, conditional expected risk premium, expected real
return on the nominal bond, conditional inflation premium, conditional covariance of
MRS with the inverse of gross inflation and the S—coefficient of the equity return.
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Table 4
Real Model, v = 2.00, 8 =0.95

q q 0 g 0
ER E[RLR’] ER E,R

Subperiod % % % % cov(S,A) i
1 6.127 242 5.721 5.885 —.00211 -1.4795
2 5.847 241 5.442 5.606 * *
3 5.908 241 5.503 5.667 * *
4 6.017 242 5.611 5.775 * *
5 5.967 241 5.561 5.725 * *
6 6.040 242 5.634 5.798 * *
7 6.013 242 5.607 5.771 * *
8 6.123 242 5.717 5.881 * *
9 5.964 241 5.558 5.722 * *
10 6.085 .242 5.680 5.843 * *
11 6.123 242 5.717 5.880 * x
12 6.121 .242 5.715 5.879 * *
13 5.997 .242 5.591 5.755 * *
14 6.047 242 5.642 5.805 . * *
15 6.016 2492 5.610 5.774 * *

var(R®) = 0.00154

*Unchanged from previous value.
Each subsample is of length 10 and sample averages are reported. The formulas in
Table 2 are used to compute the variables above; the parameters for the endowment

process are are: 0:0 = 0.00705, o = 0.105968, oy = 0, Gy = 0, and ag = 0.003159. The

endowment realization is identical to the endowment used in the computation reported in
Table 3. The variables reported are: the conditional expected equity return, conditional
risk premium, conditional return on the perfectly correlated asset, conditional covariance
of MRS with the endowment shock, conditional covariance of the MRS with the equity
price and the f-coefficient of the equity return.
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Table 5
Monetary Model, ¥ = 2.00, 8 = 0.95

0 0
ER? B RIR Er  EJr-R

Subsample % % % % cov(S,grhl) fin
1 6.745 1.0478 7.060 1.362 —-.00857 -.790
2 7.046 .8032 7.612 1.369 -.008%2 —.602
3 6.940 5942 7.717 1.371 —.00924 —444
4 7.214 6930 7.894 1.373 —.00908 -519
) 7.174 9645 7.579 1.369 —-.00868 —.724
6 7.239 8325 7.979 1.372 —.00887 —-625
7 7.138 8412 7.668 1.370 —.00868 -.631
8 6.732 .8803 7.216 1.364 —.00882 —.663
9 7.355 9747 7.752 1.371 —. 00866 —-730
10 6.795 .6509 7.513 1.368 | ~.00915 -.489
11 7.191 7689 7.794 1.372 —.00897 —-.576
12 6.274 6977 6.938 1.361 -.00910 —.b27
13 6.913 .8003 7.481 1.368 —~.00893 -603
14 6.831 3271 7.877 1.373 ~00963 —245
15 7.059 7164 7.714 1371 ~.00905 -.538

var(R®) = 0.012556

*The parameter values are identical to those reported in Table 5 with the important
exception that Oy = 0.003247. The parameters are: 00 = =0.01382, 4, = 0.519, ¥ =

_ _ — 2 _ 2 _ —
0.0189, §, = 0.00705, &; = 0.105968, 5, = 0, o7 = 0.00532, o, = 0.003159, and o, =

0.003247. Each subsample is of length 10 and sample averages are reported. The
formulas summarized by Table 1 are used in the computations.
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