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ABSTRACT

In this paper we analyze the rate of convergence to a balanced path in a class of endogenous growth
models with physical and human capital. We show that such rate depends locally on the technological
parameters of the model, but does not depend on those parameters related to preferences. This result
stands in sharp contrast with that of the one-sector neoclassical growth model, where both preferences
and technologies determine the speed of convergence to a steady-state growth path.
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1. Introduction

In this paper we analyze the speed of convergence to a balanced path in an endogenous
growlh [ramework. The speed of convergence provides important information in testiug
a model on the relative emphasis that should be placed on the steady-state belhavior and
transitional dynamics. If the speed of convergence to a steady state or balanced path is
high, then the long-run behavior of the model should be determined by its predictions at
the steady state. However, if such rate of convergence is low, then transitional dyuamics
may play a relevani role in ascertaining the predictive power of a model even if long-run

cousiderations are called into the aunalysis.

Our study is restricted to a class of endogenous growth models with physical and
hurnan capital. This class of models —initialed in the work of Uzawa {1965) and Lu-
cas (1988)--- has been the focus of some current research on growth theory, since they
generate processes of permanent growth propelled by a human capital technology. Our
basic result shows that the speed of convergence depends in a quasilinear fashion on the
technological parameters of the model, but dees not depend on those parameters charac-
teristic of preferences. Roughly, this rate increases with the productivity of the human
capital iochnology and decreases with the share of physical capital in the goods sector.
These findings stand in sharp contrast with corresponding results for the neoclassical
growth model, where both preferences and technological parameters determine the speed

of convergence.

The fact that preferences are irrelevant in the determination of the speed of conver-
gence is linked to the multi-sectoral structure of our economies. The intuition behind this
result can be explained from the logic underlying our method of analysis. We first note
that along the stable path all variables in the economy must converge at the same speed
Lo the steady-stale equilibrinmyg hence, in order to determine the speed of convergence
(or to devise an appropriate test of convergence) we may just focus on a single, chosen

variable. In particular, let us concentrate on tlhie optimal quantity of labor devoted to

sgoods produclion; in our model, such quantity is determined by the relative price and

marginal productivities in both sectors. Moreover, the equilibrinm law of motion of the



relative price depends only on the wedge between those marginal productivities. From
these facts, and after some simple algebraic manipulations, we show below that only

techunological parameters determine the rate of convergence.

An exicnsive cmpirical literature has analyzed the problem of convergence, broadly
defined as a general lendeucy for poor countries or regions to exhibit higher growth rates.
Barro (1991), Barro and Sala-t-Martin {1992} and Mankiw ef al. {1992} study several
cross-section dala sets and document slow rates of convergence (annual rates of the order
of 2%). These results conflict with simulations of the standard growth model, where
[or calibrated parameter values the rate of convergence is of the order of ™% (e.g., see
below). The contrast between empirical results and model simulations is also manifested in
temporal analyses of individual countries [cf., Christiano (1989)], in which the exogenous

growth model seems to display much faster convergence than the reported evidence.

The cross-section analyses by Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw
el al. (1992) have nevertheless been challenged in several respects. Various authors [e.g.,
Bernard and Durlauf (1995), Durlauf and Johuson (1994), and Quah {1993a,b)] have
argued that cross-section regressions cannot capture certain dynamic properties of the
evolving income distribution, and that the negative coeflicient associated with the speed
of convergence in those analyses may be compatible with the absence of convergence or
with the existence of multiple steady-state growth patterns. More recently, Canova and
Marcet (1995) have contended that the relatively low estimates for the speed of conver-
gence reported in those cross-section studies may be subject to a fixed-effect bias arising
from pooling heterogencous units with different data generating processes. Also, den Haan
(1995) highlights a possible bias and inconsistency of these estimates in the presence of

productivity shocks.

Although further research is needed to clarify some of these issues, one conclusion
that appears to emerge from this line of research —and that would be one of the premises
of the present study  -is that reasonably calibrated deteministic growth modeis display
higher rates of convergence than those supported by the empirical evidence. This becomes

transparent in the dynamic analysis of selected units [as in Christiano (1989)] or small



]

groups of couniries or regions [cf., Barro and Sala-i-Martin {1992)]. Hence, it seems that
important featires of the convergerrce problem are not well captured by standard growth
models. Yet, den Haan (1995) has observed that small rates of convergence are compai.-
ible with plausible calibrations of stochastic growth models, as long as those shocks are
sufficiently persistent. Likewise, we shall illustrate below that the presence of a simple
adjustment costs technology for the accumulation of physical capital can reasonably re-
duce the rate of convergence without altering substantially some other predictions of the

model.

The paper is organized as follows. We begin in Seclion 2 with a review of some basic
facts on convergence in the one-sector model. Then in Section 3 we present our main
results on convergence for a family of two-sector growth models that include qualificd
leisure. Under the assumption of constant returns to scale in both sectors, we show that
our results hold true for general concave utility and production functions; likewise, these
results are robust to several types of flat-rate taxes. In Section 1, the scope of these
theoretical findings is further qualified with the aid of some numerical computations.
Although our theoretical analysis applies locally, these numerical exercises will illustrate
that our results trace rcasonably well the global, non-lincar behavior of the cconomy
over a considerable portion of the transition. Also, certain departures from our basic
assumptions will only lead to marginal deviations of our benchmark results. We conclude

in Section 5 with a summary of our main contributions.

2. Convergence in the Neoclassical Growth Model

In this section we present a simple version of the neoclassical growth model, and sum-
marize some well known results on convergence. This setting will also prove useful to

facilitate the exposition in the subsequent development.

We consider an economy where at each time ¢ > 0 the production of the single homeo-

geneous good is represented by the production process

y(t) = Ak(1)”



where both variables y{7} and &{!) are measured in per capita units, and A > 0 and
0 < 8 < 1 are technological parameters. Qutput, y(t), is devoted either to consumption,
c{t), or to investment, i{({). Physical capital, k{(#), depreciates at a fixed rate, # > 0. The
instantaneous utility derived fromn consummption is represented by a CES function

1= __
U(e(t)) = C“)l_—al

with ¢ > 0. Future utilities are discounted at a given rate, p > 0, and population grows

at an exogenous rate, n 2> 0, with p > n.

Under these assumptions, the planning problem can be written as

20 -0 _
max / NPT Ol (P)
[

l-o
subject to

B(1) = AR(E)? — (7 4+ n)k(L) — e(#) (2.1)
e(t) =0, ki)=0
R(0) = ky given,

where &(f) is the time derivative. Ti is well known that problem (P) has a unique, differ-
entiable solution {(c(t), k(Z)}}:>0, which must satisfy at every ¢ > 0 the following system
of first-order conditions
oty = - mlt) (2.2)
() = [p+7—BARP () (2.3)

Here n (1) denoles the co-state variable associated with k(). The optimal solution is

characterized by (2.1)-(2.3) and the transversality condition,

lim e~ () k(1) = 0 (2.4)

L

From (2.1)-(2.3) we theu oblain that the following two-dimensional dynamical system
determines the evolution of consumption and investment,

dty = —Llp+r—parey]

i)y = AR(D" — (r -+ n)k(t) ~ c{t) (2.

—
[T
o
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The system reaches a steady state if &(f) = R(t) = 0. It is easy to sce from these equations

that there is a unique positive solution that conforms a steady state (e*, &*).

In order to study the stability properties of the system, we linearize (2.5} and (2.6) at

the steady-state values {¢*, &*). The lincarized dynamical system is thus given by

é(1) 0 —S(1=BBATT N [ () = (2.1)

. = i )

k(6 —1 AT —(x +n) b(t) — k*
The characteristic equation corresponding to this lincar system is then

-4
a 3
It follows thai there is a negative root Ay, which can be compuied asg
- , 1/2
—_n — _nlz.{_w'ﬂ-l—_ﬂl &_{—_ﬁ' ._...",T.i,_n
j oo (o () ~ @) T

2
Consequently, equations (2.5)-(2.6) contain a one-dimensional stable manifoid. This man-

ifold satisfies (2.4)-(2.6), and hence it is made up of optimal solutions. Moreover, by the

strict concavity of our opiimization problem these solutions are the only optimal ones.

Lot A = —A;. We call A the rafe or spred of convergener to the steady state {c*, k).
The relatively complex form in (2.9) suggests that further extensions of the model -
such as leisure in the utility function or many types of goods— may render the rate of
convergence A hard to compute analytically. In the above simple case, however, we can
sce from (2.9) how different parameters related to preferences and technologies affect the
value X. In the cconomic growth litcrature [e.g., Barro and Sala-i-Martin {1992)] it has
been stressed ihe role of parameter 3; such parameter affects negatively the value A. Also,
proferences parameters o and p have a non-negligible influence on A. Indeed, one easily

sces from (2.9} that A becomes unbounded as o approaches zero.



3. Convergence in an Endogenous Growth Model

We now study the rate of convergence in a parameterized family of growth models with
physical and human capital. In contrast to the previous section, we show that the rate
of convergence is only determined by technological parameters. Moreover, this result is
robust to several extensions of the basic framework, including gencral convex techonologies

with constant rcturns 1o scale and various types of flat-rate taxes.

3.1. The bagic model

Wiih respect to the exogenous growth framework, the present model features an added
educational sector and a choice of a tiine variable allocated to three margins: production

of the aggregate good, schooling, and leisure.

At every time ! > 0, production of the single, homogeneous good is represented by

the production process

y(t) = AR (u{t)R(1))'#

where u{?) connotes the relative amount of effort devoted to the production of the good,
and h{1} is the level of education or human capital. All variables are measured in per
capita units. In the educational sector, the law of motion of A(¢) is given by a linear

technology

h(1) = 6(1 — wu(t) — I(tNA(t) — Oh(E)

where (1 —u(t) — (1)} is the fraction of time devoled to education, and (/) is the fraction
of i1me spent in leisure activities. Parameter 8 > 0 is the rate of depreciation of (), and

parameter & > 0 is the constant marginal productivity.

The instantancous utility derived from consumption and leisure is represented by a
CES function

(IR — 1

l—0o

Ulc,lh) = for 0>0,0#1, 0<y<1



and
Ule, iy =yIne4+ (1 —4)In(lh)  for o=1, 0 <y <1

Observe that if v = 1 this formulation reduces to the utility functiou postulated in Lucas
{1988) with no leisure. A discussion of alternative modelizations of consumption and

leisure will Le provided below.

The planning problem to be considered is written as

VM0),R(0)) = max];o o~ lpmnit (tﬂ(i)?(l(ﬁ)bl(i));ﬂ)l- - ldz‘ (P
subject to
k() = AR®P(uh())'F — (7 + n)k(1) — ot) (3.1)
h() = 8(1 —ult) — U2))h{t) — Oh(2) (3.2)

0<u(t) <L 0SS, 0 u{t)+UE) <L
i) =20, k(1) 20, A{{}) =0
R(0), £{0) given, p—n > {8 —0)(1 — o)

Under these conditions, problem { P} has a unique optimal solution {{c{t), k(¢), h{¢),
i), u(t)) }izo, which in the interior case must satisfy the following system of first-order

cquations

ye(BY =T R ()0 = (1) (3.3)
(1= e R(1) 700 = (1) (3.1)
m(EH1 — VAR (u()Rh(£)) 7P = nu(1)6 (3.5)
h(t) = [p+ 7 — AR (u(@)R(1)) () (3.6)
ma{t) = [p—n — & + Olp(1) (3.7)

where {1} and 7,(¢) denote the co-state variables associated with #(?) and #(f), respec-

tively. The opilimal solution must also fulfil the transversality condition,

JTim < (g (1)(2) + ma(DR(1) = O (3.8)
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A balanced path is an optimal solution {(c(£)*, k{¢)*, (1}, H{t)*, u(t)*}}epo to (F7) such
that e{t)*, 2(1)* and A(¢$)* grow at constant rates, and I({)* and u(#)* remain constant. It
follows from Claballé and Santos (1993) and Ortigueira (1994) that there is a unique ray
of halanced paths, whicl is globally stable. Along this ray, consumption, (¢)*, and both

types of capital, A(#)* and i(¢)*, grow at a constant rate, say .
yp p g

Let z(t) = %&% and z{t) = %%% Then the ray of balanced paths can be parameterized
by the vector (2%, z*, I*, u*). Moreover, under this new set of variables convergence to the
balanced path is determined by a unidimensional stable manifold corresponding to the

upique negative eigenvalue of the system [cf., op. ¢it.].
We now present our hasic result on the rate of convergence.

Theorem 3.1: Assume that (2%, 2%, *,u*) is an inlerior stalionary solution o problem
(). Then coery other optimal solution (=(t), 2(2), I(t), u(t)) approaches (=%, z*, I*, u*} at

the rale of convergener,

f\:(l—_—ﬂ) (7 4n+6—06) (3.9)
B

It can be shown that the existence of an interior steady state requires A > 0. The
theorem is proved in the appendix. As pointed out in the introductory section, the
intuition behind this result can be explained from the strategy underlying onr method of
proof. After rewriting system (3.3)-(3.7) in the variables 2(t) = i, «(t) = @ and n(t) =

t . . . . - . . .
Bl the linearization of these equations contains a unique negative eigenvalue that defines

n2(4)”
a one-ditnensional manifold for the non-linear system [ef., Caballé and Santos (1993)].

Assuming that this manifold is in general position, all variables must then converge at
the same speed to the ray of balanced paths, say A. Hence, we only need to detemine
the speed of convergence for a given chosen variable.! In particular, we may focus on the
variable working time, u(#). From cquation (3.5), we can see that u(t) can be defined in
terins of the ratio of the two capitals, z = %, and the relative price, = f% Moreover,

it follows from (3.6)-(3.7) that the law of motion of 5 is not dependent upon preferences

IThis procedure suggests that in order to design the most effective tests of convergence one should focus

on that variable that displays more variability in the data, or that is easiest to measure and manipulate.



paramcters. Now, exploiting again the fact that variables & and n must converge at the
same rate, 3, and afler some simaple algebraic computations, we show in the appendix that
in fact, &, can be fully determined from (3.5)-(3.7). Consequently, preferences parameters

do not affect the rate of convergence.

We should note from (3.9) that the preoductivity of the liuman capital technology,
(6 — 8), increases the rate of convergence, whercas the weight of physical capital in the
produciion sector, [, has the opposite effect. Moreover, physical capital depreciation,
7, and population growth, n, exert a positive influence on the rate of convergence fo
the extent that they increase the rate of replacement of average physical capital. This
result is to be contrasted with a related extension of the one-sector growth model in which
investments in physical and human capital are perfect substitutes [cf., Barro f al. (1995)].
In this latter case, the ratio z = % remains constant along the transitional dynamics to
the steady-state path, and as a result both types of capital exert a symmetric effect on the
rate of convergence. Qur analysis illusirates that this symmetry is lost in the presence of

a specific sector for human capital accumulation. Since we are concerned with the ratio

E
k!

effects on the speed of convergence of such variable. Thus, if there is a sudden increase in

x =%, it is to be expected that the productivitics of these factors should have opposite
our economy in the quantity of physical capital from a given steady-state solution, then
a more productive hluman capital techuology will counteract this imbalance more quickly.
As expressed in (3.9}, the effectiveness of this channel is, however, dependent upon the
relative weight of lluman capital in the production of physical capital investment; that
is, on the ratio %ﬁ Likewise, a higher physical capital depreciation rate, m, or a higher
population growthi, n, will help restore a physical capital imbalance, and such effect is

more pronounced the smaller the weight of physical capital in the goods sector.

Another interpretational issue is whether the computed rate of convergence in (3.9)
is comparable to that derived in the preceding section [see (2.9)]. The answer is in
the affirmative. The above exogenous growth model could be reinterpreted as having a
production function of the form, A&?h'=#, and where variable A is growing exogenously.
Then, considering variables z(¢) xii(% and x(t) =§f-%]l in optimization problem (P), the
rate of convergence is again given by {2.9). For such redefined variables, this is precisely

9



the computed rate of convergence in (3.9).2 Morcover, as shown in Caballé and Santos
(1993) and Mulligan and Sala-i-Martin (1993), if we temnporarily abstract {rom leisure
consideratious, thien for ¢ = 3 the endogenous growth framework reduces to an exogenous
growtl model with a deterministic law of motion for the human capital variable. For this

particular case, (2.9) and (3.9) must yield the same value.

It follows then from this analysis that if & = 2 both models display the same speed
of convergence. Now, standard calibrations assign a much higher value for o (e.g., ¢ =
1.5 and 8 = 0.4). Also, parameter o affects negalively the rate of convergence in the
exogenous growth model hut not in our endogenous growth framework [see equations
(2.9) and (3.9)]. Therefore, for standard calibrated values convergence should be faster in
the endogenous growth model. Indeed, we show below that for our baseline parameters
values, A = 0.0694, for the exogenous growtl model, whercas A = 0.165 for the endogenous

growth model. This is over a two-fold incrcase in the rate of convergence.

3.2. Extensions of the basic framework

Our previous results have been derived for a parameterized family of utility and pro-
duction [unctional forms. This basic framework has been chosen for convenience of the
analysis. We should note, however, that our arguments extend to more general settings.
In particular, under the assumption of constant returns to scale in both production sec-
tors, our results hold for general concave utility and production functions, and several
types of flat-rate taxes. Moreover, for some other extensions of the model preferences

parameters have a marginal eflect on the speed of convergence.
Concavity of utility and production functions

It should be observed that the existence of a balanced path imposes certain restrictions
on the utilily and production functional forms [cf., King, Plosser and Rebelo {1988)]. In
particular. the utility function must display a constant intertemporal elasticity of substi-

tution with respect Lo consumption, and substitution and income effects associated with

2Note that if the cconomy features a positive rate of growth, then (2.9) must be suita,lﬁly modified.
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increases in productivily along the balanced growih path must leave unallered the optimal
quantity of leisure.

U s M
T1-¢

The above utility function, U/{(¢, th} = ( , 1s compatible with the existence
of a balanced path. Under this type of utility, human capital affects the productivity
of leisure, and such formulation scems consistent with certain theories of allocation of
time and household production [e.g., Becker (1965)]. There is, however, a diammeirically

opposile modelization of leisure, I/{e, ) = gﬂ;—il(,:_—l, which is also compatible with the
existence of a balanced path [cf., Lucas (1990)]. Although further microcconometric work
is needed to elucidate the empirical plausibility of these formmulations, it seems that in
the context of macroeconomic theory the utility form U{e,{) is more appropriate. The
problem, however, is that under this latter functional form optimization problem (P7) is
not jointly concave in the control and state variables [see Ladrén de Guevara et al. (1994)],
since the stock of human capital affects asymmetrically the three given activities. ® This
asyminelry brings about an additional effect of preferences on the rate of convergence.

- . =) T .
Indeed, under the utility function U(e,l) = L——)——l, equation (3.7) becomes

1-o

nat) = [p —n — 6(1 = I(1)) + O]z (3.7)

In this case only ilte fraction (1 — I{¢)}k(!) is productive, and as specificd in the new law
of motion (3.7, such fraction must account for all human capital rents. Imbalaunces in
the ratio of the two capitals may change the time devoted to leisure, [, and consequently
preferences are going to affect the law of motion of the relative price. Thus, the rate of
convergence must be influenced by preferences parameters. We shall nevertheless illustrate
below with the aid of some numerical exercises that this possible effect of preferences is

fairly small.

3To illustrate this technical point on concavity, consider for instance the utility U(e,J = ylne+ (1 ~
gyind, Then U{e 8} = Ule,lh) —Inh, and so the term —Inh acts as a negative externality. In other
words, under the atility form U{c, Ik} the above dynamic optimization problem is concave, and the stock
h can be distributed symmetrically among the three allernative activities. Under the utility form (e, I},
however, the global conecavity of the oplimization problem may break down. Of course, for a utility
function of the form {7(¢), problem (P') is again globally concave and equation (3.7) remains unaffected.

Hencee, in this latter case prefrrences do not affect the convergence rate,

11



Regarding goods production, our results are not dependent upon the specific fune-
tional forms adopted above. Thus, il is shown in the appendix [see {6.8) below] that an

allernative expression for the rate of convergence is
A= Fy(l, v r*)u*z" (3.10)

where Fr{1,u*z*) denotes the derivative of the production fuction F(&, uh) with respect
to the second argument, L = uh, al the steady-state value (1,u*z*), for * = £. This
expression remains valid tu the more general case in which F(k, L) is merely a lincarly

homogeneous function in & and L.

[t is worth emphasizing ihat these results are also heavily dependent on the homeo-
geneity of degree one of the human capital technology in the amount of qualified labor
cmployed in thatl sector, {1 — v — DA, I, for instance, the human capital technology is
cliaracterized by a production function of the form G{1 — u — I)h, where G{-) is an in-
creasing concave function witl second order derivative G”(-) < 0, then the above results
arc no longer valid, since in such case production function G(1 — v — {}A is not linearly
homogencous in (1 — u — [)h. Also, if technological externalities are present {as in Lucas
(1988) and Benhabib and Perli (1994)] thien preferences parameters may aflect the speed
of convergence. Indecd, for some preferences parameters tlie equilibrium steady-state may

coutain two negative eigenvalues, and consequently equilibria are indeterminate,

Finally, we could consider a more general class of models in which physical capital
also enters into the production of human capital, as in Mulligan and Sala-i-Martin (1993).
Again, in a previous version of iliis paper we have shown that, under the assumptions of
concavity and constant returns to scale in both production sectors, preferences parameters
do not affect the speed of convergence. This rate depends upon the concavity of the
instantancous production possibility frontier derived from the technologies of both sectors.
Mulligan and Sala-i-Martin {1993) interpret the curvature of this frontier as point-iu-time

acdjustment costs.
Installment or adjustment cosls

Theorices of investment often introduce installment or adjustment costs as a way fo

12



insure a determinate demand fow for capital goods [cf., Lucas (1967), Hayashi (1982),
Mendoza (1993)]. The role of adjustment costs, however, has not been emphasized in the
conlext of growth theory [some notable exceptions include Abel and Blanchard (1983),
Barro and Sala-i-Martin (1995) and King and Rebelo (1993)]. Of particular interest to us

is how these costs affect the speed of convergence.

The introduction of adjustment costs seems especially atiractive regarding human
capital accumulation; unfortunately, relatively little is known concerning the modelization
and quantification of these costs. For illustrative purposes, we shall consider here a
particular form of adjustment costs embedded in the pliysical capital sector. In order
to account for such costs, the technological law of motion (3.1} is now replaced by the

following two equations

e(t) + i(f) [1 + h (%%H = AR (A1) P (3.11)
Ko = i(e) = (m+n)k(), (3.12)

where h(-) is an increasing, non-negative function, and Z[14+&(:/ k)] represents gross expen-
ditures on investment. This formulaiion gives rise to a linearly homogencous technology,
and as shown by Hayashi (1982) in such case Tobin’s marginal ¢ is equal to the average
q.

One may assume that the function 1A (2/k) is jointly convex in both arguments [c.f., Lu-
cas and Prescott (1971} and Uzawa (1969)]. However, in order to draw some comparisons
our numerical computations will be restricted to the functional form A{i/k) = M,
where, b > 0, a > *

0. This technology is adopted from King and Rebelo (1993) and
Summers (1981}, and it is compatible with the existence of a balanced path. Observe
that under this formulation the global concavity of the optimization problem is no longer
guaranteed. Nevertheless, it can be shown that an interior optimal path can still be

characterized from the first-order conditions.

Following our previous analysis, it is then readily deduced that the optimal quantity
of labor, u, can be determined by the value of the marginal productivities in both sectors

[cf., equation (3.5)]. However, the marginal produectivity of labor in the physical sector

13



should now be evaluated by the price of the consumption good, and such value is different
from the shadow price of installing new capital units. {Tobin’s ¢ is simply the ratio of the

shadow price of installiug new capital over the price of consumption.)

As one can infer from our benchmark result (3.9), variations in the technological
possibilities of the economy should influence the speed of convergence. Consequently,
adjustment costs would have a certain impact on such rate {albeit in this casc there 1s
not a clean analytical solution). Moreover, the dynamics are now driven by the wedge
between the price of installing new capital and ilie price of the consumption good. This
wedge is a function of the amount of consumption and investment, and so it is dependent
upon preferences parameters. Hence, one should expect that preferences will also affect,
the speed of convergence. As our computations in the next section show, this effect from

preferences is nevertheless sinall.
Fiseal policy and convergener

One major conclusion from the endogenous growth literature is that distortionary
taxation may have important effects on welfare [e.g., King and Rebelo (1990), Jones,
Manuelli and Rossi (1993), and Lucas {1990)]. However, as we presently show the presence
of flat-rate taxes in our model will not affect the rate of convergence. In order to introduce
taxation in our framework, we now reformulate our analysis in the context of a competitive

€Conomy.

We consider that consmnption, investiment, and income from capital and labor are
subject to ad valorem taxes, 7,7, Tr; 71, respectively. Total revenues from taxation are
rebated in Jump-sum form to the representative consumer. For given initial values &g
and hy, the consumer is confronted with maximizing the objective in (P} subject to the

instantaneous budgetl halance
(14 7)) + (1 1) = (1 = m)r(AR(0) + (1 — molhu(YR() + T(8)
and the laws of accumulation for the capital stocks

k(t) i{t) — (r + n)k(t)
h(t) = (1 — w(t) — UOW(E) — Oh{2)
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for all t > 0. Here, T'(¢) is the lump-sum transfer to the agent, and »(f) and w(i) denote

the rental prices for capital and labor, respectively.

The representative consumer rents capital and labor to the firin and these factors
are paid according to the values of their marginal productivities. Also, in a competitive

equilibrium, the goods and labor markets must clear. Therefore,

w(t) = (1= Bk (u()h(t)™"
r(8) = BE(OP N ul{t)h(t))

and
y(t) = olt) + i(2)
forallt > 0.

For this reformulated problem, our previous optimization analysis applies, considering
now gross prices for consumption and investment, and net returus for physical capital and
labor. It follows then {rom the first-order conditions that an interior steady state must

satisfy the f[ollowing equations system

2 =L (.}5_1.) (1 — B)Az1=By =P (3.13)

z = ifytF —y—n = (3.11)
provi+n = : (li—j—'i_—:f) BAx1—Byl=0 {3.15)
p—ntovr+l = : & - : . {3.16)
v = Sl —u—10)—-0 (3.17)

The tax structure may affect the steady-state values 2%, £, I*, and v*, but in our simple
model one can see from {3.16) that it will not affect the growth rate ». This invariance
of the growth rate implics that the steady-state, net rate of return stays unchanged [cf.,
cquation (3.15}]. As the net rate of return determines the equilibrium law of motion of
the relative price, the speed of convergence should remain unaffected. Indeed, following

the same arguments as in Theorem 3.1 the corresponding formulation of (3.10) is now

A= (1-3) (11 :j‘) A P
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Making then use of equations (3.15) and (3.16) it is readily shown that

R 1-7
=|——Jl{r+n+déd—
A ( 7 )( +n+8—0)

This is, of course, expression {3.9) obtained in the preceding section.

This result again differentiates our endogenous growth framework from the neoclassical
model where under the same functional forms flat-rate taxes oun capital rents have a
significant impact on the rate of convergence. Therefore, our analysis highlights the

testable restriction that the rate of convergence is independent of the fiscal regime.

4. Numerical Experiments

Our purposc in this scction is to present a set of numerical computations in order to shed
light on some of the issuecs raised above. Specifically, in the context of some benchumark
cases we show that the endogenous growth model displays a much faster speed of conver-
gence, and that in all cases studied our local, analytical results apply for sizable portions
of the transitional dynamics. Also, we illustrate that, in the presence of unqualified leisure

and adjustment costs, preferences parameters have a marginal effect on such rate.
The neoeclassical growth model

We now calculate the rate of convergence A in two examples for the model of Section
2. These cases will serve as reference in our later study. We first consider our benchmark

economy with parameters values
o=15 p=0.05 n=00I, A=1, g=04, = =0.05,

These calibrations agree with those generally invoked in the economic literature [cf., Lucas
(1988) and Prescott (1986)]. In this case, we obtain the following steady-state values,
¢ = 1.9151 and &* = 10.0794. The rate of convergence is X = 0.0691.

The second example involves a simiple variation of ihe preceding values, in which

o = 0.4 and the remaining parameters stay unchanged. In this situation, A = 0.15. One
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then sces that in the benchmark economy the speed of convergence A is relatively high,

and increases substantially with decrements in o.

In order to investigate how accurately this local analytical result approximates the
global converging behavior, we shall calculate numerically the stable manifold of the
system in both examples. For such purpose, we just follow a simple numerical technique?
where the stable manifold is extended backwards from an arbitrarily small neighborhood
of the steady state, &*. (In such small neighborhood, the stable manifold is approximated
by the linearized stable system.) For each case, Figure 1 displays the laws of motion of
the linear and non-lincar systems. It can be observed that the lincarized system mimics
well the non-linear dynamic behavior over a significative range of the capital domain.
Therefore, in both examples the local speed of convergence, A, is a good estimate of the

global converging belavior.
The endogenous growth model with qualified leisure

In order to compare the speed of convergence with that of the exogenous growth
model we shall also consider two alternative examples for the basic model of Section 3.

Our benchmark economy has the following parameterization

Y=045,0 =15, p=003, n=001, A=3, =04, 7 =005, 6d=007, §=0
These parameters give rise to lhe {ollowing steady-state values: z* = 0.2450, &* =
0.0874, I* = 0.4326, v = 0.2817, v = 0.02. The speed of convergence is A = 0.1950.

The presence of botl leisure and a positive growth rate precludes a close comparison
with our numerical computations of the exogenous growth framework. Thus, in our next
example, we abstract from leisure considerations in the utility function, and let v = 1.
% As already pointed out, if in thig case o = 3 then the time devoted to education

remains locally constant over the optimal solution, and so the transitional dynamics are

“Our computations are effected by a standard Euler method {b_(.‘{’— eg, (lerald and W’h&t.lvy (1990,

Ch. ).
*Observe that this parameterization results in the utility function set forth in Lucas {1988), which is

also included under our general formulation.
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qualitatively the same as those of the neoclassical growth model. We then fix v = 1,
g = = 0.4, § = 0.05, and leave unchanged the remaining parameter values of our
benchmark economy. {Parameter 6 has been adjusted in order to obtain an interior steady
state with a more realistic time allocation for work and education.) This calibration yields
a steady-state growth rate » = 0.025, and a speed of convergence % = 0.165. Notice that
the small difference in the rate of convergence with respect to the similar calibration in
the exogenous growth model (where X = 0.15) is duc to the fact that for the postulated
parameters values the rate of growth is now v = 0.0250, whereas in the preceding model,

v=40.

From these numerical exercises we can see that the speed of convergence differs sub-
stantially over the two benchmark cases {in the preceding model the benchmark vahie,
d = 0.0694, whereas in this section, A= 0.1950). Furthermore, as it is evident from the
foregoing calculations, in order to equate both rates of convergence parameter o must

take values near 0.1 in the exogenous growth model.

Foliowing our earlier numerical procedures, Figure 2 portrays the global dynamics of
the linear and non-linear systems for our beuchmark economies with endogenous growth.
We again see that in both cases the linear system niimics reasonably well the non-linear
converging behavior of the optimal solution over a sizable domain of state variable f,‘: Sim-
ilar results were obtained for various alternative parameterizations of the model. Hence,
it appears that the same dynamic forces prevail over substantial phases of the transition
with the effect that expressions {3.9)-(3.10}) are good global estimates of the speed at

whicli an economy will reach the steady-state behavior.
The endogenous growlh model wilth pure lcisure

We consider now the alorementioned polar modcelization of leisure, where human cap-

ital does not affect its marginal utility. The utility function is here written as follows

(-7 — |
Ule,l} = =% fore>0,c#land 0 <y <}

U{e,}y = vlne+{1—v)ln{ fore=1and <y <1

This model is studied in Lucas (1990) and Ladrén-de-Guevara ef @f. (18991). The ra-
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tionale behind this formulation is that the utility obtained from certain leisure activities
—such as resting or spending time with the family— does not depend upon the attained
level of education. Ladrén-de-Guevara of al. (1994) show that for certain parameteriza-
{ions this model may contain multiple steady-state equilibria. For our present illustrative
purposes, we shall focus on a calibrated economy with a unique balanced path and verify
that changes in preferences parameters 4 and o will lead to marginal variations in the
speed of convergence. At this stage, it is worth pointing out that for v = 1, the util-
ity function is encompassed in the analysis of Section 3, and accordingly in such a case

preferences parameters have no effect in Lthe convergence rate.

In this new setting, we now assign the following parameters values

v=04, o =15 p=005 n=001, A=3 f=04, 7r=0.05 5§=02, 6=005

This model gives rise to the following steady-state values: z* = 0.2359, 2™ = 0.1070,[* =
0.4124, v* = 0.2229, v = 0.0229. The speed of convergence about such stationary solution
is X = 0.1908. Starting from this reference model, we now vary separately parameters
values v and . Table 1 displays the computed rate of convergence in the present model
for different calibrations of v against the estimated values of the rate of convergence from
analytic expression (3.10) of Section 3. Table 2 reproduces the same results for several
values of o, letting v = 0.4 fixed. It is seen from this exercise that these changes result in

marginal variations from the estimated rate of convergence.
The cndogenous growth model with adjustment costs

We finally consider the cffects of adjusiment costs for physical capital accumulation
on the speed of convergence. Qur numerical computations show that the presence of
adjustment costs may reduce substantially the speed of convergence. In this setting
preferences parameters also have an influence on such rate, but this effect is nonetheless

fairly small.

Following the analysis of Section 3, the technological law of motion (3.1) is now re-
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placed by the [ollowing equations

e(t) + i) [H-h (;’((%)] = Ak (u(OAIN? (1.1)
i) = i(t) = (x4 n)k(1) (4.2)

2{§-a)? .
where h{:) = A—"‘%—L, for b > 0, and @ > 0. This technological law of motion is taken
from King and Rebelo (1993) and Summers (1981). The remaining elements of the model

are as defined in optimization probler {P'}).

Our baseline economy considers the following parameters values

v=045 =13, p=0.05, n=001, A=3, =04, =005, §=0.07, § =0,
b=16,a = 0.06

Parameter a is set equal to 7+ n, so that only net investment undergoes adjustinent costs.
As we will see, it is crucial for our results whether gross or net investments are subject
to such costs. The value of the adjustiment cost coefficient, b = 16, is chosen to get a

plausible value for Tobin's ¢.

The steady-state values of our baseline economy are reported simultaneously in the
first row of Tables 3 and 4. From this benchmark calibration, Table 3 replicates the same
numerical experiment for alternative values for b, whereas Table 4 focusses on variations

of parameter a.

The first observation to be made from these computations is that in our baseline
cconomy the speed of Couvergencej\ = (0.0338 is obtaincd at the cost of a value for ¢ = 1.32.
In the present context, these values seem quite reasonable. {Empirical estimates of ¢ [e.g.,
Hayashi {1982) and Summers (1981)] are not directly comparable, since such estimates
include taxes and allowances for depreciation and investment.) Also, we can see that the
presence of adjustment costs does not change the steady-state growth rate, v, and that
it leads to marginal changes in I* and u*. As compared to our benchimark endogenous
growth model without adjustment costs (last row in Table 3}, the main changes are in

the steady-state values 2* and z*, but nevertheless such variations are not substantial.
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As already pointed out, it matiers for these results whether gross or net investments are
affected by adjustment costs. This is illustrated in Table 4, where we consider alternative
calibrations for parameter a. It is seen that parameter @ has a minor effect on the speed of
convergence, and a larger impact on Tobin's ¢. Hence, if gross investiment is subjected to
adjustinent costs, then low speeds of convergence require high values for ¢.% The empirical
estimates reported in Sumimers (1981) secem to suggest, however, that only net investment
is affected by adjustment costs. Under this latter assumption, we have experimented with
some other alternative calibrations for endogenous and exogenous growth models and
obtained relatively low rates of convergence for plausible g-values. Hence, adjustment
costs on net investinent scem to be an effective device to bridge the gap between models

predictions and the reported evidence.

We lastly consider the effeet of preferences parameters on the speed of convergence.
This is illustrated in Tables 5 and 6, where we analyze individual variations of parameters
values v and o. In all these computations, the remaining parameters stay unchanged, as
specified in our baseline model with adjustment costs (first row in Tables 3 and 4). In
order to interpret these results, note that our previous benchmark values are v = 0.45

and o = L.5.

Table 5 illustrates that increases in o result in small decrements in the rate of conver-
gence, Iu our view, this effect iy small due to the existence of some countervailing forees.
A higher value for o lowers the elasticity of intertemporal substitution, and hence should
excrt a negative influence on the speed of convergence. At the same time, a higher value
for o lowers the growth rate, and consequently the steady-state value for ¢ goes down. A

lower value {or ¢ drives up the speed of convergence.

In contrast, Table 6 shows that variations in parameter v have a negligible effect on
the steady-state growth rate. The reported results, however, conflict with conventional

intuition: a lower ¥ { i.e., a larger weight of leisure in the utility function) leaves more

6Barro and Sala-i-Martin {1995, Ch. 3) consider an exogenous growth wodel in which adjustment
costs depend on gross investment, and not on net investiient as studied here. They also conclude that

low rates of convergence require high values for g.
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scope for substitulion and leads Lo au icreased speed of convergence. But in the presence
of adjustment costs in the goods sector, it secms that the cconomy may be willing to bear
these costs more quickly the greater the weight of consumption in the utility function
(i.e., the greater is ). Again, these countervailing forces result in a marginal effect of

parameter 4 on the speed of convergence.

5. Concluding Remarks

In this paper we have considered a family of endogenous growth models with physical and
human capital. This framework seems potentially attractive to growth theorists, since
it allows for the possibility of convergence in growth rates while preserving differences
in income levels. Morecover, in response to imbalances in the ratio of physical to human
capital this class of models features a rich dynamic behavior in the process of convergence

lu the steady-state path.

Our study has focussed on the speed of convergence to the steady-state path. A few
tesiable propositions have emerged from this analysis. Our principal finding in Section
3 is a neal characterization of the local rate of convergence. The result asserts that
the productivity of the huinan capital technology has a positive influence on the speed
of convergence, while the income share of physical capilal exhibits tlie opposite effect.
Preferences parameters and distortionary taxes exert no influence on the rate at which
an economy will approach the steady-state path. Although this analytical result iolds in
a neighborhood of the balanced path, our numerical computations attest that this local

behavior extrapolates over sizable phases of the transition.

These findings should be contrasted with an analogous analysis of the exogenous
growth model, where preference data as well as flat-rate taxes on capital rentals play
a significant role in assessing the speed of convergence. Furtliermore, for standard cal-
ibrated paramecier values ilie endogenous growth framework displays a higher rate of
convergence. In order for the exogenous growth model to exhibit the samne rate of conver-

gence, the inverse of the clasticity of intertemporal substitution, o, must roughly matcl
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the value of the elasticity of labor with respect {0 physical capital, 3. Standard calibra-
tions, however, attach a much higher value to o. A higher value for o lowers the speed of
convergence in the exogenous growtl imodel, but not in our endogenous growth framework
where preferences parameters are ineffective. For our baseline economies, convergence is

at least {wice as fast in the endogenous growth model.

Some empirical studies Je.g., Barro and Sala-i-Martin {1992}] repori, annual rates of
convergence of the order of 2%, whercas for standard calibrations the models considered
here yield rates between 6% and 20%. One typical way to reconcile model predictions
with the reported evidence is to assume values of 3 around 0.8, interpreting such share of
the capital variable as a broad measure of physical and human capital. Barro et al. (1995)
provide theoretical foundations for such an aggregate share in a generalized version of the
exogenous growih model with physical and human ecapital. This conclusion, however, does
not exteud to our endogenous growth framework, where there is a specific sector for the
production of human capital. Indeed, in our case physical and human capital variables
exert opposite effects on the speed of convergence. The productivity of the human capital
technology as well as the income share of human capital in the goods sector accelerate the
process of convergence to the balanced path, whereas the share of physical capital in the
goods sector has the reverse effect. Therefore, the inclusion of a human capital variable
in standard growth scitings does not necessarily resolve the puzzling difference between

models predictions and reported evidence concerning the speed of convergence.

There are other possible extensions of the model worthwhile exploring that may yield
lower rates of convergence. Qur analysis suggests, however, that these studics should
focus on specifications of the techuological possibilitios of the economy rather than on
changes in the preference structure, since in all cases considered preferences have at most
a marginal influence on the rate of convergence. Of course, the most atiractive extensions
would be those that can lower the rate of convergence and leave practically unmodified
some other relevant predictions. As illustrated above, some adjustment costs technologies

share this property.
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6. Appendix

Throughout this appendix we shall assume that tlie one-dimeunsional stable manifold liesin
a general position, so that it can be parameterized by each of the coordinates (=, &, [, w, ),
where z = £,z = Land n = 1. Oue can show from the analysis of Caballé and Santos
(1993) and Ortigueira (1994} that this property must hold generically. Moreover, if a
property on tlie value of a characteristic root holds true for a generic subsct of matrices,
by continuity such property must hold true for the wlhole set of matrices.
In the proof of the theorem, we make use of the following lemma.
Lemma 1: Lef (z*, 2%, *, u*,1") be a veclor of steady-states values, and let j—;‘:(u*) be the
derivative of & with respect to u at the steady-statc value u™. Then the elasticity
u* dr

-—;—(u*) -‘,é 1.

Proof: Taking logs in {3.5) and differentiating with respect to f, we have
x(1) u(?)

=0
x(t} u(?)
Now, wrile {7), #{f) and @{#) as functions of their own variable. That is, #{t) = g(n(t)), 2(t) =
S(x()) and @(1) = A{u(?)). This is possible if the stable manifold lics in a general position.
Then

<=8

gln(t)) L fle(t))  h(u(t)
7{t) x{t) p u(t) =0 (6.1)

Considering that derivatives ¢'(n*) = f'(2*) =R {(u*) = A1 = — X, we differentiate expres-
sion {6.1) with respect to z{#), and evaluate the derivalives at their steady-state values.

d du px
i(r*)z{%—l‘-ﬁdx(‘r ):‘nw

dr u*

—p

We tlien obtain

Asgsume now that



This implies

d;
H{a") = {E—ﬁ}?} =0 (6.2)

However, (6.2) is in contradiction with the fact that the value function V{(&, &) for proh-
lem (') is a smooth, striclly concave function, Lomogeneous of degree 1 — . This

contradiction is easily derived from the expression

Vi(L,2(8))
= e - 6.3
"= =) (63)
where V;(-, ) is the partial derivative of V{-, -} with respect to J, for j = %, &. The lemmais
thus established.” Q.E.D.

Proof of Theorem 3.1: By the definition of }, for every arbitrarily small ¢ > 0, there

ig T such that
we(t)

_ A
w(ty —u* A <€ (6-1)

forall? 2 T.

Taking logs 1u (3.5), and differentiating with respect to {, we get
n(f) L) z-‘J(?f)

=0 6.5

n(t) ‘Bsr(! u(f) (6-5)

i > fac we) ol (i) i 5Y it '
Using Lhe fact that Mo T mE T e and substituting out {3.6)-(3.7) in (6.5) it follows
that

()] (!
Li(0] ul)
()] s
Now, linearizing Lthis latler equation with respect to n, and considering steady-state values,

'{-ﬂ(f) = |76 + n -%— T - 0 — }i}dxlx(t)l“fj'n(t)l”ﬁ .

we get

w(l) = [—(1 — A T (1 wﬁmx*‘*‘*u*""d—”’(u*) el ("’1(”)) ] (a(f)—u")

du du \ w(u)
Then write #({) = f(«x(1)), and observe that f/(«*) = A;. This implies
w(t) = {—(1 - A A TP (1 - ﬁ)Am*—ﬁu*z_B%(u*) —— (.).‘id_‘r(q ))] — u*)
(6.6)

"There is an alternative proof of the lemma, which does not involve the value function and which is

relevant in the presence of flai-rate taxes. The proof is available upon reguest from the authors.
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Moreover, [rom (6.14) and {6.6), it follows that

o= =1 = @) A ((1 — A ’liu*) de o)
Fi dit
Hence,
W= =B v dr Wl=A 1= -
[)\; + (1 = A" "u ] = [_Fd_{u J [)\1 +{1 - e Tu J (6.7}
Tlherefore, by Lemma 1,
Ay =—(1 — A"’ (6.8)

Finally, evaluating conditions (3.6)-(3.7) at their steady-state values [cf., (3.15)-(3.16)],

and rearranging terms, we obtain from (6.8) that

A= - (lgﬂ)(rmw 8)

The theorem now follows from our notational convention, i= -\ Q.E.D.

Observe that (6.1) and all subsequeni steps apply Lo any arbitrary cigenvalue of the
non-linear systemn; however, as it clear from (6.7)-(6.8), our tomplita,i,iunq pick only the
negalive eigenvalue, A;. This seems to be due to the condition —%%(u*) # | in the

above lemma.
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brue value | estimated value
A Fr(l, uw* s )uz*

y=1 |.3150 3150

v=6 |.2500 2477

v =.55 | .2381 2364

y=25 |.2251 2236

v = .45 | .2006 2089

=4 {1908 L1613

v =33 { .16G8 1693

Table 1. True and estimated values for the rate of convergence.

true value | estimated value
A Fr(1, u*r*ju*z*
=4 | .1889 1743 |
o= 1887 1774
T =2 1892 1840
a=1.85 | .1895 1857
o=1.75|.1897 A8T1
o= 1.651].1901 1886
o=1.5 |.1908 1913
oc=1.25].1831 1976
g=1 1980 2077

Table 2. True and estimated values for the rate of convergence.



b | rate of convergence | Tobin's q | = x { u v
16 | 0.0338 1.32 (.3458 | 0.1446 | 0.4139 | 0.2704 | 0.0200
32 | 6.0235 1.64 0.4466 | 0.2128 | 0.4504 | 0.2639 | 0.0200
20 | 0.0299 1.40 0.3710 | 0.1607 | 0.4159 | 0.2684 | 0.0200
10 | 0.0443 .20 0.3080 | 0.1218 | 0.4405 | 0.2738 | 0.0200
5 1 0.0659 1.10 0.2765 | 0.1041 | 0.4369 | 0.2773 | 0.0200
0 | 0.1950 1 0.2450 | 0.0874 | 0.1326 | 0.2817 | 0.0200
Table 3. Effect of parameter b on steady-state values.
a rate of Converg(;ﬁm Tobin’s q | 2z & { u 1%
0.06 | 0.0338 1.32 0.3458 | 0.14146 | 0.1139 | 0.2701 | 0.0200
0.08 | 0.0262 1 0.2450 | 0.0874 | 0.4326 | 0.2817 | 0.0200
0.04 | 0.0403 1.64 0.4402 | 0.2109 } 0.4180 | 0.2663 | 0.0200
0.02 | 0.0459 1.96 0.5282 | 0.2845 | 0.4187 | 0.2656 | 0.0200
0 0.0508 2.28 0.6098 | 0.3613 | 0.4474 | 0.2669 | 0.0200
Table 4. Effect of parameter 2 on steady-state values.
o | rate of convergence | Tobin’s g | = xr { u v
4 0.0318 1.12 0.2960_| 0.0885 | 0.5568 | 0.3361 | 0.0075
3 0.0322 1.16 0.3062 | 0.0976 | 0.5342 | 0.3229 | 0.0100
2 0.0331 1.24 0.3262 | 0.1188 | 0.4391 | 6.2966 | 0.0150
i.5 ] 0.0338 1.32 0.3458 | 0.1416 | 0.4139 | 0.270:1 | 0.0200
i 0.0353 .48 0.3838 | 0.2174 | 0.3538 | 0.2177 § 0.0300

Table 5. Effect of parameter ¢ on steady-state values.




rakc of convergence

{

¥ Tobin’s q | = x w v

0.85 | 0.0352 1.32 0.3158 | 0.0677 | 0.1369 | 0.5774 | 0.0200
0.75 | 0.0319 1.32 0.3158 | 0.0793 | 0.2209 | 0.1934 | 0.0200
0.65 | 0.0345 1.32 0.3458 | 0.0943 | 0.2098 | 04115 | 0.0200
0.55 | 0.0342 1.32 0.3458 | 0.1149 | 0.3710 | 0.3103 | 0.0200
0.45 | 0.0338 1.32 0.3458 | 0.1416 | 0.4439 | 0.2701 | 0.0200
0.35 | 0.0335 1.32 0.3158 | 0.1913 | 0.5099 | 0.20.4¢ | 0.0200

Table 6. Effect of parameter v on steady-state values.
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Figure 1(a). Dynamics in the Neoclassical Growth Model: Stable manifolds of the
lincar and non-lincar systcms for slable vaviablc k. Paramelers palnes, o = 1.5,

p=005 =001, A=1 2=01 =005 Steady siate b= = 10.0704.
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Figure 1(b). Dynamics in the Ncoclassical Growth Model: Stablc manifolds of the
fivcar and non-lincar systems for stable variable k. Parametcrs values, o = 0.1,

p=005n=00L, A=1,4=0.1 7 =0.05 Stcady stalc b = 10.0791.
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Figure 2(a). Dynamics in the Endogenous Growth Model: Steble manifolds of the
linear and non-lincar systems for stable variable (;"‘1) . Parameters values, -y = 0.45,
c=135 p=0053n=001, A=3, =04, 7 =0.05, § =0.07, § = 0. Stcady state

(%) = 114424,
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Figure 2(b). Dynamics in fhr-En.ffogrnou.s Growth Modcl: Slable manifolds of the
linear and non-lincar systems for stable variable (%) . Paramclers values, 7 = 1.
oc=04,p=005n=001, A=3, 8=04, 7 =003 &="0.07.0 =0. Steady slatc
(&) = 26.8007.



