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Abstract

Under certain assumptions, monopolistic competition with CES preferences is effi-

cient, as first discovered by Dixit and Stiglitz. One assumption, invariably left implicit,

is that there are, at any given point in time, no bounds on the number of products that

can be discovered. But square wheels do not work, and round wheels keep getting

rediscovered. Giving away patents to entrepreneurs who happen to be the first to

discover a product generates an inefficiently large amount of variety. The stock of

undiscovered products is a commons that can attract too many discovery attempts.

Perpetual patents can be efficient, but only when combined with just the right tax on

patent-protected monopoly profits. Such a tax is, however, too crude an instrument

in an economy with even the least amount of heterogeneity.

1 Introduction

Newtonian physics is called that by accident. Newton was undoubtedly a genius, but
the physical reality is what it is, and it is hard to imagine that nobody would have come
up with essentially the same insights had he not lived. Truly revolutionary insights and
ideas can spread like wildfire. But large numbers of scientists, researchers, engineers, and
tinkerers of all sorts are discovering more mundane insights all the time. And keeping
track of what has been discovered takes time away from making attempts to discover
something.1 Repeated discovery of the same ideas is inevitable.

∗This is work in progress. I thank seminar participants at UCSD and UCSB for helpful comments.
1As Muriel Rukeyser, biographer of J.W. Gibbs, put it, “Many of his formulas were re-discovered. It has

been said that it is easier to re-discover Gibbs than to read him.” (Rukeyser [1942, p.4]). An early documen-
tation of rediscovery in science is Ogburn and Thomas [1922]. Merton [1961, 1963] makes a strong case that
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Suppose there are E ∈ N entrepreneurs and K ∈ N products waiting to be discovered.
Think of these products as urns, and imagine every entrepreneur throwing a single ball
that lands in a random urn, independently across entrepreneurs (as in the Butters [1977]
model of advertising). Because of this lack of coordination, some products are discovered
by several entrepreneurs, while others go undiscovered. For each product, the number of
entrepreneurs discovering the product follows a binomial distribution.

In particular, the probability that a product is not discovered is (1 − 1/K)E . When
E = EH and K = KH and H becomes large, this is approximately equal to e−E/K. Under
these circumstances, the probability that a particular product is discovered by at least
one entrepreneur is approximately 1 − e−E/K. Since there are K = KH products to be
discovered, the mean number of products discovered by any entrepreneur at all is, per
entrepreneur, equal to (

1−
(

1− 1

K

)E)
K

E
≈
(
1− e−E/K

)
× KE . (1)

Adding up across entrepreneurs gives the familiar urn-ball matching function, which
exhibits constant returns to scale in K and E .

Suppose that for each product that is discovered, one of the entrepreneurs who dis-
covered the product is randomly selected and assigned a patent. Then every entrepre-
neur expects to receive approximately

(
1− e−E/K

)
/(E/K) patents, a decreasing function

of E/K. So, if more entrepreneurs are trying to discover one of the KH products waiting
to be discovered, then, naturally, entrepreneurs expect to receive fewer patents. Since the
number of products to be discovered is given, adding an entrepreneur hurts the other
entrepreneurs. Someone deciding whether to be an entrepreneur or not does not take
this into account. The only thing that matters for the potential entrepreneur is whether
(1), evaluated at an equilibrium outcome E , will be better than some outside option. Too
many individuals will try to discover new products in this environment.

This paper describes a version of this argument in a dynamic economy that grows
over time. In the model, individuals have CES preferences over differentiated products
and can choose to be workers or entrepreneurs. Both occupations involve the supply of
a certain amount of labor, but only the entrepreneurial occupation gives opportunities
to discover new products. The set of products that can be discovered grows over time,
in a manner that is taken to be exogenous. A natural explanation is the progress of sci-

rediscovery is the norm in science, a case that includes a revealed-preference argument: “The race to be
first in reporting a discovery testifies to the assumption [of scientists] that if the one scientist does not soon
make the discovery, another will.” (Merton [1961, p.480]).
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ence. Entrepreneurs are assumed not to be able to target their search based on what has
already been discovered.2 An unavoidable outcome is the rediscovery of products that
others have already discovered. In a benchmark formulation, only entrepreneurs who
have discovered a product have the knowledge required to direct workers producing it.

An entrepreneur who is the first to discover a product becomes a monopolist, and
the CES utility function implies certain markup of price over marginal cost. When a
second entrepreneur discovers the product, one possible equilibrium is Bertrand pricing.
This eliminates monopoly profits in that market. Relative to a world in which everyone
can immediately produce newly discovered products, the prospect of monopoly profits,
even if transitory, draws more individuals into the entrepreneurial occupation, resulting
in larger gains from variety. But transitory monopolies also result in markups that are
positive in some markets and zero in other markets. This is a source of static misallocation
across products that hurts welfare. The paper proves that the number of entrepreneurs
enticed by temporary profits is lower than what a planner would recommend.

Another class of equilibria is one in which the incumbent monopolist and the entre-
preneur who rediscovers a product collude and bargain over the share of the spoils of a
continued monopoly. Of course, there will eventually be another entrepreneur who re-
discovers the product again. The assumption made here is that every time this happens,
the two parties can sign a binding non-compete agreement, with only one producer con-
tinuing as the monopoly producer of the product. In this class of equilibria, markups
are the same in all markets and the static allocation of labor across products is efficient.
But no matter what the bargaining share of the incumbent monopolist, these equilibria
all generate too much variety. If all the bargaining power is with the incumbent monopo-
list, then the equilibrium is equivalent to a government handing out perpetual patents to
whoever is the first to discover a product. So perpetual patents cannot be efficient either,
even though they eliminate static misallocation. The difficulty is the commons problem:
entrepreneurs overinvest in getting ahead in the enclosure process (the patenting) of the
commons created by science.

In this world, the government can restore efficiency by taxing patent-protected wealth
at a rate equal to the equilibrium value of E/K, the rate at which products are discovered
or rediscovered. In other words, an incumbent monopolist is taxed at the same rate as the
rate at which the monopolist would lose the monopoly when faced with Bertrand com-
petition from entrepreneurs who rediscover the product. Equivalently, the government
could shut down its patent office, rely on collusion, and simply tax monopoly wealth.

2This is an assumption that can be relaxed, for example by assuming that entrepreneurs are more likely
to sample products made possible by the most recent science.
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This could be viewed as a further generalization of the Dixit and Stiglitz [1977] efficiency
result.3 But it remains a fragile result: if the composite goods produce by different indus-
tries have different elasticities of substitution, then efficiency requires an additional layer
of consumption taxes to eliminate inefficient markup variation.

One can be sure that K ∈ (0,∞), but K is hard to measure directly, almost by defini-
tion. In a steady state, one possibility is to try to measure the number of products actually
produced in the economy and combine this with a measurement of the fraction of entre-
preneurial attempts to discover a product that actually result in a new product, rather
than a rediscovery. For example, suppose 8 out of 9 of all possible products are actually
produced at any point in time. If the population grows at 1% per annum, this means that
the average delay between new science and the first discovery of a product made possi-
ble by that new science is (1− 8/9)/(0.01× 8/9) = 12.5 years. Suppose further that 1% of
the workforce is an entrepreneur, and that there are 100 workers per product. Then the
number of possible products at any given point isK = 0.99/(100×8/9) ≈ 0.0111 products
per capita. On a workforce of 130 million (the US private sector workforce at the end of
2019) the implied number of possible products is 1.45 million, of which 160, 875 remain to
be discovered.

A tentative calibration given in this paper suggests that a planner could then improve
steady state consumption by the equivalent of about 15.7 years of growth relative to a free
entry allocation in which all prices are equal to marginal cost (so that entrepreneurs are
only rewarded for the labor they supply). The required tax on patent-protected wealth
would be a massive 20% per annum. If there are no patents or taxes, and if entrepre-
neurs enjoy a temporary monopoly only until someone rediscovers a product, then the
improvement in steady state consumption is equivalent to about 12.2 years of growth
relative to free entry. This goes much of the way of the ideal outcome for the planner.
And these numbers contrast sharply with the equivalent of 275 years of growth a planner
could achieve if K =∞ and all other parameters are left unchanged.

Related Literature In part, this paper is a rediscovery of Tandon [1983] who uses a static
finite urn-ball model to argue that the discovery process entails a commons problem that
may lead to too many attempts at discovery. In Loury [1979] and Dasgupta and Stiglitz
[1980], related versions of a “duplication of effort” argument can also lead to too much
investment in R&D. Mortensen [1982] describes a patent race that generates too much in-
vestment and shows how a simple mechanism in which the winner of a patent race must

3See Theorem 2 of Judd [1985] for a dynamic version. There have been further extensions. For example,
one can show that the equilibrium in the semi-endogenous growth model of Luttmer [2011] is efficient.
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compensate the losers can be constructed to obtain the efficient outcome. Reinganum
[1989] surveys these and related models of innovation and patent races. The twist here,
as in Tandon [1983], is that researchers cannot direct their effort to particular goods or
technologies to be discovered. The economy introduced here is dynamic and exhibits
long-run growth.

The possibility of too much discovery is familiar from the quality ladder models of
Grossman and Helpman [1991] and Aghion and Howitt [1992]. These are models in
which the range of goods is fixed, while here growth is the result of gains in variety. In en-
dogenous and semi-endogenous models growth arising from gains from variety (Romer
[1991] and Jones [1994]), the standard assumption is that K = ∞, not just over time, but
also at a given point in time. With that assumption, the right-hand side of (1) equals 1,
and the flow of new products becomes linear in E . Here the flow of new products exhibits
decreasing returns in E . Moreover, the implicit fixed factor is not owned by anyone—it is
a commons. Because there is no assignment of property rights in this fixed factor —the
potential products implied by science— entrepreneurial incentives are too strong when
first discoveries lead to permanent monopolies.

The K = ∞ assumption is often implicit when the case is made that substantial
monopoly profits are critical to promote discovery. A recent argument in this vein is
Jones [2019]. Boldrin and Levine [2008] have made a strong case against this position.
The argument against, put forth here, is that the social value of an entrepreneur attempt-
ing to discover a product is the value of accelerating the discovery of that product, not
the value in perpetuity of the increase in variety resulting from its discovery.

Outline Section 2 describes occupational choice and the technology for product discov-
ery. Section 3 characterizes the solution to the planner’s problem. Section 4 considers a
decentralized economy in which delays in rediscovery and delays in knowledge diffu-
sion give rise to temporary monopolies. Section 5 assumes knowledge diffuses instanta-
neously and shows what happens when the government grants patents for free. Section 6
assumes no knowledge diffusion and shows how collusion can lead to too much variety.
Section 7 describes the tax on patent-protected wealth that can be used to implement the
efficient allocation. A tentative calibration is given in Section 8.

2 The Economy

There is a unit measure of dynastic households. Household sizes are Ht = Heηt, and the
population growth rate η is taken to be positive. Household preferences over consump-
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tion trajectories C = {Ct}t≥0 are

U (C) =

∫ ∞
0

e−ρtHt ln (Ct/Ht) dt,

where ρ > η. Consumption is a composite of differentiated products,

Ct =

(∫ Jt

0

C
1−1/ε
j,t dj

)1/(1−1/ε)

,

where ε ∈ (1,∞) and Jt ∈ (0,∞). Given nominal prices {pj,t}j∈[0,Jt], the demand curves
are

cj,t =

(
pj,t
Pt

)−ε
Ct, j ∈ [0, Jt], Pt =

(∫ Jt

0

p1−ε
j,t dj

)1/(1−ε)

.

All products in [0, Jt] can be produced using a linear labor-only technology. One unit
of labor produces one unit of a differentiated product. The supply of labor at time t is
denoted by Lt.

In a market economy with frictionless securities markets, the nominal interest rate it
must satisfy

itdt = ρdt+
d [PtCt/Ht]

PtCt/Ht

. (2)

Given household wealth, this Euler condition determines the trajectory for consumption.

2.1 Basic Research and New Product Discovery

At any point in time, there is a measure Kt ∈ (0,∞) of potential products that may or
may not have been discovered. This measure is taken to evolve exogenously, according
to Kt = KHt, for some parameter K ∈ (0,∞).

One can imagine that an inelastically determined fraction of the population is engaged
in basic research that gives rise a set of potential products. Suppose the technology for
scientific discovery is dKt = G(Kt,AHt)dt, for some constant returns to scale production
function G(·, ·) and a positive parameter A. So science is cumulative, in the sense that
additions to the measure of possible products build on what is already possible. In a
steady state, K is determined by ηK = G(K,A).

The measure of discovered products is Jt ∈ [0, Kt]. Over time, products can be dis-
covered by entrepreneurs who randomly sample the population of potential products. If
the flow of samples taken at time t is Et, then the measure of discovered products evolves
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according to

dJt =

(
1− Jt

Kt

)
Etdt. (3)

A fraction 1 − Jt/Kt of all possible products is undiscovered. Only draws that hit these
products result in new discoveries. The traditional assumption in models of growth and
innovation is that Kt =∞, and then this simplifies to dJt = Etdt. Here instead, sampling
from the entire stock of potential products inevitably results in repeated discoveries, the
more so when the measure of products that remain to be discovered, Kt − Jt, is small.4

Individual products in [0, Kt] are sampled at the rate µt = Et/Kt. In a steady state,
µt = µ, and then the number of times a particular product has been sampled will be a
Poisson process with intensity µ. In particular, the fraction of products made possible by
science at time t that remains undiscovered at time s > t is e−µ(s−t).

2.2 A Roy Model with Multiple Tasks per Occupation

At any point in time, individuals can choose to be either workers or entrepreneurs. Work-
ers supply only labor. Entrepreneurs also supply labor, although perhaps not much. In
addition, they sample the population of potential products to discover new products. Al-
though referred to here as entrepreneurs, these individuals could well be employed in
jobs with two tasks: to supply labor and search for new products.5

Individuals are endowed with ability vectors (a, b) ∈ R2
++, where a is a mean product

sampling rate, and b is a quantity of labor. Individuals are heterogeneous, and the distri-
bution of (a, b) in the population is described by a density f(a, b) that is taken to have full
support and finite mean.

Labor earns a wage wt and vt is the flow value of sampling products at a unit rate.
An individual with ability vector (a, b) can earn (wtξ + vt)a as an entrepreneur, and wtb

as a worker, where ξ > 0 is a parameter. An individual of type (a, b) chooses to be an
entrepreneur if (wtξ + vt)a > wtb, and a worker if wtb > (wtξ + vt)a. We can ignore
indifference because the distribution of abilities has a density. Given a cutoff value st =

(wtξ + vt)/wt for the ratio b/a, define

E(st) =

∫ ∞
0

(∫ sta

0

af(a, b)db

)
da, L(st) =

∫ ∞
0

(∫ ∞
sta

bf(a, b)db

)
da.

So E(st) is the per-capita supply of entrepreneurial discovery attempts, and L(st) is the

4The picture of entrepreneurs standing on the shoulders of science only is too stark. Abstracting from
the input of science, as many models of endogenous growth do, is also extreme.

5It is not difficult to make A endogenous by adding basic research to these occupational choices.
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per-capita supply of labor of those who choose to be workers. But an entrepreneur who
attempts discoveries at a unit rate also supplies ξ > 0 units of labor. The aggregate sup-
plies of entrepreneurial discovery attempts and labor are therefore

Et = E(st)Ht, Lt = (ξE(st) + L(st))Ht.

Clearly, entrepreneurial discovery attempts are increasing in st, and the worker supply of
labor is decreasing in st.

Importantly, the slopes of these supply curves are related. Since the occupational
choices maximize sta + b, a version of the envelope condition says that the slope of
stE(st) + L(st) is E(st), and therefore

0 = stDE(st) + DL(st) (4)

identically in st. One implication is that ξDE(st) + DL(st) < 0 if st > ξ and ξDE(st) +

DL(st) > 0 if st < ξ. This implies that s = ξ solves maxs {ξE(s) + L(s)}. That is, the
aggregate supply of labor is single-peaked at st = ξ. Also, for any st ≥ ξ, the marginal
cost in terms of labor of an increase in entrepreneurial discovery attempts is equal to
st − ξ. Relative to st = ξ, setting st > ξ increases the supply of labor by entrepreneurs but
reduces the supply of labor by workers more, because the marginal worker supplies more
labor as a worker than as an entrepreneur. That is, at st = (wtξ + vt)/wt > ξ, the marginal
individuals are of the types (a, b) defined by (wtξ + vt)a = wtb, and for them b > ξa.

3 The Planner’s Problem

The planner can elicit any feasible combination of factor supplies Et = E(st)Ht and
Lt = (ξE(st) + L(st))Ht by picking a cutoff st ∈ [0,∞).6 The planner is assumed to have
access to the technology for producing products discovered by entrepreneurs. Given the
symmetry of preferences over differentiated products, it is clear that the planner should
allocate labor evenly across the Jt commodities known at time t. Per-capita consumption
is then equal to

Ct
Ht

= J
1/(ε−1)
t (ξE(st) + L(st)) . (5)

6The set of feasible (Et, Lt) implied by the ability distribution is compact and convex. The cutoff st can
be used to trace out its frontier.
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The entrepreneurial flow of discovery attempts Et = E(st)Ht implies a sampling rate
µt = E(st)/K for individual products. From (3),

dJt =

(
1− Jt/Ht

K

)
E(st)Htdt.

Since flow utility is logarithmic, and since the size of a dynastic household is Ht, the
Hamiltonian for the planner must be

Ht(J, λ) = max
s

{
Ht

(
ln (J)

ε− 1
+ ln (ξE(s) + L(s))

)
+ λE(s)Ht

(
1− J/Ht

K

)}
.

At (Jt, λt), the first-order condition for st is

0 = Ht ×
ξDE(st) + DL(st)

ξE(st) + L(st)
+ λtDE(st)Ht

(
1− Jt/Ht

K

)
.

Because the Roy model satisfies 0 = stDE(st) + DL(st), this can also be written as

st − ξ
ξE(st) + L(st)

=

(
1− Jt/Ht

K

)
λt. (6)

This equates the marginal utility weighted marginal cost of an additional draw fromKt =

HtK to its marginal benefit. The left-hand side of (6) is strictly increasing in st when st ≥ ξ,
and it varies continuously throughout [0,∞). So (6) has a unique solution for st in terms of
Jt/Ht and λt, as long as Jt/Ht ∈ [0,K] and λt ≥ 0. The solution for st is strictly decreasing
in Jt/Ht and converges to ξ from above as Jt/Ht approaches K from below. When the
stock of products that remain to be discovered is negligible, it is optimal to maximize the
per-capita supply of labor by setting st = ξ.

The shadow price λt evolves according to dλt = ρλtdt−D1Ht(Jt, λt)dt. This yields

dλt =

(
ρ+
E(st)

K

)
λtdt−

1

ε− 1

dt

Jt/Ht

. (7)

The effective discount rate for the marginal utilities (Jt/Ht)
−1/(ε − 1) is ρ + µt, with

µt = E(st)/K reflecting the fact that the stock of products that remain to be discov-
ered is being depleted when new products are discovered. Using dHt = ηHtdt and
dJt = E(st) (Ht − Jt/K) dt, the dynamics for Jt/Ht can be written as

d

(
Jt
Ht

)
= −η

(
Jt
Ht

)
dt+ E(st)

(
1− Jt/Ht

K

)
dt. (8)
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The conditions (6), (7) and (8) define a time-invariant differential equation for (Jt/Ht, λt).
The initial value J0/H0 is given and taken to be in (0,K). Optimality also requires the
transversality condition limt→∞ e

−ρtλtJt/Ht = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

(Jt/Ht)/K

λ tK

d[Jt/Ht]/dt = 0

dλt/dt = 0

FIGURE 0 The Planner’s Problem

As will be argued in the next section, the solution to the planner’s problem has a unique
steady state. Figure 0 shows the optimal trajectory for [(Jt/Ht)/K, λtK], together with a
few trajectories that do not converge to the steady state. Since λt is the slope of the value
function of the planner, the optimal trajectory implies that the value function is concave
for low values of (Jt/Ht)/K and convex for all higher values of (Jt/Ht)/K, including at the
steady state.7 As (Jt/Ht)/K approaches a steady state that is sufficiently close to 1 from
below, the increasing shadow price counteracts the strongly negative effect of a small and
shrinking 1− (Jt/Ht)/K on the incentives to discover new products.

7Taking K to be large enough removes the convexity. The underlying reason for the possible non-
concavity of the value function is that dJt = (Kt − Jt) (Et/Kt)dt is not jointly concave in (Jt, Et). Specifi-
cally, −JtEt is a saddle.
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3.1 Balanced Growth

The planner’s problem has a stationary solution that produces balanced growth. Setting
d[Jt/Ht] = 0 and dλt = 0 and dropping time-subscripts in (7)-(8) gives

J

H
=
K × E(s)/η

K + E(s)/η
, λ =

1

ε− 1

1

ρ+ E(s)/K
1

J/H
. (9)

The steady state value of J/H given in (9) is the outcome of a matching process between
the per-capita stock of possible productsK and the per-capita flow E(s) of entrepreneurial
attempts to discover them. The mapping from (K, E(s)/η) into J/H can be interpreted as
a steady state matching function. As (9) shows, this matching function turns out to be
a constant elasticity of substitution function of K and E(s)/η with an elasticity of substi-
tution equal to 1/2.8 The implied complementarity is natural: even in the K → ∞ limit,
the measure of products discovered J/H = E(s)/η is finite, limited by how fast entrepre-
neurs can find them. Since per-capita consumption scales with J

1/(ε−1)
t , and given that

Ht = Heηt, the growth rate of this economy is η/(ε − 1). Only the level of the balanced
growth path depends on the cutoff s.

3.1.1 The Optimal Cutoff s

Using (9) to eliminate J/H and λ from (6) yields

(s− ξ) E(s)

ξE(s) + L(s)
=

1

ε− 1

η

ρ+ µ
, µ =

E(s)

K . (10)

The unitless expression on the left-hand side of (10) is the ratio of the entrepreneurial
discovery attempts, evaluated at the shadow price s − ξ, over labor. It is increasing in
s and ranges throughout (0,∞) as s traverses (ξ,∞). The right-hand side is decreasing
in s, a consequence of the fact that both the success probability 1 − (J/H)/K and the
shadow value λ of discovered products are decreasing functions of E(s). The following
proposition describes some basic implications of (10).

Proposition 1 The solution to the planner’s problem has a unique steady state defined by (10).
The resulting s is increasing in K. It converges to ξ as K ↓ 0, and to a finite s∞ > ξ as K →∞.

8Observe that the steady state condition (J/H)/K = E/(ηK)/(1 + E/(ηK)) is strictly concave in E. The
feasible set of (E,L) is convex. Although the dynamic problem of the planner has a non-convexity, finding
the best steady state is a convex programming problem.
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3.1.2 Consumption Implications

Write C (s|K) for steady state consumption at any s ≥ ξ when the measure of products
waiting to be discovered is K. Then the scope for improvement in consumption relative
to s = ξ can be measured by

C (s|K)

C (ξ|K)
=

( E(s)/η
K+E(s)/η

E(ξ)/η
K+E(ξ)/η

)1/(ε−1)

ξE(s) + L(s)

ξE(ξ) + L(ξ)
,

which has an elasticity equal to

DC (s|K) s

C (s|K)
=

(
1

ε− 1

K
K + E (s) /η

− (s− ξ) E (s)

ξE (s) + L (s)

)
DE (s) s

E (s)
. (11)

At s = ξ, this elasticity is large if ε− 1 > 0 is small, if the fraction of all possible products
that remains to be discovered is large, and if the elasticity DE (s) s/E (s) is large. Setting
the right-hand side of (11) equal to zero gives the golden rule for this economy. This is
equivalent to replacing ρ by η in (10). The fact that ρ > η implies, as usual, that the golden
rule value of s exceeds what the planner would do.

The ratios C (s|K) /C (ξ|K) are shown in Figure 1 for alternative values of K, ranging
from the K ↓ 0 limit to the K → ∞ limit. For fixed s, the ratios C (s|K) /C (ξ|K) are
increasing in K and bounded. Also indicated in Figure 1 are the C (s|K) /C (ξ|K) chosen
by the planner, as well as ratios implied by alternative allocations that will be discussed
in later sections. Actual consumption C (s|K) goes to zero as K goes to zero. But the
K ↓ 0 limit of the consumption ratio C (s|K) /C (ξ|K) recovers the labor supply curve
[ξE(s) + L(s)]/[ξE(ξ) + L(ξ)], expressed relative to the maximum supply of labor. Figure
1 also shows its s→∞ asymptote.

As noted in Proposition 1, s converges from above to ξ as K becomes small. And then
the fraction of products discovered at any point in time, J/(KH) = (E(s)/η) / (K + E(s)/η),
converges to 1. The scope for improving the steady state level of consumption implied
by setting s = ξ vanishes as K becomes small. At the same time, per-capita consumption
grows at the positive rate η/(ε− 1), for any K > 0 and ε > 1. When K > 0 is small, it may
not be possible to raise the balanced growth path much beyond what it is at s = ξ. But
gains from variety do drive long-run growth, and at a very fast pace if ε > 1 is close to 1.
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FIGURE 1 The Ratios C(s|K)/C(ξ|K) for K ∈ {0, 2−6, . . . , 24,∞}

As K becomes large, the limiting measure of products discovered is J/H = E(s∞)/η,
which is a negligible fraction of the measure of products that could have been discovered.
As illustrated by Figure 1, the large-K cutoff s∞ may well be much lower than the golden
rule.

3.2 The Free Entry Allocation

For this economy, the simplest decentralized allocation is one in which entrepreneurs
discover products and everyone can immediately enter to produce these products. This
assumes the required knowledge diffuses instantaneously.

Prices are pt = wt for every product, and there are no profits. Entrepreneurs earn
wages for the labor they supply and st = ξ. Individuals simply choose their occupation
based on whether they can supply more labor as an entrepreneur or as a worker. This
maximizes the supply of labor. It also implies a product discovery rate µt = E(ξ)/K that
is too low relative to what the planner would choose. The equilibrium does not generate
enough product variety. As is apparent from Figure 1, the extent to which this reduces
consumption along the balanced growth path very much depends on K.

A government could implement the efficient outcome by taxing workers. In this econ-
omy, there are no effort choices to worry about.
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4 Laissez-Faire with Bertrand Competition

In a decentralized economy, the instantaneous knowledge diffusion that would lead to
free entry is unrealistic. Suppose instead that the knowledge to produce a product that
has been discovered for the first time only becomes public after an exponentially distrib-
uted delay with a mean 1/δ. In the meantime, only entrepreneurs who actually discover
the product can enable workers to produce it.

4.1 Product Markets

The entrepreneur who is the first to discover a product can set any price and, at a wage
wt, hire the workers needed to produce what is demanded. Since there is a continuum
of products, and since the individual demand curves have a constant elasticity ε > 1, the
producer will set a price equal to the Lerner price wt/(1 − 1/ε). This monopoly position
can end because the knowledge needed to produce the product becomes public. That
will reduce the price to wt. Also, another entrepreneur may independently rediscover the
same product. In that case, assume the two potential producers engage in Bertrand-style
price competition. Again, this reduces the price to wt.

Write It ∈ [0, Jt] for the measure of products that are produced by a monopoly pro-
ducer. Then

pj,t = wt ×
{

1
1−1/ε

j ∈ [0, It),

1 j ∈ [It, Jt].

Plugging these prices into the price index Pt and solving for the real wage gives

wt
Pt

=

((
1− 1

ε

)ε−1

It + Jt − It

)1/(ε−1)

. (12)

Producer revenues are pj,tcj,t = (pj,t/Pt)
1−εPtCt. Employment is lj,t = cj,t and the monopoly

producers earn variable profits uj,t = pj,tcj,t/ε. This yields[
wtlj,t

uj,t

]
=

[
1− 1/ε

1/ε

] (
1− 1

ε

)ε−1
PtCt(

1− 1
ε

)ε−1
It + Jt − It

for j ∈ [0, It] and

wtlj,t =
PtCt(

1− 1
ε

)ε−1
It + Jt − It
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for j ∈ [It, Jt]. Given a labor supply Lt, clearing the labor market gives

lj,t =
Lt(

1− 1
ε

)ε
It + Jt − It

×
{ (

1− 1
ε

)ε
j ∈ [0, It),

1 j ∈ [It, Jt].

This is increasing in It/Jt, holding fixed Lt and Jt. This is because, measured by employ-
ment, competitive markets are larger than monopolized markets. For given Lt and Jt, an
increase in the fraction It/Jt shifts employment from larger to smaller markets and must
therefore expands all markets.
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FIGURE 2 The Static Inefficiency of Monopoly

Plugging the labor allocation into the expression for the CES composite good gives

Ct
Ht

= J
1/(ε−1)
t

((
1− 1

ε

)ε−1
It
Jt

+ 1− It
Jt

)1/(ε−1) (
1− 1

ε

)ε−1 It
Jt

+ 1− It
Jt(

1− 1
ε

)ε It
Jt

+ 1− It
Jt

Lt
Ht

. (13)

This is a convex function of It/Jt ∈ [0, 1] that simplifies to J
1/(ε−1)
t Lt/Ht if and only

It/Jt ∈ {0, 1}. The variation in prices that results when some, but not all, markets are
monopolized lowers per-capita consumption relative to J

1/(ε−1)
t Lt/Ht. This static ineffi-

ciency of monopoly is shown in Figure 2 for a few benchmark values of ε > 1.
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4.2 Dynamics of the State

As before, the measure of discovered products evolves according to dJt = µt (Kt − Jt) dt,
with µt = E(st)/K. But now we also need to keep track of the measure It of products
that have been discovered precisely once and for which the production technology has
not yet become public. Since every product is discovered and rediscovered at the rate µt,
the dynamics for It is given by dIt = [µt(Kt − Jt)− (δ + µt)It] dt. In per-capita terms, this
becomes

d

(
Jt
Ht

)
= µt

(
K − Jt

Ht

)
dt− η × Jtdt

Ht

, (14)

d

(
It
Ht

)
= µt

(
K − Jt

Ht

)
dt− (η + δ + µt)×

Itdt

Ht

, (15)

where µt = E(st)/K. The initial values are taken to be J0/H ∈ [0,K) and I0/H ∈ [0, J0/H).

4.3 The Value of a Monopoly

Bertrand competition and free entry imply zero profits. But entrepreneurs who discover a
product for the first time do earn profits, for a while. Write q̃t for the present value of these
monopoly profits. The rate at which potential products are discovered is µt, whether the
product has been discovered before or not. So the rate at which the monopoly producer
of a product loses the monopoly must be δ + µt.

Since uj,t = wtlj,t/(ε− 1), the solution for lj,t implies that the price of a monopoly must
satisfy the asset-pricing equation

itq̃tdt =

(
1− 1

ε

)ε(
1− 1

ε

)ε
It + Jt − It

wtLtdt

ε− 1
+ dq̃t − (δ + µt) q̃tdt, (16)

where µt = E(st)/K. Holding fixed Jt and wtLt, increasing in It/Jt raises profits, a conse-
quence of the fact that market size is increasing in It/Jt given aggregate employment. It
remains to determine st.

4.4 Entrepreneurial Earnings and Equilibrium

Recall that st represents the earnings, measured in units of labor, of an entrepreneur who
samples products at a unit rate. The flow ξ of labor supplied by the entrepreneur accounts
for part of these earnings. In addition, every time the entrepreneur makes an attempt, the
probability of discovering a new product is 1 − (Jt/Ht)/K, and the discovery of a new
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product leads to a capital gain of q̃t/wt, in units of labor. The entrepreneurial earnings are
therefore

st = ξ +

(
1− Jt/Ht

K

)
q̃t
wt
. (17)

To simplify the equilibrium conditions, it is useful to eliminate the interest rate from the
asset pricing equation (16) for q̃t. To this end, consider the marginal utility weighted price

qt =
q̃t

PtCt/Ht

.

Notice, from the real wage (12) and per-capita consumption (13), that the consumption-
sector labor share is

wtLt
PtCt

=

(
1− 1

ε

)ε
It + Jt − It(

1− 1
ε

)ε−1
It + Jt − It

.

This labor share, together with the asset pricing equation (16), the definition of qt, and the
Euler equation (2), imply

dqt =

(
ρ+ δ +

E(st)

K

)
qtdt−

1

ε− 1

(
1− 1

ε

)ε
dt(

1− 1
ε

)ε−1 It
Ht

+ Jt
Ht
− It

Ht

. (18)

In terms of qt, the entrepreneurial earnings (17) can be written as

st − ξ
ξE(st) + L(st)

=

(
1− Jt/Ht

K

)
qt ×

(
1− 1

ε

)ε−1 It
Ht

+ Jt
Ht
− It

Ht(
1− 1

ε

)ε It
Ht

+ Jt
Ht
− It

Ht

. (19)

Given the state variables Jt/Ht and It/Ht, and given the marginal utility weighted price
qt, equation (19) pins down st, and then the trajectory for qt follows from (18). In turn,
the state variables Jt/Ht and It/Ht evolve according to (14)-(15), with µt = E(st)/K. The
initial values of the state are given, and there is a transversality condition that supplies
the other boundary condition needed to pin down the equilibrium.

4.5 Balanced Growth

Imposing d [Jt/Ht] = 0 and d [It/Ht] = 0 in (14) and (15) gives

J/H

K =
µ

η + µ
,

I/H

K =
µ

η + µ

η

η + δ + µ
,
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where µ = E(s)/K. As expected, the fraction I/J of markets that are monopolies is a
decreasing function function of δ + µ. Imposing dqt = 0 in (18) gives qt = q, where

q =
1

ε− 1

1

ρ+ δ + µ

(
1− 1

ε

)ε(
1− 1

ε

)ε−1 I
H

+ J
H
− I

H

.

Using this result to eliminate qt from (19), and then applying the steady state solutions for
J/H and I/H gives

(s− ξ) E(s)

ξE(s) + L(s)
=

1

ε− 1

η

ρ+ δ + µ

(
1− 1

ε

)ε(
1− 1

ε

)ε η
η+δ+µ

+ δ+µ
η+δ+µ

, µ =
E(s)

K . (20)

This equilibrium condition for s equates the marginal cost of a discovery attempt to the
expected capital gain of becoming a producer with a temporary monopoly. It is the analog
of the condition (10) for the planner.

4.5.1 Comparison with Free Entry and the Planner

The right-hand side of (20) is decreasing in δ + µ and depends on µ only via the term
δ + µ.9 It follows that there is a unique solution for s. The temporary monopoly ensures
that s > ξ. There is more variety than under free entry.

To compare this with the s chosen by the planner, observe that the last factor on the
right-hand side of (20) is less than 1 for any δ + µ > 0. It declines from 1 at δ + µ = 0 to
(1− 1/ε)ε as δ+µ becomes large. If δ = 0, then the first two factors on the right-hand side
of (20) match the right-hand side of the optimality condition (10) for the planner. It then
follows, for any δ ≥ 0, that the s that solves (20) is lower than the efficient s implied by
(10). Although entrepreneurs are compensated beyond just the labor they supply, laissez-
faire with Bertrand competition provides too few incentives for entrepreneurs to discover
the efficient number of products.

The magnitude of the problem depends very much on K. In particular, note that the
right-hand side of (20) goes to zero as µ = E(s)/K becomes large. This implies that s ↓ ξ
as K ↓ 0, just as in the solution to the planner’s problem. And most markets will be
competitive. Alternatively, if K → ∞, then the solution for s is determined by setting
µ = 0 in (20). If δ = 0, this again matches the planner’s solution. The ratio I/J converges
to 1 in this case, and so most markets will be monopolies. Figure 1 provides an example of

9This is true even though J/H does depend on µ alone. The fact that utility is logarithmic implies
qE(s) ∝ E(s)/(J/H), with a constant of proportionality that only depends on δ + µ. The entrepreneurial
success probability is 1−(J/H)/K, and this satisfies the steady state condition (1−(J/H)/K)E(s)/(J/H) =
η.
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this phenomenon. On the other hand, if δ is positive, then the ratio I/J remains bounded
away from 1 even when K becomes large. The resulting static misallocation of labor then
rules out approximate efficiency. Proposition 2 summarizes these results.

Proposition 2 Laissez-faire with Bertrand competition implies a unique s, determined by (20),
that is lower than the efficient solution implied by (10). Both solutions for s converge to ξ from
above as the measure K of products that can be discovered goes to zero. If δ = 0, then laissez-faire
with Bertrand competition also approximates the s chosen by the planner if K is large. But if
δ > 0, then the large-K limit remains bounded away from efficiency.

4.5.2 More on the Role of Knowledge Diffusion

Holding fixed µ, taking δ →∞ drives the right-hand side of (20) down to zero. It follows
that laissez-faire with Bertrand competition converges to free entry as δ grows without
bound. More generally, the effect of an increase in the knowledge diffusion rate δ is to
lower the equilibrium value of s. The result is a lower product discovery rate µ = E(s)/K
and, at the same time, a higher overall rate δ + µ at which monopolies disappear. So an
increase in δ implies less variety, and monopolies that last for a shorter period of time.

But the effect of faster knowledge diffusion on consumption is ambiguous. On the
one hand, the reduction in variety has a negative effect on steady state consumption. On
the other hand, there will also be an increase in the supply of labor that tends to increase
consumption. Furthermore, recall from (13) that consumption is a convex function of I/J ,
as shown in Figure 2. From a baseline with I/J relatively low, a reduction in I/J reduces
the product market distortions of monopoly, which tends to raise consumption.

One can use (13) to show that a small enough increase in 1/δ relative to δ = ∞ does
increase steady state consumption.10 A little bit of sand in the wheels of knowledge dif-
fusion cannot hurt.

5 Giving Away Patents

If knowledge does not diffuse immediately, then being the first entrepreneur to discover a
product yields monopoly profits. Suppose instead that knowledge diffusion is essentially
instantaneous. Will patents improve the allocation relative to free entry?

Specifically, suppose the government grants patents that expire randomly at some
rate σ, resulting in temporary monopolies. Because knowledge diffuses instantaneously,

10At s = ξ, the supply of labor attains its global maximum. And at I/J = 0, the elasticity with respect to
I/J of the static cost of monopoly shown in Figure 2 is zero.
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everyone can enter once a patent expires. The apparatus of Section 4 applies with only
two modifications. The depreciation rate δ + µt in the dynamics (15) for It/Ht must be
replaced by σ. And similarly, the depreciation rate δ+µt in the asset pricing equation (18)
for qt must be replaced by σ.

The balanced growth path is then determined by

J/H

K =
µ

η + µ
,

I/H

K =
µ

η + µ

η

η + σ
,

where µ = E(s)/K, and s is determined by

(s− ξ) E(s)

ξE(s) + L(s)
=

1

ε− 1

η

ρ+ σ

(
1− 1

ε

)ε(
1− 1

ε

)ε η
η+σ

+ σ
η+σ

. (21)

Because the left-hand side of (21) is strictly increasing and ranges throughout (0,∞), the
economy has a unique steady state. Since the right-hand side of (21) is decreasing in
σ, lengthening the duration of a patent will raise s. In sharp contrast to the optimality
condition for the planner (10) and the laissez-faire condition (20), the right-hand side of
(21) does not depend on µ = E(s)/K. For a given patent duration, the equilibrium value
of s does not depend on how many products can be discovered.

Although the laissez-faire economy of Section 4 and the economy with patents de-
scribed here are different, there is a close connection that follows from the fact that (20)
and the associated fraction I/J of monopolized products only depend on δ + µ and the
fact that (21) and the associated I/J only depend on the patent expiration rate σ.

Proposition 3 An economy with delayed diffusion at the rate δ, no patents, and Bertrand com-
petition, is equivalent to an economy with instantaneous diffusion and patents expiring at the rate
σ = µ+ δ, where µ is the common equilibrium product discovery rate.

To show this, simply take the s and µ = E(s)/K that solve (20), and then use (21) to
construct the implicit patent expiration rate σ.

It is clear that a patent regime with σ ∈ (0,∞) cannot be efficient. As in the laissez-
faire economy, labor will be misallocated across products because some markets are mo-
nopolies and others are competitive. This misallocation disappears in the extreme cases
σ ∈ {0,∞}. Free entry and perpetual patents imply I/J ∈ {0, 1}. We have seen that
free entry is approximately efficient when K is small. A perpetual patent implies that
the right-hand side of (21) is equal to (η/ρ)/(ε − 1) > (η/(ρ + µ))/(ε − 1). Together with
(10), this immediately implies that perpetual patents result in an s that is too large. Since
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µ = E(s)/K goes to zero when K → ∞, this inefficiency disappears when the measure of
products that can be discovered is unbounded.

Proposition 4 A perpetual patent generates more variety than is optimal for the planner. The
Dixit-Stiglitz efficiency result for monopolistic competition emerges only in the large-K limit.

So the equilibrium cutoffs for free entry and for an economy with perpetual patents
bracket the cutoff s that is optimal for the planner. Which of these two regimes better
approximates the optimal s completely depends on whether K is large or small.

6 Laissez-Faire with Collusion

Now simplify, to the other extreme, by assuming that the knowledge required to produce
a product never becomes public.

So the first entrepreneur to discover a product only faces potential competition, even-
tually, when other entrepreneurs rediscover the product. Bertrand competition is only
one possible outcome when that happens. Alternatively, it could well be that the incum-
bent monopolist and the entrepreneur, as people of the same trade with an opportunity
to conspire against the public, collude to perpetuate the monopoly profits. Concretely,
the incumbent and entrepreneur might sign a non-compete agreement requiring the in-
cumbent to pay the entrepreneur a fraction β ∈ [0, 1] of the value of the monopoly in
exchange for a binding commitment by the entrepreneur to never produce the product.
Nash bargaining could determine β.

6.1 Product Markets

If this happens in all markets, then all products are produced by monopoly producers
who set the Lerner price pj,t = wt/(1 − 1/ε). The price index then implies a real wage
given by

wt
Pt

=

(
1− 1

ε

)
J

1/(ε−1)
t .

Labor costs and variable profits are[
wtlj,t

uj,t

]
=

[
1− 1/ε

1/ε

]
PtCt
Jt

, j ∈ [0, Jt].

This implies lj,t = Lt/Jt for all j ∈ [0, Jt], and uj,t/wt = lj,t/(ε − 1). Given a supply of Lt
units of labor, per-capita consumption is then Ct/Ht = J

1/(ε−1)
t Lt/Ht, as it is for a planner
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who uses the same amount of labor.

6.2 The Equilibrium

In this economy, there is no need to keep track of how often a product has been discov-
ered. The state is simply Jt and this evolves according to dJt = µt(Kt−Jt)dt, as before. Let
q̃t again be the present value of monopoly profits, taking into account that entrepreneurs
who rediscover the product will have to be paid βq̃t. The asset pricing equation (16) for
q̃t must be modified by replacing the expected capital loss µtq̃t implied by Bertrand com-
petition with µt × βq̃t, where µt = E(st)/K. Also, entrepreneurs trying to discover new
products now earn

st = ξ +

(
1− Jt/Ht

K + β × Jt/Ht

K

)
q̃t
wt

in units of labor. On each draw, they discover a new product with probability 1−(Jt/Ht)/K,
and this results in a capital gain of q̃t/wt. But now the rediscovery of a product is also re-
warded, by capital gain equal to βq̃t/wt. The resulting equilibrium conditions can be
obtained from (18) and (19) by setting It = Jt, noting that the effective depreciation rate
of a monopoly declines from ρ+ E(st)/K to ρ+ βE(st)/K, and including the transfer from
incumbents in the earnings of entrepreneurs. Using the fact that the labor share is now
wtLt/(PtCt) = 1− 1/ε, this yields

d

(
qt

1− 1/ε

)
=

(
ρ+ β × E(st)

K

)
qtdt

1− 1/ε
− 1

ε− 1

dt

Jt/Ht

, (22)

where st is determined by

st − ξ
ξE(st) + L(st)

=

(
1− Jt/Ht

K + β × Jt/Ht

K

)
qt

1− 1/ε
. (23)

Together with d[Jt/Ht] = [µt(K − Jt/Ht)− ηJt/Ht] dt and µt = E(st)/K, the conditions
(22)-(23) describe the possible equilibrium trajectories for (Jt/Ht, qt). The initial value
of J0 is given and there is a transversality condition that can be used to pin down the
equilibrium.

The monopoly outcome in all markets eliminates the misallocation of labor across
products that happens in the economy with Bertrand competition. It is clear that β = 0

corresponds to an economy with perpetual patents. Monopolies live forever and their
owners never have to buy out potential competitors. In other words, perpetual patents are
redundant when monopoly rents go to incumbents rather than potential competitors. By
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Proposition 4, then, β = 0 generates too much variety in the steady state. A comparison
of (22)-(23) with the optimality conditions (6)-(7) for the planner shows that there can be
no β ∈ [0, 1] for which laissez-faire with collusion is efficient.

6.3 Balanced Growth

As usual, d[Jt/Ht] = 0 implies (J/H)/K = µ/(η+µ). Setting dqt = 0 in (22) and using (23)
then gives

(s− ξ) E(s)

ξE(s) + L(s)
=

1

ε− 1

η + βµ

ρ+ βµ
, µ =

E(s)

K . (24)

Recall that ρ > η, and so the right-hand side of this condition is increasing in βµ, varying
throughout (η/ρ, 1)/(ε − 1). Dividing the left-hand side by E(s) and the right-hand side
by µK = E(s) makes the right-hand side of (24) decreasing in µ. As before, this ensures
a unique solution for s. When β ∈ (0, 1], the fact that ρ > η implies that this solution is
decreasing in K. This contrasts with fact that the s chosen by the planner is increasing in
K. The two solutions meet in the large-K limit.

Because ρ > η, the right-hand side of (24) is strictly increasing in βµ. It follows that
the solution for s is increasing in β ∈ [0, 1]. Holding fixed the price q of a monopoly, an
increase in the entrepreneurial bargaining share β has a positive effect on the earnings
of entrepreneurs. But the higher effective depreciation rate ρ + βµ lowers q. The fact
that ρ > η ensures that the net effect of an increase in β on entrepreneurial incentives
is still positive. Entrepreneurs can gain from being more successful at shaking down
incumbent monopolists, even though entrepreneurs will die by the same sword when
they themselves become monopoly producers.

This reasoning can be summarized as follows.

Proposition 5 The s that solves (24) exceeds the efficient s, and the gap increases with β. The
solution to (24) is decreasing in K and matches the efficient s only in the large-K limit.

In other words, laissez-faire with collusion can be particularly harmful when K is rela-
tively small, and lowering the bargaining power of entrepreneurs reduces the harm.

7 Taxing Patent-Protected Monopoly Wealth

Temporary patents cannot be efficient because of the implied misallocation of labor across
products. When patents are forever, or when the entrepreneurs who discover the same
product collude, there is no misallocation of labor across products. Instead, the problem
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is too much variety. The commons that is products waiting to be discovered attracts too
many attempts at discovery.

In this simple economy, the obvious solution is to somehow tax discovery attempts.
One way to do so is to tax the monopoly profits that are made possible by perpetual
patents. Let τ t be the rate at which monopoly profits are taxed. The equilibrium condi-
tions for this economy are then

d

(
qt

1− 1/ε

)
= ρ× qtdt

1− 1/ε
− 1

ε− 1

(1− τ t) dt

Jt/Ht

, (25)

st − ξ
ξE(st) + L(st)

=

(
1− Jt/Ht

K

)
qt

1− 1/ε
, (26)

together with d[Jt/Ht] = [µt(K − Jt/Ht)− ηJt/Ht] dt, µt = E(st)/K, an initial value for J0,
and a transversality condition.

Observe that the equilibrium condition (26) for st exactly matches the optimality con-
dition (6) for the planner if qt/(1 − 1/ε) = λt. But the effective discount rate in the asset
pricing equation (25) is ρ, while the planner (7) uses ρ + µt = ρ + E(st)/K to discount the
flows (1/(ε− 1))/(Jt/Ht). The tax rate τ t that lowers the value of a monopoly by just the
right amount must therefore satisfy

1

ε− 1

τ t
Jt/Ht

=
E(st)

K
qt

1− 1/ε
. (27)

Translating the result back into nominal prices using qt = q̃t/(PtCt/Ht) gives

τ t ×
1

ε

PtCt
Jt

= µtq̃t,

where µt = E(st)/K. Since monopoly profits are (PtCt/Jt)/ε, this simply says that the tax
paid on flow profits should be equal to the expected capital loss that would result from
losing a monopoly to Bertrand competition against an entrepreneur who also discovers
the product. By construction, individual entrepreneurs will be indifferent between apply-
ing for a patent in exchange for taxation at the rate τ t, and risking Bertrand competition
without a patent. An alternative way to collect this tax would be to tax wealth invested
in patent-protected monopolies at the rate µt = E(st)/K.11

Along the balanced growth path, the optimal tax on monopoly profits implied by (25)-
(27) is τ = µ/(ρ+ µ) where µ = E(s)/K and s solves (10). The usual assumption is K =∞

11A comparison of (22)-(23) with (25)-(27) shows that laissez-faire with collusion and β = 1 imposes the
same “tax” on incumbent monopoly producers. But the opportunity to shake down incumbents draws in
too many entrepreneurs.
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and therefore τ = 0. But the tax rate is positive as soon as K <∞. The planner lets µ ↑ ∞
as K ↓ 0, and so then τ ↑ 1. The monopoly profit tax becomes almost confiscatory when
the measure of possible products is very small.

Along the balanced growth path, yet another simple tax that can be used together with
perpetual patents to implement the efficient allocation is a tax the initial capital gains of
entrepreneurs who discover a new product, at the rate τ = µ/(ρ + µ). Under that policy,
the price of a monopoly, unencumbered by profit taxes, will exceed (1− 1/ε)λ by a factor
1/(1 − τ) = (ρ + µ)/ρ. And then the initial capital gains tax results in an aftertax gain
equal to (1− 1/ε)λ.

7.1 Multi-Sector Complications

The idea that a combination of perpetual patents with taxes on patent-protected monopoly
profits can implement the solution to the planner’s problem is fragile. For a concrete ex-
ample, suppose consumption is a Cobb-Douglas aggregator of N CES composite goods
with expenditure shares {βn}Nn=1 and elasticities of substitution {εn}Nn=1. In sector n, there
is a measure of products Kn,t = KnHt of products that can be discovered. At any point in
time, entrepreneurs can choose which sectors to search for new products. The solution to
the planner’s problem for this economy has a steady state in which the number of prod-
ucts grows at the same rate in all sectors. Because of the different elasticities εn > 1, the
gains from variety differ across sectors, and so price indices and consumption will grow
at different rates across sectors. If Kk = κkK for fixed parameters κn > 0, then K ↓ 0

implies s ↓ ξ, as in the one-sector economy. That is, free entry is close to what the planner
would do.

But perpetual patents with taxes on monopoly profits cannot implement the planner’s
optimal allocation, for the simple reason that distinct markups in different sectors distort
relative prices across sectors. Another layer of taxes could solve that problem. Taxing
consumption in sector n at a rate θn that satisfies (1 − θn)(1 − 1/εn) = φ for all n, for
some φ that ensures θn ∈ (0, 1), would remove the relative price distortions implied by
monopoly. For example, one could take φ = 1 − 1/minn {εn} so that the consumption
tax in the sector with the lowest elasticity of substitution is zero. Sectors with higher
elasticities have lower markups, and these consumption taxes raise consumer prices in
those sectors to what they are in the sector with the highest markup. Lower φ > 0 would
work as well.

With consumption taxes removing the relative price distortions, the same profit taxes
as before can be used to implement the solution to the planner’s problem. Specifically, let
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µn,t be the equilibrium rate at which products in sector n are sampled, and write q̃n,t for
the price of a monopoly in that sector. Given the results for a one-sector economy, it is
now straightforward to show that sector-specific profit taxes τn,t of the form

τn,t ×
1

εn

βnPtCt
Jn,t

= µn,tq̃n,t

implement the planner’s allocation. It turns out that q̃n,t = φλn,t, where λn,t is the plan-
ner’s shadow price of products waiting to be discovered in sector n. So alternative choices
of the scale parameter φ will be reflected in the profit tax rates. As in the one-sector econ-
omy, the corresponding tax rate for patent-protected wealth is simply µn,t.

A government trying to implement these taxes would need to have the same intri-
cate information about the structure of the economy as it would need for an industrial
policy that subsidizes discovery while enforcing free entry. Knowledge of the elasticities
{εn}Nn=1 is enough to calculate the consumption taxes. And it is true that the discovery
rates {µn,t}Nn=1 could be observed in real time. But these discovery rates depend on equi-
librium beliefs about future policy.

8 Tentative Calibrations

The empirical importance of geography and of intermediate goods, as well as the likeli-
hood that there is substantial heterogeneity across industries, means that the calibration
of a one-industry economy with a naive input-output structure can only be viewed as a
suggestive first pass.

8.1 Factor Supplies

Suppose the abilities (a, b) are drawn from two independent Fréchet distributions exp(−TEa−θ)
and exp(−TLb−θ), where TE and TL are positive, and θ > 1 to ensure that aggregates are
finite.12 Then the occupational choice probabilities are[

PE(s)

PL(s)

]
=

1

TEsθ + TL

[
TEs

θ

TL

]
.

12The use of Fréchet distributions in models of discrete choice was pioneered by McFadden [1973]. Eaton
and Kortum [2002] showed its power in the context of Ricardian models of trade. Luttmer [2011, pp.1048]
and Lagakos and Waugh [2013] discovered that it also delivers a very tractable version of the Roy model.
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The elasticity of PE(s) with respect to s is equal to (1 − PE(s))θ. The resulting factor
supply curves are [

sE(s)

L(s)

]
=

[
PE(s)

PL(s)

] (
TEs

θ + TL
)1/θ

Γθ,

where Γθ is the gamma function evaluated at 1 − 1/θ. As is well known, a convenient
but very strong restriction implied by the independent Fréchet assumption is that the
earnings distributions in the two occupations are the same. In particular, average earnings
are the same. A corollary is that the average worker and the average entrepreneur supply
the same amount of labor at s = ξ.

8.2 Consumption Possibilities

The upper (K →∞) and lower (K ↓ 0) envelopes of the mappings s/ξ 7→ C (s|K) /C (ξ|K)

shown in Figure 1 depend on only three parameters: the CES elasticity ε, the factor supply
elasticity parameter θ, and the composite parameter TEξθ/TL = PE(ξ)/[1 − PE(ξ)] that
governs the occupational choice probabilities at s/ξ = 1. In particular, holding fixed θ and
PE(ξ), it does not matter how much labor entrepreneurs supply. The large-s asymptotes
shown in Figure 1 are lims→∞C (s|0) /C (ξ|0) = [PE(ξ)]1/θ and lims→∞C (s|∞) /C (ξ|∞) =

([PE(ξ)]1/θ)(ε−θ)/(ε−1) ∈
(
PE(ξ), 1/ [PE(ξ)]1/(ε−1)

)
. Holding fixed PE(ξ), more elastic factor

supplies provide greater opportunities for increases in consumption relative to s/ξ = 1.
In Figure 1 and below, the assumed factor supply elasticity parameter is θ = 4, which

implies that the top decile of all individuals in the economy earns about 20% of aggregate
earnings.13 Figure 1 also assumes PE(ξ) = 0.01. That is, at s/ξ = 1, 1% of the population
would be an entrepreneur of some sort. The elasticity of substitution across products is
taken to be ε = 2. Assuming a population growth rate equal to η = 0.01, this implies
a per-capita consumption growth rate of 1% per annum. Figure 1 shows that for these
parameters, K =∞makes possible an almost 16-fold increase in consumption relative to
free entry—equivalent to just over 275 years of growth.

The difficult question is: what value of K ∈ (0,∞) is reasonable? And, related, what
is 1/ξ, the number of discovery attempts entrepreneurs make for every unit of labor they
supply? To sketch the possibilities, it is easiest to use the free entry economy as a bench-
mark.

13Note well that the earnings risk of entrepreneurs is shared perfectly: a type-(a, b) individual attempts
to discover new products at the average rate a. The before-insurance dispersion in entrepreneurial earnings
will be greater than suggested by the tail index θ.
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8.3 Parameters Based on a Free Entry Baseline

A convenient choice of units for labor is obtained by imposing L(ξ)/PL(ξ) = 1. So the
average worker supplies one unit of labor in the free entry economy. The independent
Fréchet assumption implies that the average entrepreneur supplies the same amount of
labor and generates E(ξ)/PE(ξ) = 1/ξ discovery attempts per annum, or one discovery
attempt every ξ years. So the per-capita flow of discovery attempts is simply E(ξ) =

PE(ξ)/ξ.
The value of K can be inferred from ideal data on the number of entrepreneurs, how

many discovery attempts they make on average, and how successful they tend to be.
Write ϕ = (J/H)/K for the steady state fraction of products discovered at a point in time.
So the per-capita flow of new products is (1 − ϕ)E(ξ). Data on discovery attempts and
successful new product discoveries from a sample of entrepreneurs would reveal

E(ξ)

PE(ξ)
=

1

ξ
,

(1− ϕ) E(ξ)

PE(ξ)
=

1− ϕ
ξ

.

Such data would therefore pin down ξ and ϕ. The steady state restriction ϕ = µ/(η + µ)

then delivers the rate µ = ηϕ/(1− ϕ) at which possible products are sampled. A random
sample of all individuals in the economy could be used to estimate PE(ξ). This reveals
E(ξ) = PE(ξ)/ξ and hence K = E(ξ)/µ.

Discovery attempts are probably hard to measure. Continue to suppose it is possible to
measure PE(ξ), and suppose further that it is also possible to measure Λ = PL(ξ)/(J/H),
the number of workers per product. Since ϕ = (J/H)/K, the definition of Λ implies
K = (1−PE(ξ))/(ϕΛ). Also, the steady state restriction implies E(ξ)/K = ηϕ/(1−ϕ), and
therefore 1/ξ = E(ξ)/PE(ξ) = (K/PE(ξ)) × ηϕ/(1 − ϕ). Given a conjecture for ϕ, one can
then infer

1

ξ
=

η

1− ϕ
1− PE(ξ)

PE(ξ)Λ
, K =

1− PE(ξ)

ϕΛ
.

Holding fixed PE(ξ) and Λ, these inferences are intuitive. If ϕ is close to 1, then entrepre-
neurs must have been very productive at generating attempts to find new products. On
the other hand, if ϕ is close zero, then the number of products waiting to be discovered
must be very large.

To judge the plausibility of alternative possibilities for ϕ, note that 1/(E(ξ)/K) =

(1 − ϕ)/(ηϕ) is the average time it takes for a product to be discovered for the first time,
after it has been added to the set of possible products by science. Holding fixed the popu-
lation growth rate η, this delay only depends on ϕ. At ϕ = 8/9, the average delay between
new science and the first discovery of an actual new product is 12.5 years. This increases
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to a lengthy 50 years at ϕ = 2/3. These two examples will be used as benchmarks in what
follows. For some salient products it may be possible to measure this delay retrospec-
tively.
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FIGURE 3 The implied 1/ξ and K at η = 0.01 and PE(ξ) = 0.01

Figure 3 shows these inferences for two conjectures about the number of workers per
product. At Λ = 100 (since the average US firm has about 25 employees, this would be
4 average firms per product), an entrepreneurial success rate equal to 1 − ϕ = 1/9 im-
plies that individual entrepreneurs attempt to discover a new product on average about
once every 11.2 years.14 And the number of products waiting to be discovered (or re-
discovered) is K = 0.0111 ≈ 9/800 per capita. On a base of 130 million private sector em-
ployees (US, December 2019), this would mean 1.45 million possible products, of which
160, 875 remain to be discovered. At ϕ = 2/3, K = 0.0149 ≈ 3/200, and this implies about
643, 500 products that remain to be discovered.

8.4 Comparing Allocations

Figure 4 shows the consumption implications for K ∈ {0.0111, 0.0149} and alternative
assumptions about equilibrium. In the context of Figure 1, these are small values of K.

14Keep in mind that the Fréchet distribution implies that some entrepreneurs are much more productive
than others.
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Statistics for these economies are reported in Tables 1 and 2.

TABLE 1 free entry Bertrand planner
perpetual

patents

(J/H)/K 0.8889 0.9544 0.9707 0.9898

PE(s) 0.0100 0.0360 0.0666 0.2781

E(s)/PE(s) 0.0891 0.0647 0.0555 0.0388

E(s)/K 0.0800 0.2092 0.3015 0.9688

years
ahead

0 5.6322 7.6709 0.4729

TABLE 2 free entry Bertrand planner
perpetual

patents

(J/H)/K 0.6667 0.8829 0.9256 0.9603

PE(s) 0.0100 0.0587 0.1144 0.2781

E(s)/PE(s) 0.0297 0.0191 0.0161 0.0129

E(s)/K 0.0200 0.0754 0.1244 0.2422

years
ahead

0 24.31 30.06 26.22

Both panels of Figure 4 also show curves representing the consumption levels implied
by (5) and (13). For both curves, (J/H)/K = E(s)/[ηK + E(s)]. The curve representing
(13) has I/J = (ηK)/[ηK + E(s)] and L/H = ξE(s) + L(s). Increasing s along the (13)
curve reduces the fraction I/J of markets that are monopolized, which explains why the
curves (5) and (13) merge for large s. Connecting the outcomes for free entry, laissez-
faire with Bertrand competition, and laissez-faire with collusion and β = 0, is a curve
that describes the combinations of s/ξ and consumption that emerge as one varies the
mean duration 1/σ of a patent from 0 to infinity. This curve illustrates Proposition 3
and the role of static misallocation. Relative to the delay associated with the allocation for
laissez-faire with Bertrand competition, a lengthening of the patent duration 1/σ increases
s and I/J = η/(η + σ) at the same time. While this increases (J/H)/K, it also increases,
initially, the static cost of misallocation. When ϕ is close to 1, implying that the scope for
more variety is limited, the shape of this curve is mostly determined by dependence of
I/J = η/(η + σ) on σ and the static inefficiencies of monopoly shown in Figure 2. For
example, at ϕ = 0.995 the static cost of monopoly dominates to such an extent that even
the outcome of laissez-faire with Bertrand competition is worse than free entry.
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FIGURE 4 Consumption for ϕ = 8/9 (top) and ϕ = 2/3 (bottom)

The planner would set s/ξ at about 1.6 in the ϕ = 8/9 economy and at about 1.9 in the
ϕ = 2/3 economy. Relative to free entry, the resulting increases in steady state consump-
tion are about 8% and 35%, respectively. Laissez-faire with Bertrand competition lags
behind the planner by only about 2 and 6 years in these two economies. Giving away
patents (or, equivalently, laissez-faire with collusion and β = 0) is worse than Bertrand
competition when ϕ = 8/9, and barely half a year ahead of free entry. As a result, a
planner would want to combine patents with a tax on patent-protected wealth equal to
just over 30% per annum.15 The planner would still tax patent-protected wealth at about
12.5% per annum in the ϕ = 2/3 economy. The equivalent taxes on patent-protected prof-
its are approximately 86% and 71%, respectively. This significantly lowers the rewards
to being an entrepreneur and cuts the numbers of entrepreneurs from the very high 28%

enticed by perpetual patents in both scenarios. Starting from such a large number of
entrepreneurs, the increase in labor supply resulting from this tax more than offsets the
negative effect of a decrease in variety.

15Pre-tax rates of return on patent-protected wealth would be about 35% per annum.
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9 Conclusions

Giving away perpetual patents to provide incentives for discovery attracts too many en-
trepreneurs when rediscovery is a possibility. And it shifts the income distribution to-
wards those who have a comparative advantage in occupations that come with oppor-
tunities to discover new products. Patents of limited duration can make things worse
by creating variation in markups over marginal cost. It is possible to remedy the conse-
quences of perpetual patents with a tax on patent-protected wealth. But in a multi-sector
world, the tax rate has to vary by industry, and it also needs to be complemented with
consumption taxes to eliminate across-industry variation in markups.

The tentative calibration given in this paper suggests that it may well be a reasonable
alternative to rely on the first-mover advantages of entrepreneurs who discover products
first, provided that this is combined with a policy that prevents collusion between entre-
preneurs who, over time, discover the same product. The lack of fine-tuned taxes and
patents only delays the discovery of new products that are bound to be discovered even-
tually. A crucial statistic needed to assess the cost of this delay is the number of products
that has been discovered as a fraction of the number that could have been discovered
given the current state of scientific knowledge. This will vary across industries, and a
much more detailed model than could be given here would be needed to make a reliable
assessment.
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