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Abstract

We present a tractable dynamic macroeconomic model of self-ful�lling bank runs. A bank

is vulnerable to a run when a loss of investors’ con�dence triggers deposit withdrawals and

leads the bank to default on its obligations. We analytically characterize how the vulnerability

of an individual bank depends on macroeconomic aggregates and how the number of banks

facing a run a�ects macroeconomic aggregates in turn. In general equilibrium, runs can be

partial or complete, depending on aggregate leverage and the dynamics of asset prices. Our

normative analysis shows that the e�ectiveness of credit easing and its welfare implications

depend on whether a �nancial crisis is driven by fundamentals or by self-ful�lling runs.
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1 Introduction

Most �nancial crises involve bank runs. O�en, the runs simultaneously occur in multiple �nancial

institutions and emerge a�er a deterioration of banks’ balance sheets. �e Great Depression

and the 2008 Global Financial Crisis are two notable examples (Friedman and Schwartz, 1963;

Bernanke, 2013).

Diamond and Dybvig (1983) spurred a vast literature analyzing whether a fundamentally

solvent bank may be subject to a self-ful�lling run. During a run, investors rush to withdraw

deposits from the bank, anticipating that others will do so as well. �e run may thus cause a

severe liquidity problem and leave the bank unable to meet the withdrawals, making the run

self-ful�lling. As highlighted by Gorton (1988), bank runs are not isolated events. �ey tend

to happen in many banks at the same time and are more likely when aggregate fundamentals

are weak. �is observation suggests that self-ful�lling bank runs may be the result of general

equilibrium forces and that runs in turn may a�ect general equilibrium outcomes. Understanding

this feedback and the potential implications for policy requires a dynamic general equilibrium

model.

In this paper, we present a tractable dynamic macroeconomic model of �nancial crises in

which banks may be subject to self-ful�lling runs. We analytically characterize how a bank’s vul-

nerability depends on individual and aggregate fundamentals and how the number of banks facing

a run a�ects aggregate fundamentals in turn. Our normative analysis underscores that general

equilibrium considerations have distinct implications for policy. We show that the desirability of

credit easing depends on whether a �nancial crisis is driven by fundamentals or self-ful�lling bank

runs. While credit easing helps reduce fragility in a run-driven crisis—as banks facing a run bene�t

from the rise in asset prices—we show that it may actually back�re in a fundamentals-driven

crisis.

We build a dynamic model with a continuum of banks operating in competitive deposit and

capital markets. Banks have limited commitment. At any period, they can choose to honor the

deposits or to default, in addition to choosing a portfolio and equity payouts. Deposit contracts

anticipate the possibility of default, generating an endogenous leverage constraint for banks. �e

decision of the bank to honor deposits is dynamic and depends on its own equity, the expected

sequence of asset returns, and the future leverage constraints it will face. Asset returns are

determined in general equilibrium, generating a feedback between asset returns, liquidity, and

default decisions.

Because of limited commitment, every bank may face the possibility of a self-ful�lling run.

When investors panic and refuse to roll over deposits from a bank, the bank must raise liquidity

by either cu�ing equity payouts or selling its assets holdings. If the liquidity problem is severe, it
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becomes optimal for the bank to default, making the run a self-ful�lling equilibrium outcome. An

individual investor’s decision to not roll over is optimal considering that others refuse to roll over.

�e bank may also default because of fundamentals. �is occurs when the bank �nds it optimal to

default regardless of whether investors are willing to roll over or not.

�e starting point of our analysis is a complete analytical characterization of banks’ policies

in partial equilibrium. Given asset prices, we characterize the dynamic borrowing limit consistent

with no default by an individual bank. We show that the borrowing limit is unique and provide

comparative statics with respect to the key fundamentals, including asset prices, productivity, and

the risk-free interest rate.

Our second set of results concerns the general equilibrium characterization, which includes

the determination of the number of banks subject to runs and the dynamics of asset prices.

A�er characterizing the two possible stationary equilibrium outcomes, we show that transitional

dynamics can be separated into three regions. When aggregate leverage is low, the economy

converges to a stationary equilibrium in which all banks repay at all times. In this region, asset

prices are high, re�ecting banks’ high productivity and collateral values. When aggregate leverage

is high, all banks default and asset prices are depressed. For intermediate values of leverage, we

show that the equilibrium features partial runs. In this region, asset prices are such that banks

are indi�erent between defaulting and repaying. Moreover, the equilibrium fraction of banks

defaulting is increasing in leverage.

Our third set of results concerns a normative analysis. We start by examining what the optimal

fraction of banks defaulting is from a social point of view. Perhaps surprisingly, we �nd that the

competitive equilibrium features too few defaults in the absence of runs. A planner maximizing

banks’ welfare that could make the repayment decision on behalf of them would choose a larger

share of defaulting banks relative to the competitive equilibrium. �e reason for this result is

the presence of a general equilibrium e�ect. When banks demand more capital, they raise the

price of capital, hurting those banks that are net buyers of assets. Because repaying banks are net

buyers of capital and have higher marginal utility, increasing the share of defaulting banks reduces

the market clearing price of capital and increases banks’ overall welfare. When the economy is

subject to runs, however, defaults are driven by a coordination problem and are ine�cient. In this

case, lowering the share of defaulting banks relative to the competitive equilibrium is welfare

improving.

Finally, we study credit easing, which is our main policy experiment. We model credit easing

as government purchases of capital, �nanced with debt and lump-sum taxes on banks in the

initial period. �e key question we tackle is: How does credit easing a�ect the number of banks

defaulting and the level of welfare? As it turns out, the implications are very di�erent depending

on whether a crisis is driven by fundamentals or by runs.
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�e logic for this result can be understood by tracing which banks are the net sellers of capital

and which banks are the net buyers, depending on the origin of the crisis. Consider �rst a crisis

driven by fundamentals and assume an initial aggregate leverage in the intermediate region (such

that a fraction of banks repays and the remaining fraction defaults). In this situation, banks that

repay are net buyers—they are more productive and hence have higher valuation—while the banks

that default are net sellers. �us, when the government purchases assets, it raises asset prices

and bene�ts defaulting banks at the expense of repaying banks. �e outcome is that more banks

default.

Consider now the role of credit easing when a crisis is driven by self-ful�lling runs. �e critical

di�erence is that banks facing a run are net sellers of capital—they need to sell assets to meet

repayments of deposits. �us, by increasing asset prices, credit easing raises the value of repaying

for banks facing a run and reduces investors’ incentives to run. A su�ciently large intervention,

in fact, can deter investors from running and make the banking system run-proof. �e outcome is

that fragility is reduced.

Literature. �is paper is related to the literature on the role of �nancial factors in macroeco-

nomic �uctuations. Building on the seminal contributions by Bernanke and Gertler (1986) and

Kiyotaki and Moore (1997), many studies have presented models in which balance sheet losses

on �rms or �nancial intermediaries can trigger contractions of output and asset prices. Di�erent

from this literature, our paper considers a source of �nancial fragility induced by liquidity factors

and self-ful�lling runs.

Our paper belongs to an extensive literature on bank runs. One strand of the literature, starting

with Diamond and Dybvig (1983), considers bank runs that are the outcome of a self-ful�lling

prophecy in the presence of a liquidity mismatch. A di�erent strand of the literature studies

models of runs based on fundamentals, following Bryant (1980). In this alternative paradigm,

individual investors who have a sudden need for liquidity �nd it optimal to run, even if nobody

else does. Allen and Gale (2000) and Uhlig (2010) study contagion in this class of models through

interbank market linkages and asset prices.
1

�e interplay between runs and asset prices is at

the heart of our analysis, as in their work, but we consider self-ful�lling runs, which places

our paper closer to the �rst strand of the literature. Moreover, we show that the distinction of

whether the crisis is originated from runs or fundamentals is key to understanding when credit

easing is desirable. Overall, our paper di�ers from much of this literature by taking a dynamic

macroeconomic perspective.

A pioneering paper that incorporates bank runs in a macroeconomic framework is Gertler

1
See Allen and Gale (2009) for a review of much of this literature. Contagion can also occur through a signal

extraction problem with private information, as in Chari and Jagannathan (1988).
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and Kiyotaki (2015). �ey consider systemic bank runs, a situation in which all depositors

simultaneously rush to withdraw their funds from all banks in the economy. When the run leads to

low asset prices and negative net worth, it is then possible to have two equilibria: a good equilibrium

with high levels of intermediation and a bad equilibrium with complete disintermediation. Gertler

and Kiyotaki also show that multiple equilibria are possible when aggregate leverage is su�ciently

high, but if aggregate leverage is low, the only equilibrium is the good one.
2

Our paper takes

a complementary approach by examining individual bank runs—analytically characterizing the

vulnerability in terms of individual and aggregate fundamentals—and determining in general

equilibrium the fraction of banks that are subject to runs. We also depart from their work by

considering banks’ equity issuance, which allows us to model default as a dynamic strategic

decision.
3

Finally, a normative contribution of our paper is to show that credit easing can be

desirable when a crisis is triggered by self-ful�lling runs but can back�re if a crisis is triggered by

fundamentals.

Keister and Narasiman (2016) also tackle the question of how policy prescriptions di�er

depending on the origin of the crisis. �ey focus on prudential policies in an environment building

on Keister (2016) and show that the general policy prescriptions apply equally to both sources of

crises. We examine credit easing, a form of ex-post policy instead, and conclude that the source is

critical for the e�ectiveness of policies.

�e bank-run literature has considered several other ex-post policies, including deposit insur-

ance, deposit freezes, bailouts and lender of last resort (e.g., Diamond and Dybvig, 1983; Cooper

and Ross, 1998; Ennis and Keister, 2009; Dávila and Goldstein, 2020). We abstract from these

policies, which are more micro-oriented in nature, and focus on credit easing, a policy that works

entirely through general equilibrium channels.

Our paper also speaks to historical studies on the origins of banking crises, especially the

debate on whether banking crises occur because of fundamentals or self-ful�lling reasons (see,

among others, Friedman and Schwartz, 1963; Gorton, 1988; Calomiris and Mason, 2003; Baron

and Xiong, 2017). In our theory, fundamentals and self-ful�lling beliefs are intertwined, as the

fraction of banks facing a self-ful�lling run depends on aggregate bank capital. At the same time,

our theory predicts that the e�ects of credit easing on bank failures depend on the origin of the

2
An active literature builds on their framework to study quantitative policy counterfactuals (see e.g., Gertler,

Kiyotaki, and Prestipino (2016, 2020a, 2020b) and Roba�o, 2019). Angeloni and Faia (2013) provide an alternative

macro model of runs, but featuring two-period lived banks and focusing on fundamental runs. �ere is also a related

literature of models featuring fragility and multiplicity without involving bank runs per se. A few examples include

Gu, Ma�esini, Monnet, and Wright (2013), Benhabib and Wang (2013), Brunnermeier and Sannikov (2015), Boissay,

Collard, and Smets (2016), Bocola and Lorenzoni (2020), and Ben-Ami and Geanakoplos (2020).

3
Gertler, Kiyotaki, and Prestipino (2020a) allow for equity injections, but only on new banks, which are assumed

to be inactive when a run on the system takes place. Another recent paper allowing for equity injections, but in the

context of a three-period model is Kashyap, Tsomocos, and Vardoulakis (2020).
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crisis, and may therefore provide a useful testable implication to contribute to the unresolved

historical debate.

Our paper is also related to a literature on credit easing that �ourished since the 2008 �nancial

crisis (e.g. Gertler and Karadi, 2011 and Kiyotaki and Moore, 2019). Our analysis underscores the

importance of understanding the source of the crisis to assess the desirability of this government

policy. Namely, we argue that while credit easing can help reduce �nancial fragility in a run-driven

crisis, it may back�re in a fundamentals-driven crisis.

Our environment without runs is related to the literature on investment under limited commit-

ment, and in particular, the papers of �omas and Worrall (1994) and Alburquerque and Hopenhayn

(2004). Using an optimal contract approach, those papers solve the investment problem of an

individual �rm (or government) that lacks commitment to repay its debts.
4

Our assumption of a

linear technology, which we make for tractability, leads to a violation of the compactness of the

choice set in the associated optimal contract problem. Because of this, we rely instead on a more

direct equilibrium characterization of borrowing limits that turns out to be useful also for the case

with runs. Our general equilibrium characterization of an economy with limited commitment

frictions has direct antecedents in the work of Kehoe and Levine (1993) and in particular of the

solvency constraints introduced by Alvarez and Jermann (2000).
5

For the environment with runs,

we build on the formulation of rollover crises by Cole and Kehoe (2000), which has become a

workhorse model in the sovereign default literature.
6

�is literature has studied the individual

problem of the government, typically abstracting from investment. We adopt the canonical game,

but embed it into a general equilibrium model of banks and draw implications for macroeconomic

policy.

Outline. Section 2 presents the environment and analyzes the model without runs. Section 3

introduces bank runs. Section 4 conducts the normative analysis. Section 5 concludes. All proofs

are in the Appendix.

2 Model

Time is discrete and in�nite, C ∈ {0, 1, 2, ...}. �ere is a single �nal consumption good and no

uncertainty. �e economy is populated by a continuum of banks that trade bonds in international

4
�is optimal contract approach is followed by several other papers in this area that also focus on investment

under limited commitment such as Aguiar, Amador, and Gopinath (2009) and Kehoe and Perri (2002).

5
See Jeske (2006) for another paper that studies limited commitment and external borrowing in decentralized

environments.

6
See for example Aguiar, Cha�erjee, Cole, and Stangebye (2016), Roch and Uhlig (2018), Bocola and Dovis (2019),

and Bianchi and Mondragon (2021).
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capital markets without commitment. In what follows, we use small variables to denote individual

bank variables and capital le�ers to denote aggregate variables.

Technology. �ere production of the �nal consumption good uses capital, : , as a single input.

We assume that banks have direct access to the production technology, in line with the most

recent strand of macro-�nance models. A bank with : units of capital produce ~ = I: units of

consumption. Capital does not depreciate, and it is in �xed supply.

Preferences. Banks’ preferences over a sequence of dividend payments {2C } are given by

∞∑
C=0

VCD (2C )

where V ∈ (0, 1) and D = log.
7

Bank creditors are atomistic, risk neutral and discount payo�s at a rate '. Given these

assumptions, akin to a small open economy, the risk-free rate will be constant and equal to '.

2.1 Banks’ Problem and Borrowing Limits

We continue the description of the model with the problem of an individual bank in partial

equilibrium. We then study the model in general equilibrium. Bank runs are introduced in Section

3.

Banks issue one-period bonds that promise a payment of ' next period.
8

A bank starts a

period C with : units of capital and 1 units of maturing bonds, and decides whether to repay or

to default. If the bank chooses to repay, it produces using a linear technology with productivity

I, and chooses its new holding of capital for the next period :′ ≥ 0, the new amount of bonds

to issue, 1′, and how many dividends to pay, 2 . �e bank faces a price schedule @C (1′, :′) for its

bonds, that depends on its individual choices for new bonds and capital, as well as other aggregate

variables which we summarized in C . �ese variables determine the incentives to default in the

next period and hence alter the price at which creditors are willing to lend. In case of repayment,

7
As is standard in the literature, the curvature in the utility function over dividends (or equity payouts) captures

the fact that issuing equity is costly.

8
In this version of the model without runs, and with no default in equilibrium, the assumption of one-period

bonds is without loss of generality. �is is not the case in the version with runs (see, for example, the role of maturity

in Cole and Kehoe, 2000), or when there are uninsurable shocks that may lead to default in equilibrium even absent

runs (see for example, Aguiar and Amador, 2020). �ere are several well-studied reasons, however, why short term is

prevalent in the banking system—for example, incentive reasons and liquidity bene�ts (see, e.g., Diamond and Rajan,

2000 and Calomiris and Kahn, 1991).
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the bank’s budget constraint is

2 = (I + ?C ): − '1 + @C (1′, :′)1′ − ?C:′, (1)

where ?C denotes the price of capital in period C .

If the bank chooses to default, it is permanently excluded from bond markets and can only

invest in capital.
9

In addition, the bank’s productivity is reduced to to I < I. In the case of default,

the budget constraint is

2 = (I + ?C ): − ?C:′. (2)

�e problem of the individual bank that is in good credit standing solves

+C (1, :) = max{+ 'C (1, :),+ �
C (:)}, (3)

where the value of default is given by

+ �
C (:) = max

: ′≥0,2
log(2) + V+ �

C+1(:′), (4)

subject to

2 = (I + ?C ): − ?C:′,

and the value of repayment is

+ 'C (1, :) = max

: ′≥0,1 ′,2
log(2) + V+C+1(1′, :′) (5)

subject to

2 = (I + ?C ): − '1 + @C (1′, :′)1′ − ?C:′.

We will also make sure that the bond price schedule @C is consistent with a No-Ponzi condition for

the bank, which we discuss below.

Using 3 = 0 to represent a repayment decision, and 3 = 1, a default, we have that the optimal

default rule is

3C (1, :) =


1 if + 'C (1, :) < + �

C (:),

0 if + 'C (1, :) > + �
C (:),

0 if + 'C (1, :) = + �
C (:) for C > 0,

(6)

9
�e restriction that the bank cannot hold bonds a�er default is without loss of generality if the rate of return to

capital in equilibrium for a bank that has defaulted is higher than '. �is is guaranteed in the general equilibrium in

which all banks default discussed in Section 2.3.
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where we assume, without loss of generality, that the bank repays if indi�erent for C > 0. However,

we do not restrict the default policy in period 0 when the bank is indi�erent. �at is, we allow for

the bank to default in period 0 even if indi�erent. �is �exibility is important for the existence of

a general equilibrium, as we will see below.

Noting that+ 'C (1, :) is strictly decreasing in1, we have that for every: , there exists a borrowing

limit 1C such that + �
C (:) > + 'C (1, :) if and only if 1 > 1C . �is means that the optimal default rule

can be expressed with a debt threshold (which we assume to be �nite for every : ≥ 0):

3C (1, :) =


1 if 1 > 1C (:),

0 if 1 ≤ 1C (:),

for C > 0. It thus follows that the equilibrium price schedule for bonds is going to be of the form

@C (1′, :′) =


0 if 1′ > 1C+1(:′),

1 if 1′ ≤ 1C+1(:′),

for C > 0. �at is, creditors lend at a zero price when they expect a default and lend at a price of

1 when they expect repayment. Note that because banks will never issue bonds at a zero price,

default can only occur in equilibrium in the initial period.

Given a sequence of the price of capital, we de�ne the return to capital when the bank repays

as

':C+1 ≡
I + ?C+1
?C

,

for all C . Similarly, we de�ne the return to capital when the bank defaults as

'�C+1 ≡
I + ?C+1
?C

,

for all C . Note that our assumptions about a productivity loss a�er default imply that ':C+1 > '�C+1.

Discussion on default decision. When interpreting the costs of default for a bank (and there-

fore the value of defaulting), it is important to consider that by allowing banks to manage directly

the capital stock, as in the most recent strand of the literature, we are, in e�ect, consolidating

�nancial and non-�nancial �rms into a single entity. Our assumption that a bank keeps operating

the capital a�er a default at a lower productivity is indeed consistent with the empirical �nding

that a bank failure causes dislocations for �rms that hold lending relationships with the banks
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(see e.g., Chodorow-Reich, 2014). In a similar vein, the dividends a bank pays under default may

represent the dividends paid by the non-defaulting non-�nancial �rms—to the extent that there

are common shareholders between �nancial and non-�nancial �rms and that the bank is not able

to fully recover the loan. Moreover, banks that are on the verge of default o�en continue to pay

signi�cant dividends. In fact, investment banks that either failed or were bailed out in the 2008

�nancial crisis, such as Lehman Brothers or Bear Stearns, paid almost as many dividends in the

run-up to the crisis as in the years preceding the crisis. As observed by Acharya, Gujral, Kulkarni,

and Shin (2011) and Acharya, Le, and Shin (2017), paying dividends in such circumstances consti-

tutes a transfer of resources from the bond holders to the shareholders. Furthermore, o�en when

a bank is close to going bankrupt, the government becomes wary about adverse consequences on

the rest of the system and arranges a sale of the bank so that shareholders end up recovering a

positive amount.
10

We do not incorporate these features explicitly and simply take as given that shareholders

recover an amount that is increasing in the asset holdings. �e important message is that through

their decisions on dividends, raising additional equity, and the riskiness of their asset portfolio,

banks face a choice between repaying and defaulting. We turn our a�ention next to modelling

this choice.

�e value of default. For a given sequence of prices, {?C }∞C=0
, we can solve for the value of

default, exploiting the log-utility and the linearity of production. We introduce the following

condition (which guarantees the boundedness of the value of default).

Condition 1. �e sequence of (strictly positive) prices {?C }∞C=0
is such that

lim

C→∞
VC log

(
'�C+1

)
= 0.

We have the following result:

Lemma 1 (�e value of default). Suppose that Condition 1 holds. �en the value of default, + �
C (:)

10
Two examples are Bear Stearns and Merrill Lynch in 2008. �e former was acquired by JP Morgan in the face

of extensive con�icts between bondholders and shareholders about who would face the burden of the losses (see

Landon �omas Jr., “It’s Bondholders vs. Shareholders in a Race to Buy Bear Stearns Stock,” New York Times, March

19, 2008). In the case of Merrill Lynch, investors lost con�dence in its sustainability, the same week Lehman �led for

bankruptcy, and Bank of America acquired it through active intervention of the Federal Reserve (see e.g., Gretchen

Morgenson, ”�e Reckoning: How the �undering Herd Faltered and Fell,” �e New York Times, Nov 8, 2008). Extensive

cross-country evidence about resolution of banking crises is collected in the series of case studies in the Journal of
Financial Crises.

9

https://www.nytimes.com/2008/03/19/business/19bear.html
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in period C is �nite and such that

+ �
C (:) = � +

1

1 − V log((I + ?C ):) +
V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
, (7)

with
� ≡ 1

1 − V

[
log(1 − V) + V

1 − V log(V)
]
.

Proof. See Appendix A.1. �

Condition 1 is a su�cient condition for the value function of default to be �nite, and it requires

that the returns of capital do not grow at a faster rate than the discount factor.

�e value function is log-linear in wealth and the discounted future returns on capital. �e

associated policy function for capital, K�
C+1(:), and dividend payout, C�C+1(:), are given by,

K�
C+1(:) = V

(I + ?C ):
?C

,

C�C (:) = (1 − V)
(
I + ?C

)
:.

Because of log preferences, the optimal policy is independent of future returns. In particular, the

bank consumes a fraction (1− V) of its net worth, which equals (I +?C ): , and invest the remaining

amount in capital. Under this investment policy, the evolution of net worth is given by

=′ = V'�C+1=.

�e value of repayment. Given a sequence of prices {?C }∞C=0
, we can express the value function

of repayment as follows:

Lemma 2 (�e repayment problem). �ere exists a function +̂ 'C such that +̂ 'C (=) = +C (1, :), where

= = (I + ?C ): − '1,
and +̂ ' solves

+̂ 'C (=) = max

: ′≥0,1 ′,2
log(2) + V+̂ 'C+1(=′), (8)

subject to

2 = = + 1′ − ?C:′,
=′ = (I + ?C+1):′ − '1′,
1′ ≤ 1 C+1(:′).
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Proof. In Appendix A.2. �

Note that relative to Problem (5), we have used that we can summarize the individual state

variables in net worth = = (I + ?C ): − '1.

We refer to this problem as partial equilibrium, since it takes as given the path of prices {?C }∞C=0
.

However, the problem does incorporate the equilibrium bond price function for an individual

bank. �at is, the last constraint of Problem (8) uses that a bank never issues bonds at a zero price,

and e�ectively the equilibrium bond price schedule imposes a borrowing limit.
11

�is borrowing

limit takes for now the role of a No-Ponzi condition (in that it helps guarantee that the budget set

is not unbounded), but we will re�ne this later on.

We now guess that the value function under repayment (if �nite) will be log-linear in net worth.

In particular, we guess that +̂ 'C+1(=) =
1

1−V log(=) + constant. Given that 1 C+1(:) is determined by

the equality of default and repayment values, + �
C+1(:′) = +̂ 'C+1(=′), at =′ = (I + ?C+1):′ − '1 C+1(:′),

it follows then that there exists a WC such that 1 C+1(:′) = WC?C+1:′.12
�e value of WC represents

an individual bank’s ability to leverage at time C , and it will itself be a�ected by the sequence of

prices of capital.

Note that in Problem (8), it is always feasible for a repaying bank to choose 1′ = 0, as long as

(I + ?): − '1 = = ≥ 0. Hence, the borrowing limit 1 C cannot be negative; that is, WC ≥ 0 for all C .

�e next lemma characterizes the demand for capital:

Lemma 3. Consider a repaying bank in period C with strictly positive net-worth.

(i) If WC?C+1 ≥ ?C , and ':C+1 > ', the bank’s demand for capital in period C and its value function
are in�nite.

(ii) If WC?C+1 < ?C and ':C+1 > ', the bank’s demand for capital in period C is �nite and is such that
the borrowing constraint binds.

(iii) If ':C+1 < ', the bank’s demand for capital in period C is 0.

Proof. In Appendix A.3. �

�e �rst result of this lemma concerns the case where the return to capital is higher than

', and the bank ability to leverage is su�ciently large. When WC?C+1 > ?C , a repaying bank can

11
�ese constraints are the equivalent of the “not too tight” solvency constraints introduced by Alvarez and

Jermann (2000), although an important di�erence with their environment is the presence of capital, production, and

default cost in ours. In this environment without risk, the borrowing constraints also coincide with the endogenous

borrowing constraints used by Zhang (1997).

12
Note that in e�ect, we have scaled the value of the borrowing limit by ?C+1. �is is without loss of generality and

will become useful in what follows.
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invest any amount simply by borrowing and investing. �is result follows because when a bank

borrows one unit and purchases capital, the borrowing capacity increases by WC?C+1/?C . When

this ratio is larger than 1, it is feasible for the bank to purchase an unlimited amount of capital

while still paying positive dividends. To the extent that the return on capital exceeds the return

on bonds, the bank will �nd it optimal to invest an in�nite amount, and the value of the bank will

be unbounded.
13

When WC?C+1 = ?C , a similar result applies, but only if networth of the bank is

strictly positive (which guarantees a strictly positive dividend).

Part (ii) of the lemma covers the case where the return to capital is strictly higher than ', but

WC?C+1 < ?C . In that case, the borrowing limit binds.

�e last result of the lemma is for ':C+1 < '. In this case, investing in capital is dominated in

rate of return by holding the bond.

Let us de�ne the levered return on equity as

'4C+1 ≡ ':C+1 + (':C+1 − ')
WC?C+1

?C − WC?C+1
, (9)

which corresponds to the sum of the return on capital plus the excess return (of capital over

bonds) times a leverage factor.
14

We need to impose as well a condition on '4C to guarantee the

boundedness of the value of repayment for an individual bank, similar to Condition 1 for the case

of a defaulting bank. Taking the above lemmas together, and anticipating the general equilibrium,

we restrict a�ention to sequences of prices and borrowing limits that satisfy the following.

Condition 2. �e sequences of prices {?C }∞C=0
and {WC }∞C=0

are such that

(i) ':C+1 ≥ ' for all C ,

(ii) WC?C+1 < ?C for every C such that ':C+1 > ',

(iii) limC→∞ VC log

(
'4C

)
= 0.

Note that part (iii) of this condition implies Condition 1 as '4C ≥ ':C > '�C > 0.

We can now solve for the value function of repayment (con�rming that it is log-linear in net

worth) as well as characterizing the associated policy functions.

13
�us, the result also holds if the bank has negative equity at the beginning of the period and WC?C+1 > ?C . Negative

equity is not su�cient to prevent a bank from operating. �e condition is also necessary: that is, for a bank to be able

to operate with negative networth, it must be the case that WC?C+1 > ?C .
14

If the bank has an additional unit of net worth and buys capital, it can borrow an additional WC?C+1/?C by pledging

the capital as collateral. In turn, the increase in borrowing allows for further purchases of capital. If WC?C+1 < ?C , the

amount it can borrow is WC?C+1/(?C − WC?C+1). �e return per unit of leverage is ':C − ', thus leading to (9).

12



Lemma 4 (�e value of repayment). Consider a sequence of (strictly positive) prices, {?C }∞C=0
and

(non-negative) borrowing limits, {WC }∞C=0
, that satisfy Condition 2. �en, the value of repayment +̂ 'C (=)

and associated policy functions in period C for = > 0 are such that:

(i) Value function:

+̂ 'C (=) = � +
1

1 − V log(=) + V

1 − V
∑
g≥C

Vg−C log('4g+1), (10)

with � as in Lemma 1.

(ii) Policy functions:
C'C (=) = (1 − V)=,

for all C ≥ 0 and where K'
C+1(=) and B'C+1(=), satisfy

?CK'
C+1(=) − B'C+1(=) =V=, B'C+1(=) ≤ WC?C+1K'

C+1(=), K'
C+1(=) ≥ 0

for all C ≥ 0. And

K'
C+1(=) =

V=

?C − WC?C+1
, B'C+1(=) = WC?C+1

(
V=

?C − WC?C+1

)
for all C ≥ 0 such that ':C+1 > '.

Proof. In Appendix A.4. �

�us, under repayment, the problem also features a value function that is log-linear in net

worth, con�rming our previous guess. �e value is also log-linear in the discounted future returns

of the portfolio. In addition, the dividend payout is given by a fraction of the net worth. Note that

the problem is quite similar to the default one, except that we use the net worth (which requires

subtracting the beginning of period debt) from the gross return on investment. On the other hand,

the problem under repayment features higher returns, both because there is a higher productivity

level, and thus ': > '� , and because the bank can lever up if ': > ' and W > 0.

Regarding the portfolio, the solution distinguishes between the case in which ': = ' and

': > '. If the return on capital is equal to the return on debt, the bank is indi�erent between

bonds and capital and chooses any portfolio as long as it is consistent with the dividend policy

and the leverage constraint. If the return on capital exceeds the one on debt, the bank borrows to

the limit.

13



Using the results of Lemma 4, we can express the evolution of net worth as

=′ = V'4C+1=

for all C ≥ 0. Hence, next-period net worth is given by the amount of net worth that is not

consumed, V=, times the return on equity. Note that this is the same law of motion for equity

under default, but it uses the rate of return on equity '4 under repayment rather than the return

on capital '� under default.

Default decision. Having characterized the values of repayment and default, we can now

examine the default decision. �e following proposition establishes the value of the leverage

threshold, W , at which the bank is indi�erent between repaying and defaulting.

Proposition 1 (Default decision). Consider a sequence of (strictly positive) prices, {?C }∞C=0
, and a

sequence of (non-negative) borrowing limits, {WC }∞C=0
that satisfy Condition 2. �en, the value of WC

that makes a bank indi�erent between repayment and default at C + 1 is such that

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
for all C ≥ 0. (G)

Proof. In Appendix A.5. �

�e sequence for default thresholds {WC } depends on preference, productivity parameters, and

the sequence for {?C }.15
One can see, in particular, that a higher WC+1 in the future implies a higher

WC today. Because a higher WC+1 increases the continuation value of repayment, this also makes the

bank more willing to repay today.

�e above suggests that there could be potentially many sequences of borrowing limits, {WC },
that would be consistent with a partial equilibrium given a sequence of capital prices. For an

equilibrium to be consistent with creditors’ optimality, we also require a no-Ponzi game condition.

�at is,

lim

C→∞
'−C1C ≤ 0

where {1C } is a feasible sequence of debt issuances. �is condition says that creditors in the limit,

do not provide new loans to �nance the repayment of old ones. Using that 1C+1 ≤ WC?C+1 V=C
?C−WC?C+1 ,

together with the evolution of net worth, we impose the no-Ponzi condition as an additional

restriction to the sequence of {WC }:
15

Note that once W0 has been determined, equation (G) determines a W−1 that can be used to characterize the default

decision in the �rst period.
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Condition 3. �e sequence of prices {?C }∞C=0
and {WC }∞C=0

are such that

lim

C→∞

[
C∏
g=0

(
V'4C

'

)] (
VWC?C+1

?C − WC?C+1

)
≤ 0

As we will see below, this condition uniquely pins down the sequence of {WC } given a sequence

of prices {?C }. E�ectively, if ?C converges and WC remains bounded away from 0, the condition

above imposes that the growth rate of net worth cannot be higher than the interest rate ' in the

limit.

With this, we can characterize the sequence of WC that are consistent with bank’s and creditor’s

optimality conditions, given a sequence of prices:

De�nition 1. Given a sequence of (strictly positive) prices {?C }∞C=0
, we say a sequence of (non-

negative) borrowing limits {WC }∞C=0
is equilibrium-consistent if Conditions 2 and 3 hold and equation

(G) is satis�ed for all C ≥ 0.

Note that if we have found a sequence of (non-negative) borrowing limits, {WC }, that satisfy the

above de�nition, we can construct the evolution of net worth, debt, and capital holdings consistent

with a bank’s optimality condition by using the results of Lemmas 4 for a given initial net worth,

=0 > 0.

A useful case is the one where the sequence of prices {?C } is constant. We proceed to analyze

this case next.

2.2 Equilibrium-Consistent Borrowing Limits under a Constant Price

We now focus on the case in which the price of capital is constant at some level ? > 0. In that

case, the return to capital, ': = (I + ?)/? is constant as well. Note that Condition 1 is immediately

satis�ed. We also require that ': ≥ ' to satisfy the �rst inequality in Condition 2. Note that this

last condition imposes an upper bound on ? (as ' > 1).

Let us focus on the equation described in Proposition 1, equation (G). For the constant price

case, the equation is:

WC+1 = 1 −
(
':/' − WC
'�/'

) 1

V

≡ � (WC ) (11)

where '� is the return to capital under default with a constant price (that is, '� = (I + ?)/?).

�e function � describes the value of the value of next-period borrowing limit, WC+1, that

is consistent with a current borrowing limit, WC , when the price of capital is constant. So for
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any initial guess of W0, we can use this di�erence equation WC+1 = � (WC ) to trace out all of the

subsequent values for WC . Notice that if the sequence for {WC } converges to a constant value, this

value must be a �xed point of � .

(a) Two roots

0 W★ Ŵ 1

0

1

� (WC )

45
◦

WC

W
C+

1

(b) No roots

0 1

0

1

� (WC )

45
◦

WC
W
C+

1

Figure 1: Borrowing Limits with a Constant Price

Notes: �e solid curved line represents the � function. �e dashed line is the 45
◦

line. Panel (a) shows the

case with two roots to W = � (W). �e point W★ represents the valid stationary solution. �e point Ŵ is the

stationary root that violates the no-Ponzi condition. Any sequence {WC } that starts from a value di�erent

from W★ eventually either induces a negative WC or the sequence approaches Ŵ . Panel (b) shows the case

with no roots.

Fixed points of N . �e function � is well de�ned, continuous, di�erentiable and strictly

concave in [0, 1]. In addition, � (0) < 0 and � (1) ≤ 1. Using that ': > '� , the following lemma

characterizes the �xed points of � :
16

Lemma 5. �e following holds for � :

(i) If V':/' < V + (1 − V)
(
V'�/'

) 1

1−V and V'�/' < 1 then there are two solutions to W = � (W)
for W ∈ [0, 1].

(ii) If V':/' = V + (1− V)
(
V'�/'

) 1

1−V and V'�/' < 1 then there is only one solution to W = � (W)
for W ∈ [0, 1].

(iii) If V':/' > V + (1 − V)
(
V'�/'

) 1

1−V or V'�/' ≥ 1, then � (W) < W for all W ∈ [0, 1].

Proof. In Appendix A.6 �

16
In the case in which ': = '� (which we do not consider) so that there is no productivity loss a�er a default, it

can be shown that W = 0 (that is, no borrowing is possible) is a solution to W = � (W). �e result for this case can be

seen as a corollary of a well-known result for sovereign debt (Bulow and Rogo�, 1989).
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Lemma 5 states that equation (11) could have two �xed points, only one �xed point or no

�xed points. �e precise solution depends on the relative return of capital under repayment and

default. When the return of capital under default is not too low compared to the return of capital

under repayment, there are two �xed points. On the other hand, when the return of capital under

default is very low, there is no �xed point solution. Finally, at an exact intermediate threshold,

there is one �xed point solution to � .

Let us provide some intuition for these results. First, why could there be two stationary

solutions for W? �is feature arises because of the complementarity of borrowing constraints over

time. When the bank faces a loose borrowing constraint at C + 1 (i.e., a high WC+1), this implies that

tomorrow a repaying bank can a�ain high pro�ts by leveraging up. �is in turn implies that the

borrowing constraints at time C is relatively loose (i.e., a high WC ). �is complementarity opens the

door to multiple �xed points. �e lemma shows, in particular, that there are at most two �xed

points. As we argue next, however, only the smallest �xed point is equilibrium-consistent, as

the largest �xed point violates the no-Ponzi condition. At the largest �xed point, the bank never

repays any interest from the debt to creditors, violating Condition 3.
17

Lemma 5 also points to the possibility that equation (11) admits no �xed-point, which implies

that there is no constant value of W that makes banks indi�erent between repaying and defaulting

for given prices. In this case, there exists no �nite borrowing limit for the bank.

Figure 1 illustrates the results of Lemma 5. Panel (a) considers case (i): a parameter con-

�guration such that there are two �xed points of � . Panel (b) considers case (iii) a parameter

con�guration such are no �xed points of � .

Solution for WC and comparative statics. Before characterizing the solution for WC , it is helpful

�rst to consider the largest stationary value of W that would be consistent with the no-Ponzi

condition. We denote this value by W#% . Note that in a stationary environment, the no-Ponzi

condition will be violated for any W < 1 if V'4 ≥ '.
18

Using this result, we obtain that

W#% ≡ ' − V':
'(1 − V) (12)

Note that if V': > ', then any stationary solution for W > 0 violates Condition 3. �e reason

is that, even with no access to borrowing, a bank’s net worth necessarily grows faster than the

discount rate '.

In this stationary environment, we next argue that WC must be equal to the smallest �xed point

17
Notice that even though the bank is running a Ponzi scheme, the bank’s value remains �nite.

18
�is follows because under this condition, debt would grow at a faster rate than the interest rate, violating the

transversality condition for creditors.
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at all times, a value we denote by W★. To understand the argument, consider �rst the possibility

that WC < W
★

. In this case, the borrowing constraint is relatively tight today and equation (11) tells

us that to justify a “low” WC today, one needs an expectation of an even lower WC+ tomorrow. In

other words, to keep banks indi�erent from repaying and defaulting at relatively low leverage

levels, it must be that borrowing constraints will keep tightening in the future. However, iterating

forward on equation (11) will lead eventually to a negative value of W (a result displayed in panel

(b) of the �gure), a violation of the equilibrium requirement that the borrowing limit must be

non-negative.
19

�is rules out WC < W
★

.

Consider now the possibility that WC > W
★

. Tracing again the dynamics using equation (11), we

can see in panel (a) of Figure 1 that WC converges to the largest �xed-point of � . �is �xed-point

turns out to be inconsistent with the no-Ponzi game condition (that is, for this case W converges to

a value larger than W#% , hence ruling out the possibility that WC > W
★

.

We summarize these results in the following lemma:

Lemma 6 (Borrowing limits under a constant price). Consider a constant price of capital ? > 0

such that ': ≥ '.

(i) If V':/' < V + (1 − V)
(
V'�/'

) 1

1−V and V'�/' < 1. �en, the unique equilibrium-consistent
sequence of borrowing limits {WC }∞C=0

is such that WC = W★ for all C where W★ is the smallest
solution to W = � (W) for W ∈ [0, 1].

(ii) Otherwise, there exists no equilibrium-consistent sequence of �nite borrowing limits.

Proof. In Appendix A.7. �

�e lemma above also shows that when V':/' = V + (1 − V)
(
V'�/'

) 1

1−V
, then there is also

no equilibrium-consistent sequence of borrowing limits even though there is a �xed-point to

W = � (W) in [0, W]. �e reason is that, in this case, such a W corresponds exactly to the case in

which banks’ net worth (and as a result, its debt level) grows at rate ', implying a violation of the

no-Ponzi condition.

We proceed now to describe some comparative statics:

Corollary 1 (Comparative Statics). Consider a constant price of capital ? > 0 such that ': > ' and
V':/' < V + (1 − V)

(
V'�/'

) 1

1−V . �en W★ as de�ned in part (i) of Proposition 6 is strictly decreasing
in I, ', and ? , and strictly increasing in I and V .

Proof. In Appendix A.8. �

19
Recall that a bank with positive networth can always choose not to issue debt while investing in capital, and thus

a negative borrowing limit is inconsistent with an equilibrium .
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�is corollary provides comparative statics with respect to key parameters. Regarding the

productivity parameters, we have that W★ is increasing in I and decreasing in I. �ese results are

intuitive: the value of repayment for the bank is increasing in I and independent of I, while the

value of default is increasing in I and independent of I. Graphically, this result can be seen in

panel (a) of Figure 1 by noting that an increase in I, or a decrease in I, shi�s down the � curve and

moves its �rst intersection with the 45 degree line (which represents the equilibrium-consistent

borrowing limit) towards a higher value.

In addition, we have thatW★ is decreasing in '. A bank in default does not save/borrow in bonds,

and hence the value of default is independent of '. On the other hand, the value of repayment is

decreasing in ' because banks are borrowers. As a result, the borrowing constraint becomes less

tight with a lower '. Moreover, a higher V also raises W★ because a higher patience increases the

present discount value of the productivity losses upon default.

�e e�ects of the price of capital on W★ are more subtle because the price of capital a�ects both

the value of repayment and default. In both cases, a decline in today’s price of capital increases

the return of investment. What is important to recognize, however, is that a bank in repayment

can lever up and have a larger increase in the return on the overall portfolio compared to a bank

in default. As a result, an increase in the return on capital increases more the value of repayment

than the value of default. Hence, the partial equilibrium default threshold W★ is decreasing in the

price of capital.

2.3 General Equilibrium

In the previous section, we described the problem of an individual bank in partial equilibrium

for a given price of capital {?C }. As we just saw, the price of capital is key to determine banks’

policies and the borrowing limit faced by banks. In this section, we close the model by showing

how the market price of capital is determined and characterize equilibria.

Market clearing requires that the aggregate demand for capital from banks equals . Because

all banks are assumed to be identical at the beginning of time, and there is a measure one of banks,

each bank owns :0 = units of the capital stock and has a debt level 10 = �0 in period 0.

Even though banks are ex-ante identical, we allow for di�erent initial default decisions if they
are indi�erent between default or not at time 0. Allowing for this heterogeneity will turn out to be

important to guarantee existence of a general equilibrium. We denote by q ∈ [0, 1] the fraction of

defaulting banks in the initial period. Note that the value of q must be consistent with the optimal
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decisions of banks, so

q =


1 if �0 > W−1?0 ,

0 if �0 < W−1?0 ,

∈ [0, 1] otherwise.

(13)

where W−1 is as discussed in footnote 15.

We let  �C and  'C denote the capital holdings (per bank) of defaulting and non-defaulting

banks in period C . Using that a bank either defaults in the initial period, or it never does, we have

the following market clearing condition for capital

q �C + (1 − q) 'C = (14)

for all C > 0, with initial condition  �
0
=   

0
= .

Given a sequence of prices {?C }∞C=0
and a sequence of borrowing limits {WC }∞C=−1

, let BC andK'
C+1

be the policy functions for the repaying banks; and K�
C+1 be the policy function for the defaulting

banks. �en, we have the following law of motion for the debt and capital levels:

�C+1 = BC+1((I + ?C ) 'C − '�C ) (15a)

 'C+1 = K'
C+1((I + ?C ) 'C − '�C ) (15b)

 �C+1 = K�
C+1((I + ?C ) �C ) (15c)

for all C ≥ 0. We can now proceed to de�ne a competitive general equilibrium.

De�nition 2 (General Equilibrium). A competitive equilibrium given identical initial debt levels,

�0, and capital holdings, , is a sequence of prices of capital, {?C }∞C=0
, a sequence of borrowing

limits, {WC }∞C=−1
, a sequence of debt and capital holdings (per bank), {�C ,  'C ,  �C }∞C=0

, and an initial

share of defaulting banks, q , such that

(i) �e evolution of debt and capital holdings follow equations (15) where BC and K'
C+1 and

K�
C+1 represent the policy functions that solves the banks problem in repayment and default

respectively given the sequence of prices and borrowing limits;

(ii) �e borrowing limits (given the sequence of prices) are equilibrium consistent, that is,

De�nition 1 is satis�ed;

(iii) Markets clear, that is equation (14) holds for all C ; and

(iv) �e share of defaulting banks, q is consistent with bank’s optimality. �at is, equation (13)

holds.
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Before moving on to characterize general equilibrium given any initial condition, we �rst

discuss stationary equilibria, that is, where the capital price and the borrowing limit are constant.

2.4 Stationary Competitive Equilibrium

We de�ne a stationary equilibrium as a competitive equilibrium where ?C = ? , WC−1 = W ,  �C+1 =  
�

,

 'C+1 =  
'

and �C+1 = � for all C ≥ 0.

Given a stationary price ? , let ': (?) ≡ I+?
?

and '� (?) ≡ I+?
?

de�ne the returns to capital under

repayment and default as before, but this time we make explicit the dependence on the capital

price ? . Similarly, let � (W, ?) be rede�ned as:

� (W, ?) ≡ 1 −
(
': (?)/' − W
'� (?)/'

) 1

V

. (16)

�e following proposition establishes that there are two types of stationary equilibria.

Proposition 2 (Types of Stationary Equilibria). Stationary equilibria can be of the following two
types:

(i) Default equilibrium. Let (?� , W�) be a pair such that

W� = � (W� , ?�) (17)

?� =
V

1 − V I (18)

where W� is lowest solution in [0, 1] to (17) given ?� .

Such a solution exists (and is unique) if and only if

I

I
<

' − 1

V−1 − 1

+ '−
V

1−V .

If this condition is satis�ed and �0 ≥ W�?� , there exists a stationary equilibrium where q = 1,
 �C+1 = ,  

'
C+1 = 0, �C+1 = 0, ?C = ?� and WC−1 = W

� for all C ≥ 0. Banks’ dividend payouts are
given by 2C = I .

(ii) Repayment equilibrium. Let (?', W') be a pair such that

W' = � (W', ?') (19)

?' =
VI

1 − V − (1 − V')W'
(20)
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where W' is lowest solution in [0, 1] to (19) given ?' . Such a solution always exists and is
unique.

If �0 = W
'?' , then there exists a stationary equilibrium in which q = 0,  'C+1 = , �C+1 = �0,

 �C+1 = 0, ?C = ?' and WC−1 = W' for all C ≥ 0. Banks’ dividend payouts are given by
2C = I − (' − 1)�0.

Proof. In Appendix B.1 �

�is proposition says that under one condition on the productivity di�erence between re-

payment and default, if the initial level of debt is above some threshold, there is a stationary

equilibrium in which all banks default. Likewise, there is a level of debt such that there is a

stationary equilibrium in which all banks repay. In this second type of equilibria, the price of

capital is higher because it re�ects the higher productivity of capital under repayment and the

ability to leverage in equilibrium.

�e proposition also establishes that for some parameter values, a stationary default equilibrium

may fail to exist. �is occurs because if all banks were to default, the price of capital would be

so low that the return to equity for a bank that did not default would be large enough that there

would be no �nite borrowing limit and therefore banks would prefer repayment. On the other

hand, a repayment stationary equilibrium always exists.

Comparison of stationary equilibria. Let us now compare the two potential stationary out-

comes. Note �rst that ?' > ?� , a result that follows immediately from V' ≤ 1, W' ≥ 0, and I > I.

Intuitively, the demand for capital in the repayment stationary equilibrium is higher than under

the default one, as banks have higher productivity and capital serves, in e�ect, a role as collateral.

Notice also that if V' = 1, we have ': = ' and the borrowing constraint does not bind. In this

case, the steady state price re�ects only the productivity return and is the same as the one that

would prevail in the absence of the limited commitment friction.

By Corollary 1, the result that ?' > ?� implies that W� > W' . However, we would like to

compare the total amount of borrowing that a bank can make per unit of the value of its capital,

WC?C+1. Towards this end, let us de�ne the debt threshold levels implicit in Proposition 2 that

characterize the two types of equilibria. Given (W� , ?�) and (W', ?') as de�ned in Proposition 2,

we let

�
� ≡ ?�W� ,
�
' ≡ ?'W' .
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�at is,�
�

denotes the debt level at which banks are indi�erent between repaying and defaulting

when the equilibrium price is constant at ?� . By the same token, �
'

denotes the debt level at

which banks are indi�erent between repaying and defaulting when the price of capital is constant

at ?' .

We now examine whether the debt level that makes a bank indi�erent between repaying and

defaulting is higher in the stationary equilibrium with repayment or in the stationary equilibrium

with default. We have the following result

Proposition 3. If the default stationary equilibrium exists, then�� > �
' .

Proof. In Appendix B.2. �

In a repayment equilibrium, the debt threshold must be lower than in a default equilibrium.

Intuitively, since the return on capital for a repaying bank is lower in the repayment equilibrium,

banks must have a lower debt to keep them indi�erent between repaying and defaulting.

�e result that�
�
> �

'
is important because if the inequality was reversed, the economy will

necessarily feature multiple equilibria (even absent bank runs). In particular, if�
�
< �

'
and if

�0 = �
'
, the default equilibrium and the repayment equilibrium would both be possible outcomes.

We highlight that the fact that default is a dynamic choice is critical to generate a unique

equilibrium. Notice that a setup in which default is determined exclusively by the value of the

net worth—in particular by whether net worth is positive or negative—faces multiplicity as long

as the price under repayment is higher than the price under default. �is occurs because for a

range of debt levels, net worth would be positive under the repayment price but negative under

the default price. Instead, in our setup, the default decision depends not only on net worth but

also on returns.

A remaining question is how the economy evolves when it does not start at the levels of debt

required to be at one of these two stationary equilibria. We focus on the transitional dynamics

that arise next.

2.5 Transitional Dynamics

We can distinguish three distinct cases of convergence depending on the initial values of debt

relative to�
'
,�
�

.

1. Convergence to repayment equilibrium if �0 < �
'
. We start by considering the case in

which the economy starts with a low level of debt. Speci�cally, we consider an initial value of

debt that is below the stationary values for the repayment and default equilibrium.
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Let us consider the case in which V' < 1. When debt is below �
'
, we conjecture that the

dynamics are as follows. For ) periods, the return to capital is exactly ', aggregate net worth

decreases at rate V', and the borrowing constraint does not bind. In period ) , the borrowing

constraint binds, the return to capital is higher than ', and the economy remains at the stationary

repayment equilibrium therea�er. Appendix D.1 describes how the value of) and the sequence of

prices and debt levels are determined.

Figure 2 illustrates the transition dynamics for �C and ?C . �e note in the �gure describes the

parameter values used. Panel (a) shows the transition map for �C . �e vertical lines correspond

to the di�erent debt threshold levels. �e solid blue line shows the corresponding �C+1 given a

�C in the horizontal axis. �e dashed line shows a particular initial point �0 and its transition

towards the steady state level�
'
. In this case, convergence is achieved in three periods, and debt

is increasing along the path. Although not shown, net worth is decreasing too. Panel (b) displays

how the price of capital is decreasing in the debt level.

(a) Transition map for �C

�̄'�̄',0�̄',1�̄',2�̄',3 �0

�C

�
C+

1

(b) Associated price ?C

�̄'�̄',0�̄',1�̄',2�̄',3

?'

�C

?
C

Figure 2: Transition Dynamics in General Equilibrium

Note: �is simulation was generated with the following parameters: ' = 1.01, V = 0.95, I = 1.5, I = 1.1, and = 1.

2. Convergence to default equilibrium if �0 > �
�
. �is case is already covered in Proposition

2 and there are, in e�ect, no transitional dynamics. �at is, we have ?C = ?
�

for all C ≥ 0, and all

banks default in the initial period.

3. Transition if�
�
> �0 > �

'
. Consider now the case in which debt is above the stationary

level for the repayment equilibrium but below the threshold for the default equilibrium. We argue

that in this case, the equilibrium must be non-degenerate. Why does a degenerate equilibrium fail

to exist? Under a price consistent with repayment by all banks, an individual bank would �nd it
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optimal to default. Conversely, under a price consistent with default by all banks, an individual

bank would �nd it optimal to repay.

We can construct, however, equilibrium where banks are indi�erent between defaulting and

repaying and such that a fraction q of banks default in the initial period. �at is,

+ �
0
( ) = + '

0
((I + ?0) − �0), (21)

where + �
0

and + '
0

are de�ned respectively in (7) and (10). Recall that + �
0

is a function of the

sequence of {?C }, and + '
0

is a function of the sequence of {?C } and {WC }.
As it turns out, it is possible to characterize this mixed equilibrium in a dynamic system with

two variables, given q . �e two variables are the fraction of capital owned by banks in repayment,

and the debt of banks in repayment as a fraction of the capital shock. Proposition 4 presents the

dynamic system, establishes uniqueness and characterizes the resulting allocations (imposing that

the borrowing constraint binds along the transition).

Proposition 4 (Characterization of dynamic system for�0 > �0 > �'). Suppose that in a general
equilibrium ':C+1 > ' for all C ≥ 0 and q ∈ (0, 1). Let ˜:C =

(1−q) 'C
 

and ˜1C =
(1−q)�C
 

. �en,

' ˜1C > (I− I) ˜:C and ?C > ?� for all C ≥ 0. �e evolution of ( ˜:C , ˜1C ) is uniquely determined starting
from ( ˜:0, ˜10) by

˜:C+1 = 1 − V
(
I + ?C
?C

)
(1 − :C ) ,

˜1C+1 = ?C:C+1 − V=̃C ,

where =̃C = (I + ?C ) ˜:C − ' ˜1C and ?C is the unique solution to:[
(I + ?C ) ˜:C − '1C

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C
= 1.

In addition:

(i) Capital holdings of a repaying bank increase over time. �at is, ˜:C+1 > ˜:C for all C ≥ 0, thus
implying that  'C+1 >  �C+1 for all C ≥ 0.

(ii) And 2�
0
> 2'

0
where 2'

0
and 2�

0
represent the dividend payout at C = 0 for repaying and defaulting

banks respectively.

Proof. In Appendix B.3 �
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Proposition 4 uniquely characterizes the behavior of the economy for a given initial condition

in which
˜:0 = (1 − q), ˜10 = (1 − q)�0/ . However, for arbitrary values of q , some of the

solutions will eventually become invalid, and thus q needs to be chosen as to be consistent with

an equilibrium.
20

In an equilibrium,
˜:C is increasing over time. �is implies that repaying banks are net buyers of

capital while defaulting banks are net sellers. Moreover, given that :C ∈ [0, 1], this monotonicity

implies that
˜:C must converge. If :C were to converge to a value less than 1, the dynamic system

above requires that ?C converges to ?� . Now, from the system, we have that
˜1C+1 − V' ˜1C =

?C ˜:C+1 − V (I + ?C ) ˜:C , which converges to −V (I− I) ˜: < 0. And thus
˜1 must eventually be negative,

a contradiction. So it must be the case that in an equilibrium, :C converges to 1, the level where

all the capital is owned by repaying banks. Note that this requires that ?C converges to ?' . �e

economy must converge to the stationary repayment equilibrium.
21

Proposition 4 also states an additional result that is useful below: the dividend payout of

repaying banks is strictly lower than that of defaulting banks.

It is somewhat surprising that general equilibrium requires partial default for intermediate

levels of initial aggregate debt. A�er all, the equilibrium characterizations in Kehoe and Levine

(1993) and Alvarez and Jermann (2000) impose that default is not an equilibrium outcome. We

highlight, in addition to the di�erence in environments we have noted before, that the existence

proof in Kehoe and Levine (1993) for debt constrained economies rely on the assumption that all

agents are initially endowed with strictly positive assets; an assumption that is violated in our

environment. As we will see below, the presence of equilibrium default has stark implications for

policy.

Numerical illustrations. In Figure 3, we use the results from Proposition 4 to simulate the

model under a mixed equilibrium. We consider an initial value of debt 5 percent above the debt

threshold �
'
. Given this initial value of debt, we have q = 0.36 (i.e., 36% of banks default in

equilibrium). Panel (a) shows that the price of capital is low initially, but higher than ?� , and then

increases monotonically over time until it reaches ?' , the stationary price under repayment. (�e

two horizontal dashed lines denote the stationary values of the price). Meanwhile, panel (b) shows

that the leverage threshold WC is high initially and then decreases over time until it reaches W' .

�e bo�om panels in Figure 3 illustrate the di�erences between repaying and defaulting banks,

represented respectively by the straight and dashed red lines. Panel (c) shows that repaying

banks invest more capital than defaulting banks panel, as characterized in part (i) of Proposition

20
�is requires that ?C > ?

�
, ' ˜1C > (I− I) ˜:C , and

˜:C ∈ [0, 1] for all C .
21

Note also that the multiplicity and cycles uncovered by Gu, Ma�esini, Monnet, and Wright (2013) in Kehoe-Levine

economies is not a feature of our environment.
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(a) Price of Capital ?C (b) Leverage �reshold WC

(c) Capital Allocation (d) Net Worth

Figure 3: Transition dynamics in a mixed equilibrium

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, = 1 and �0 = 0.191.

�e x-axis represent periods. �e horizontal dashed lines in panels (a) and (b) denote the stationary levels.

In panel (c), capital of repaying and default banks is given respectively by (1 − q) 'C and q �C . In panel (d),

networth of repaying and default banks is given respectively by (I + ?C ) 'C − '�C and (I + ?C ) 'C .

4. Despite having lower initial net worth, as shown in panel (d), repaying banks’ ability to lever

imply that they invest more. �anks to their higher portfolio return, their holdings of capital and

net worth increase over time and relative those of defaulting banks. In the long-run, defaulting

banks’ holdings of capital converge to zero. Asymptotically, repaying banks take over the entire

capital stock and the economy converges to the repayment stationary equilibrium.

In Figure 4, we present results on the transitional dynamics for a range of initial debt levels

using the same parameter values as in the previous �gure. �ere are four panels in the �gure:

(a) the fraction of banks that default q ; (b) the initial price of capital ?0; (c) the initial demand of
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capital for repaying and defaulting banks; and (d) the initial dividend payout for repaying and

defaulting banks. For low values of debt, lower than�
'
, denoted with a vertical dashed line, all

banks repay (q = 0). Recall that if �0 = �
'
, the price is equal to the stationary price ?' and banks

are indi�erent between repaying and defaulting. As debt increases beyond�
'
, we reach the region

characterized by the mixed equilibrium and q increases until �0 = �
�

at which point all banks

default and the price becomes equal to ?� , the price in the stationary default equilibrium.

(a) Fraction of defaulting banks q (b) Price of Capital ?0

(c) Capital Allocation
(d) Dividend Payout

Figure 4: Initial values in transitional dynamics for a range of values of �0

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, and = 1 . �e

vertical dashed lines denote the stationary borrowing thresholds. In panel (c), capital of repaying and default

banks is given by (1 − q) '
1

and q �
1

.
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3 Bank Runs

In the version of the model we have considered so far, we have abstracted from liquidity consid-

erations. As long as a bank has future cash �ows that guarantee repayment, it is able to obtain

funding. We now introduce the possibility that banks face a run on deposits and go bankrupt as a

result.

We model bank runs as an outcome of a rational expectations equilibrium. We consider a

situation in which an individual investor may �nd it optimal to refuse to roll over deposits when

she expects the rest of the investors to do so as well. �e details of the game are closest to those

in Cole and Kehoe (2000), a workhorse model in the sovereign default literature.
22

We will say

that a bank is vulnerable to a run whenever a “panic” by investors that refuse to lend to the bank

makes it optimal for the bank to default. We focus on the case under which if a bank is vulnerable

to a run, the bank run always takes place.
23

3.1 Banks’ Problem and Borrowing Limits under Bank Runs

As in Section 2, consider a bank that enters the period with good credit standing, : units of capital,

and 1 units of maturing bonds. Given a sequence of prices of capital, the bank’s value of default,

+ �
C (:), continues to be given by equation (4).

We now introduce the possibility of runs. We use + 'D=C (1, :) to denote the value to the bank if

it is unable to issue new debt (that is, it su�ers a run) and it decides to repay its existing creditors.

We will say that a bank is “safe” if even under a run, it chooses to repay its debts rather than

default, that is, if+ 'D=C (1, :) ≥ + �
C (:). We use the term safe because if banks do not �nd it optimal

to default upon a run, investors do not have incentives to run. On the other hand, a bank is

“vulnerable” if it �nds optimal to default under a run; that is, if + 'D=C (1, :) < + �
C (:).

�us, given an initial state (1, :), if the bank is safe this period, it cannot su�er a run, and we

denote its value by +
(05 4

C (1, :). If the bank is vulnerable, then we assume that it su�ers a run with
probability one, and thus it defaults (justifying the creditors’ beliefs) and a�ains a value of + �

C (:).
�e value of repayment under a run, + 'D=C (1, :), is obtained as follows. Given that the bank

cannot issue any new debt, its payments to existing creditors need to come entirely from sales

of existing holdings of capital. �e bank’s dividend payout is therefore given by its net worth

minus purchases of new capital. Next period, the bank starts without any debt, and as a result, the

22
Unlike the Diamond and Dybvig model, Cole and Kehoe does not feature a sequential service constraint. In

Cole and Kehoe, investors are atomistic. If all investors refuse to lend and this leads to a default, then an individual

investor does not have incentives to lend.

23
�is assumption allows us to sharpen the analytical results, but in principle, we could allow for an equilibrium

selection involving sunspots as in Cole and Kehoe (2000).
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continuation value is given by the “safe” value function (as a bank with no liabilities cannot su�er

a run).
24

In particular, under a run, the value of repaying for a bank with capital : and debt 1 can be

wri�en as before as just of a function of the net worth. �at is, + 'D=C (1, :) = +̂ 'D=C ((I + ?C ): − '1)
and we have that

+̂ 'D=C (=) = max

: ′≥0,2
log(2) + V+ (05 4

C+1 (0, :
′) , (22)

subject to

2 = = − ?C:′.

Note that the constraint set in the above problem is non-empty as long as = ≥ 0 and +
(05 4

C+1 (0, :) is

de�ned for any non-negative level of : .

Let us consider the problem of a bank that is safe and decides to repay its debt. Just as in our

previous analysis, the bank can issue new bonds as long as its value of repaying tomorrow is

higher than or equal to the value of default. Crucially, the next-period value of repayment now

needs to be weakly higher than that of default also in the case in which the bank is subject to a

run. �at is, the bank is subject to the borrowing constraint:

+̂ 'D=C+1 ((I + ?C+1):′ − '1′) ≥ + �
C+1(:′),

�e bank chooses a portfolio that guarantees that a run does not occur in the future. Note that if

= < 0, the bank is necessarily vulnerable to a run.

�us, when the bank is safe and can obtain funding, it solves a problem analogous to (5), with

the di�erence that to obtain a positive bond price, the bank needs to make sure that it will be

safe next period. As in (5), the value of being safe can be wri�en as a function of net worth,

+
(05 4

C (1, :) = +̂ (05 4C ((I + ?C ): − '1), where +̂
(05 4

C is given by

+̂
(05 4

C (=) = max

=′,1 ′,: ′≥0,2
log(2) + V+̂ (05 4

C+1 (=
′) (23)

subject to

2 = = + 1′ − ?C:′

=′ = (I + ?C+1):′ − '1′ ≥ 0

+̂ 'D=C+1 (=′) ≥ + �
C+1(:′)

24
A bank with no liabilities can always choose to issue no debt in the future and invest the same amount as a bank

that has defaulted at the same level of capital. Because its productivity is strictly higher than a defaulting bank, it

follows that + 'D=C (0, :) > +�C (:), and thus a bank without current liabilities is naturally safe.
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for = > 0, and where we have introduced the constraint =′ ≥ 0, which is a necessary and

su�cient condition for a feasible repaying allocation to exist under a run. �e last constraint is

the borrowing constraint, which as before, also plays the role of the No-Ponzi condition until a

further re�nement.
25

Solution to value functions. �e value of default is the same as in Lemma 1. Meanwhile,

we can proceed, in a similar fashion to Section 2, to characterize the policy functions and value

functions of the bank when it is safe and when it is vulnerable to a run. When the bank is safe and

has access to borrowing, we guess that the borrowing constraint in Problem (23) can be wri�en as

a linear borrowing constraint 1′ ≤ WC?C+1:′ for some sequence of {WC }. Given a sequence of {WC , ?C },
the value function +̂

(05 4

C has the same form as +̂ 'C , described in Lemma 4. Note that in equilibrium,

however, the sequence {WC } that the bank faces is determined by the condition +̂ 'D=C+1 (=′) = + �
C+1(:′)

and thus could be di�erent from the sequence of borrowing limits without runs. Indeed, as we

will see below, this implies a tighter borrowing constraint.

We now proceed, accordingly, to characterize the value of repayment under a run.

Lemma 7 (�e value of repayment in a run). Consider a sequence of (strictly positive) prices {?C }∞C=0

and (non-negative) borrowing limits, {WC }∞C=0
. that satisfy Condition 2. �en the value of repayment

under a run, +̂ 'D=C (=), and associated policy functions in period C for = > 0 are such that:

(i) Value function:

+̂C
'D= (=) = � + 1

1 − V log(=) + V

1 − V

[
log

(
':C+1

)
+

∑
g≥C+1

Vg−C log('4g+1)
]

;

where � is as in Lemma 1.

(ii) Policy functions:

C'D=C (=) = (1 − V)=, K'D=
C+1 (=) = V

(
=

?C

)
.

Proof. In Appendix C.1. �

�e value function is again log-linear in net worth. �e di�erence relative to +̂
(05 4

C is that

the inability to obtain new deposits lowers the return on net worth in the �rst period from

25
We do not need to impose the constraint +̂

(05 4

C+1 (=′) ≥ +̂�C+1 (: ′) in Problem (23). From a simple inspection of the

value functions, it is clear that +̂
(05 4

C+1 (=′) ≥ +̂ 'D=C+1 (=′) and hence the constraint is satis�ed if +̂ 'D=C+1 (=′) ≥ +̂�C+1 (: ′).
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'4C+1 to ':C+1, thereby reducing the value from repaying.
26

As long as WC > 0 and ':C+1 > ', then

+̂
(05 4

C (=) > +̂ 'D=C (=). In addition, the bank continues to consume a fraction 1 − V of net worth and

invest the rest in capital.

We have the following proposition characterizing the default condition when the bank is

subject to a run.

Proposition 5 (Default decision under runs). Consider a sequence of (strictly positive) prices,
{?C }∞C=0

, and a sequence of (non-negative) borrowing limits, {WC }∞C=0
that satisfy Condition 2. �en, the

value of WC that makes a bank indi�erent between repayment and default at C + 1 is such that

V log

(
I + ?C+2(1 − WC+1')

I + ?C+2

)
− V2

log

(
I + ?C+3(1 − WC+2')

I + ?C+3

)
+

+ V2
log

(
1 − WC+2

?C+3
?C+2

)
= log

(
I + ?C+1(1 − WC')

I + ?C+1

)
(G-run)

for all C ≥ 0.

Proof. In Appendix C.2 �

Using the above, we now can de�ne the equilibrium-consistent borrowing limits with runs

given a sequence of prices:

De�nition 3. Given a sequence of (strictly positive) prices {?C }∞C=0
, we say a sequence of (non-

negative) borrowing limits {WC }∞C=0
is equilibrium-consistent with runs if Conditions 2, and 3 hold

and equation (G-run) is satis�ed for all C ≥ 0.

3.2 General Equilibrium with Runs

�e de�nition of general equilibrium follows exactly the de�nition in Section 2, except that the

borrowing limits must be equilibrium-consistent with runs. �at is, given initial debt levels and

capital holdings, an equilibrium is a sequence of prices of capital {?C }∞C=0
, a sequence of borrowing

limits, {WC }∞C=−1
, a sequence of (per-bank) aggregate debt and capital levels, {�C ,  'C ,  �C }∞C=0

, and

an initial share of defaulting banks, q , such that (i) the evolution of aggregate debt and capital

are consistent with banks’ policies (ii) banks optimize, (iii) the market for capital clears, and (iv)

borrowing limits are equilibrium-consistent with runs (i.e., eq. (G-run) holds).

26
If one imposes arti�cially that WC = 0 in the value function +̂ 'C , while making all other subsequent W ’s the same,

we reach the same value as in +̂ 'D=C .
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Stationary equilibria with runs. We de�ne stationary competitive equilibria as before: a

situation in which ?C , WC , capital allocations and debt are constant for all C ≥ 0.

We characterize stationary equilibria with runs in a manner similar to that in Proposition 2.

Using equation (G-run), we �rst de�ne a condition that the stationary value of W must satisfy. �at

is, W = � A (W, ?) where

� A (W, ?) ≡ 1 −
(
1 − '

': (?)
W

)
1+ 1−V

V2

(
': (?)
'� (?)

) 1

V2

Notice that we have emphasized the dependence of the returns on the price of capital by writing

': (?) and '� (?).
�e function � A

has similar properties to � , de�ned in (16). In particular, � A
is increasing and

strictly concave in W in [0, 1), � A (1, ?) ≤ 1, and � A (0, ?) < 0 given that ': > '� . And thus, � A

features at most two �xed points in [0, 1]. We have the following result, a version of Lemma 6 for

the case with runs:
27

Lemma 8 (Stationary borrowing limits under a constant price). Consider a constant price of capital
? > 0 such that ': ≥ '.

(i) If V':/' < V+ (1−V) (V'�/')
1

1−V (V':/')−V and V'�/' < 1, then there is a unique stationary
(equilibrium-consistent under a run) borrowing limit W★ where W★ is the smallest solution to
W = � A (W, ?) for W ∈ [0, 1).

(ii) Otherwise, there exists no stationary (equilibrium-consistent under a run) borrowing limit.

Proof. In Appendix C.3 �

Note that the condition for existence in part (i), although quite similar to the condition in

Lemma 6 is in e�ect a weaker one. �at is, the economy with runs admits a higher return on

capital owing to the fact that the borrowing constraint is tighter.

With this existence result at hand, we can then proceed to characterize the stationary equilibria.

Proposition 6 (Types of stationary equilibria with runs). Stationary equilibria with runs can be of
the following two types:

27
Di�erently from Lemma 6, in this case we cannot show that all equilibrium consistent borrowing limits are

stationary. Part of the di�culty arises from characterizing the dynamics of the system described by (G-run), a

second-order di�erence equation that makes the analysis signi�cantly more complex. However, the results in Lemma

8 su�ce for characterizing the general equilibrium, as we will see below.
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(i) Default equilibrium. Let (?A� , WA�) be given by a solution to

WA� = � A (WA� , ?A�) (24)

?A� =
V

1 − V I (25)

where W� is lowest solution in [0, 1] to (24), given ?A� . Such a solution exists (and is unique) if
and only if

I

I
<

' − 1

V−1 − 1

+ '
− V

1−V

G
V

0

where G0 is the unique solution in (V, 1) to GV
0
(G0 − V) = (1 − V)'−

1

1−V .

If �0 ≥ WA�?A� , there exists a stationary equilibrium in which q = 1,  �C+1 =  ,  �C+1 = 0,
�C+1 = 0, ?C = ?A� , and WC−1 = W

A� for all C ≥ 0. Banks’ dividend payouts are given by 2C = I .

(ii) Repayment equilibrium. Let (?A', WA') be given by the solution to

WA' = � A (WA', ?A') (26)

?A' =
VI

1 − V − (1 − V')WA'
(27)

where W� is lowest solution in [0, 1] to (26) given ?A' . Such a solution always exists and is
unique.

If �0 = W
A'?A' , then there exists a stationary equilibrium in which q = 0,  'C+1 = , �C+1 = �0,

 �C+1 = 0, ?C = ?A� , and WC−1 = WA' for all C ≥ 0. Banks’ dividend payouts are given by
2C = I − (' − 1)�0.

Proof. In Appendix C.4 �

It is useful to de�ne again the threshold debt levels implicit in Proposition 6. �at is, given

(WA� , ?A�) and (WA', ?A'), we let

�
A� ≡ ?A�WA� ,
�
A' ≡ ?A'WA' 

Let us analyze how the debt thresholds and prices di�er between the case without runs and

the case with runs. First note that the price in the stationary default equilibrium is the same with

and without runs, ?A� = ?� = VI/(1 − V). Using this result, we can show that the debt threshold

determining the default stationary equilibrium is lower with runs.
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To examine�
A'

, it is useful to distinguish two cases. If V' = 1, just as in the economy without

runs, the borrowing constraint is not binding in the stationary repayment equilibrium, and the

price is such that the return to capital and the interest rate are equalized: ': = '. In this case,

interestingly, we have that WA' = W' and thus�
A'

= �
'
. Hence the presence of runs does not a�ect

the threshold for the repayment stationary equilibrium when V' = 1.
28

If V' < 1, this result no

longer holds. In fact, we can show that W is strictly lower under runs and therefore the stationary

price and the debt threshold is lower under runs. We summarize these results in the following

lemma:

Lemma 9. �e following holds:

(i) If a default equilibrium without runs exists, then a default equilibrium with runs exists, and
WA� < W� and�A� < �

� .

(ii) If V' = 1, then WA' = W' , ?A' = ?' and �A' = �
' . If V' < 1, then WA' < W' , ?A' < ?' and

�
A'

< �
' .

Proof. In Appendix C.5. �

Intuitively, the presence of runs makes the borrowing constraints tighter and this expands the

conditions for existence of a stationary default equilibrium expands. �e presence of runs leads to

borrowing limits that are tighter than the “not too tight” limits of Alvarez and Jermann (2000)

that emerged in the case without runs.

Having characterized the potential stationary outcomes in the economy with runs, we now

discuss brie�y the transitional dynamics.

Transitional dynamics with runs. Just like the case without runs, we can distinguish three

distinct regions of convergence depending on the initial values of debt relative to�
A'
,�
A�

.

1. Convergence to repayment equilibrium with runs if �0 < �
A'
. �is case is analogous to

the economy without runs and is discussed in Appendix D.2.

28
In this case, given that ': = ', '4 is independent of the value of W and also equals ', and thus +̂ ' (=) = +̂ 'D= (=).

A bank su�ering a run cannot leverage and needs to repay its debt. But given that ': = ', this is no di�erent from

a bank that does not su�er a run and decides to repay. To the extent that net worth is positive, such a bank could

also optimally have chosen to reduce its debt to zero and scale down its capital, as it is indi�erent between capital

and bonds. �is is quite di�erent from the sovereign debt results in Cole and Kehoe (2000), where the possibility of

a run does a�ect the default threshold when V' = 1. �e key is that in our model, when V' = 1, in the stationary

repayment equilibrium, the value of capital represents the present value of the future “endowments” of the bank.

Access to a spot liquid market for capital renders the presence of runs irrelevant.
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2. Convergence with runs if �0 > �
A�
. All banks default immediately, q = 1,  �C =  , and

?C = ?
A�

for all C ≥ 0.

3. Transition with runs if�
A'

> �0 > �
A�
. As in the economy without runs, we have that the

equilibrium must be non-degenerate.
29

An interesting observation here regards the comparison

of the policies for a bank facing a run compared to a defaulting bank. Let 2'D=
0

and  'D=
1

denote

the initial dividend payout and capital choices for a bank that is facing a run and decides to repay.

We have the following result.

Lemma 10. Consider an equilibrium with runs where q is interior. �en, 2'D=
0

< 2�
0
and  'D=

1
<  �

1
.

Proof. In Appendix C.6 �

An implication of the lemma is that a repaying bank facing a run is a net seller of capital,

and in particular it sells more capital than a defaulting bank. As we will see in the next section,

through e�ects on the price of capital, government policies can have important implications for

the vulnerability of banks to self-ful�lling runs.

4 Policy Analysis

In this section, we analyze whether policy interventions by the government can improve banks’

welfare over the competitive equilibrium outcome. One ine�ciency at play in our model emerges

from the presence of an equilibrium price (the price of capital) in the determination of a bank’s

default option. As shown in Kehoe and Levine (1993), this could lead to ine�ciencies in the

market equilibrium. As we will see below, however, equilibrium default and the presence of runs

introduces another reason for policy intervention, which is the main focus of the analysis in this

section.

We focus a�ention to ex-post policies, that is, policies that take place only at C = 0 for a given

initial level of aggregate debt that is maturing at that period.
30

One objective is to compare the

e�ects of policy interventions when equilibrium defaults are driven by fundamentals or runs.

Before analyzing policies that will have e�ects on competitive equilibrium outcomes, it is

useful to consider brie�y a policy that is neutral. �at is, consider a subsidy on capital in the

initial period that is rebated lump sum. Even though repaying and defaulting banks have di�erent

demands for capital and therefore receive di�erent amounts of subsidies, this policy does not alter

29
In this case, we solve the model numerically by searching for the sequence of {WC , ?C } and q that satisfy market

clearing condition (14), the initial indi�erence condition for repaying/defaulting+ 'D=
0

= +�
0

and the dynamic equation

for W , (G-run).

30
We leave the issue of how policies a�ect the ex-ante borrowing decisions and welfare for future work.
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allocations. �e logic is that because aggregate capital is in �xed supply and all banks start with

the same amount of capital, the a�er-tax price remains unchanged with the subsidy, leaving all

budget constraints and decisions unaltered.

We now turn to analyze two classes of policies that will have welfare implications.

4.1 Controlling the Default Decision

We start by considering a policy in which the government can directly control the default decision

of banks in period C = 0, but it does not intervene in the economy in any other way. �e purpose

of this exercise is to analyze the extent to which private repayment/default decisions are socially

optimal.

Consider starting from an equilibrium in which the share of defaulting banks is interior and

denote by q� the equilibrium share of defaulting banks and by {?�
0
, ?�

1
, ?�

2
, . . . } the sequence of

prices.

Suppose now that the government directly controls the share q of defaulting banks at C = 0

while banks retain their ability to choose dividends, issue new bonds (as long as the governments

commands them to repay) and buy/sell capital. In subsequent periods, we assume that the default

decision (and all future choices) are done by the banks. �at is, banks in subsequent periods

default if and only if the value function of default is lower than the value of repayment. �is

implies that the equilibrium consistency of borrowing limits remain as in our baseline economy.

�e problem of a repaying bank at time C = 0 starting with initial debt 10 = �0 and initial

capital holdings :0 = is

+ ' = max

: ′≥0,1 ′,2
{D (2) + V+ '

1

(
:′, 1′; {?1, ?2, . . . }

)
}, (28)

subject to

2 ≤ (I + ?0) − '�0 + 1′ − ?0:
′,

1′ ≤ W0({?1, ?2, . . . })?1:
′.

�e value for a defaulting bank is

+ � = max

: ′≥0,2
{D (2) + V+ � (:′; {?1, ?2, . . . })}, (29)

subject to

2 ≤ (I + ?0) − ?0:
′.

Using these value functions, we denote total bank welfare by

, = (1 − q)+ ' + q+ �
(30)
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4.1.1 A partial analysis.

�e government policy for q a�ects the demand for capital as defaulting and repaying banks have

di�erent demand for capital. �us, the policy potentially a�ects the market clearing capital prices

of capital in period C = 0 as well as subsequent periods.

To be able to obtain some analytical insights in, let us consider a partial scenario in which

the changes in q do not a�ect the prices in periods C ≥ 1. �at is, we take those future prices

as given, but maintain that ?0 clears the capital market in C = 0. Notice that an implication of

this assumption is that we also take as given {WC }C≥0
. Let + ' (?0) ad + � (?0) denote the associated

repayment and default value functions, and :' (?0) and :� (?0) represent the demand for capital

of repaying and defaulting banks. Market clearing implies that

(1 − q):' (?0) + q:� (?0) = .

A key element that we turn next is how the initial asset price changes in response to the government

policy for q . Assuming di�erentiability of the policy functions with respect to ?0 (which we show

below), we have that

3?0

3q
=

:' (?0) − :� (?0)
(1 − q) 3:

' (?0)
3?0

+ q 3:
� (?0)
3?0

. (31)

At the starting competitive equilibrium allocation with ?�
0
, we have that :' (?�

0
) > :� (?�

0
)

by Proposition 4. �at is, repaying banks demand more capital than defaulting ones (and the

numerator in (31) is positive).

�e denominator in (31) corresponds to the change in the demand for capital in response to a

change in q . To see that the demand for capital is decreasing in ?0 notice that we have

m:� (?0)
m?0

= −V
 I

?2

0

< 0

and that

m:' (?0)
m?0

= −
V

[
(I + W0?1) − '�0

]
(?0 − W0?1)2

, (32)

which is negative evaluated at ?0 = ?
�
0

using the fact from Proposition 4 that :' (?�
0
) > .

31

31
To see formally that the numerator in (32) is positive, note that using the budget constraint we have

0 < 2'
0
= (I + ?0) − '�0 − (?0 − W0?1):' (?0) < (I + ?0) − '�0 − (?0 − W0?1) = (I + W0?1) − '�0,

where the second inequality follows from ?0 > W0?1, based on Lemma 3 and ?0 > ?� (the la�er implying that

:' (?0) >  ). E�ectively, repaying banks are net buyers of capital. Both income and substitution e�ects lead to a

reduction in their demand for capital when its price increases.
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With these two results on hand, we have that

3?0

3q

����
q=q�

< 0

�at is, a larger share of defaulting banks leads to a decrease in the price of capital. Intuitively,

by increasing the share of defaulting banks, the government shi�s the composition towards banks

with lower demand for capital. To the extent that the demand for capital is downward sloping,

market clearing requires an equilibrium reduction in ?0.

Let us now turn to welfare. Computing the derivative of welfare, (30), with respect to q at the

competitive allocation, we obtain

3,

3q

����
q=q�

= (+ � (?�
0
) −+ ' (?�

0
)) +

[
q
3+ � (?0)
3?0

����
?0=?

�
0

+ (1 − q)3+
' (?0)
3?0

����
?0=?

�
0

]
3?0

3q
.

�e second term in this expression involves the derivatives of the value functions with respect

to the initial asset price. Using the envelope condition on the repaying and defaulting bank

problems, we obtain

3+ ' (?0)
3?0

����
q=q�

= D′(2') ( − :' (?�
0
)), and

3+ � (?0)
3?0

����
q=q�

= D′(2�) ( − :� (?�
0
)).

where 2' and 2� denote the dividend payout of banks that repay and default at the equilibrium

allocation. Using these conditions and imposing the market clearing condition at C = 0, we obtain

that

3,

3q

����
q=q�

= (+ � (?�
0
) −+ ' (?�

0
)) − (1 − q�)

[
D′(2') − D′(2�)

]
(:' (?�

0
) − ) 3?0

3q

����
q=q�

. (33)

�is expression characterizes how welfare changes in response to a government policy of varying

the share of defaulting banks (while keeping future prices constant). We now distinguish between

an economy without runs and with runs.

�e case without runs. Starting from an equilibrium in which q� is interior, the �rst term in

(33) is zero. �at is, in the absence of runs, we have that banks are indi�erent between repaying and

defaulting and + � = + ' . Regarding the second term in (33), we have that D′(2') − D′(2�) > 0 by

Proposition 4. In addition, based on the arguments above, we have that (:' (?0) − ) 3?0

3q

���
q=q�

< 0.

�us, starting from the competitive equilibrium with q� ∈ (0, 1), the planner will �nd it optimal to
increase the share of defaulting banks.
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�e intuition for this result is as follows. When the planner increases q , there are two e�ects

to consider, per equation (33). �e �rst is related to the di�erence in the value functions between

repaying and defaulting banks. In principle, this could generate a loss as increases in q force a

repaying bank to choose a sub-optimal decision. However, in the equilibrium without runs, this

e�ect is exactly zero at the margin, as banks are indi�erent between repaying and defaulting.

But there is an additional channel that arises through the impact on the equilibrium price

?0. When the planner increases q , the demand for capital falls, as defaulting banks have a lower

capital demand than repaying ones. �is requires that the price of capital falls to clear the market.

�is reduction in the price of capital redistributes from net sellers to net buyers—that is, from

defaulting to repaying banks. Because in equilibrium, defaulting banks have a higher dividend

payout level in the �rst period, this redistribution is bene�cial and increases banks’ welfare.

�e case with runs. �e key di�erence in the presence of runs is that the �rst term in (33) is no

longer zero. �e defaulting bank has a value that is strictly lower than that of a repaying bank. In

this case,+ 'D= does not correspond to the value function of a repaying bank in equilibrium. Rather,

the value of a repaying bank in equilibrium is+ (05 4 .32
We thus have that+ ' = + (05 4 > + 'D= = + �

and the �rst term is negative.

�e fact that the �rst term in equation (33) is strictly negative implies that there is a �rst-order

loss that arises from forcing a safe bank to default. In this case, banks are defaulting because of the

run, but would be otherwise be�er o� repaying if investors were willing to roll over the deposits.

�us, if the planner can reduce the share of defaulting banks, this would shi� the composition of

banks towards higher values and generate a �rst-order welfare gain. �us, it is possible that the

ine�ciency generated by the default ex-post is enough to guarantee that the planner would like

to reduce the share of defaulting banks rather than to increase it, as before.
33

4.1.2 Numerical Results

In the above exercises, we have kept the capital prices from period C = 1 onward constant. In this

way, we were able to obtain analytical results highlighting how the planner’s policy of changing

the share of defaulted banks a�ected the capital price in the �rst period and banks’ welfare. In

general, however, this policy will also a�ect the capital prices in subsequent periods. To be able to

see what happens in this case, we turn to numerical simulations.

In Figure 5, we contrast the results of the government policy for the economy with fundamentals-

driven default and for the one with run-driven default. We consider a share of defaulting banks

32
Recall that + 'D=C < +

(05 4

C as long as ':C+1 > ' and WC > 0.

33
We are examining only the ex-post welfare of banks. If the planner cares about the welfare of creditors, or the

analysis is done from an ex-ante perspective, then there would be an additional force towards reducing defaults.
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Fundamentals

(a) Welfare (b) ?0 (c) W0?1

Self-Fulfilling Runs

(d) Welfare

(e) ?0
(f) W0?1

Figure 5: Policy of Choosing Share of Defaulting Banks

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1 − V), I = 1.15I, and = 1. �e values

for initial debt are given by �0 = U�
A' + (1 − U)�A� and �0 = U�

' + (1 − U)�� with U = 0.97, respectively for the

economies with and without runs. �e solid dot denotes the competitive outcome.

ranging from 0% to 100% and illustrate the competitive outcome with a solid dot.

�e �gure shows that in the economy without runs, the maximum welfare is achieved with

a higher share of defaulting banks relative to the competitive outcome. One can also see in

panel (b) that the policy results in a lower equilibrium price, facilitating a transfer from the low

marginal utility defaulting banks to the high marginal utility repaying banks. Panel (c) shows a

result that is not highlighted in the analytical result in equation (33). A larger share of defaults

increases leveraged returns and raises the amount that banks can borrow. �e la�er is an e�ect

not internalized by banks, which leads the government to choose an even larger share of defaults.

On the other hand, under run-driven defaults, the government �nds it optimal to reduce the

share of defaulting banks. In this example, the optimal amount of defaults is zero, as illustrated by

panel (d).
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4.2 Credit Easing

In this section, we analyze a policy of credit easing. Speci�cally, we consider a policy in which the

government purchases capital at C = 0, holds it for one period, and sells it at C = 1. A�er C > 1,

the government does not intervene. We consider a government that is less productive than a

defaulting bank: a unit of capital in the hands of the government has a productivity of I6 < I.

To �nance the purchases of capital, we assume that the government taxes in period C = 0 and

borrows at the international interest rate '. Note that in this exercise, the government is not

taxing banks in any period a�er C = 0: we are not granting the government the ability to bypass

the borrowing constraint of banks through its taxation power.

Let )0 denote the lump-sum tax that the government imposes on banks in period 0, and let  6

denote the units of capital that the government holds. Using that the government repays the debt

in period C = 1 by selling its holdings of capital, we can write the government budget as

?0 
6 −)0 =

1

'
(I6 + ?1) 6 .

In this exercise, we are granting the government the ability to hold the capital stock (albeit

unproductively). Yet, we have not allowed creditors to do the same up to now. Assuming that

the productivity of creditors is the same as the government, creditors will not hold the domestic

capital stock if their productivity, '6, is lower than ':

'6 ≡ I
6 + ?1

?0

< '. (34)

We are going to restrict a�ention to equilibria in which the above condition holds. �is condition

is important because it allows us to evaluate whether the government may want to purchase

capital when it faces the same productivity as investors.

Note that inequality (34) implies that the government loses resources by intervening and

holding the capital stock, and as a result, it needs to tax banks in order to �nance its capital

purchases. We can see this by noticing that the government’s budget constraint can be rewri�en

as

)0 =
?0 

6

'
(' − '6) > 0,

where the inequality follows from (34).

So we have then narrowed our a�ention to a policy that is unpro�table for the government

(and undesirable for foreign investors) and requires the taxation of banks at time 0. Could such a

policy be welfare improving for banks?
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4.2.1 �eoretical Analysis

�e values for repaying and defaulting banks are analogous to those in (28) and (29) with the

di�erence that now the budget constraints for repaying and defaulting banks incorporate the taxes

needed to �nance the purchases of capital. In particular, we modify the budget constraints to be

2 ≤ (I + ?0) − '� + 1′ − ?0:
′ −)0, and 2 ≤ (I + ?0) − ?0:

′ −)0

in (28) and (29) respectively.

�e market clearing condition for capital at time C = 0 now becomes

q �
1
+ (1 − q) '

1
+  6 = . (35)

We proceed to analyze �rst the case without defaults, that is when q� = 0.

Equilibrium without defaults. Suppose that we start from an equilibrium where there are

no defaults, q� = 0. We have that

3)0

3 6

����
 6=0

= ?0

(
1 − '

6

'

)
,

In addition, totally di�erentiating the value of repayment, we obtain that

3+ '

3 6
= D′(2')

[
( − :'

1
) 3?0

3 6
− 3)0

3 6

]
+

[
D′(2') − V'+̂ '′1

(='
1
)
]
:'

1

3W0?1

3 6

+V
3+̂ '

1
(=)

3 6

�����
==='

1

+ V+̂ '′
1
(='

1
):'

1

3?1

3 6

where ='
1
= (I + ?1):'1 − '1'1 , +̂ '

1
represents next period’s value function as function of net-worth,

and :'
1

and 1'
1

represent the optimal choices for a repaying bank. Evaluating the change in the

value function at  6 = 0, we have :'
1
= . In addition, using the expression for the change in taxes

and ignoring the e�ects on future prices and W ’s (the last three terms), we have that

3+ '

3 6

����
 6=0

= −D′(2')?0

(
1 − '

6

'

)
< 0 (36)

�at is, the losses faced by the government impose a welfare cost for repaying banks.

Using that q� = 0, the total e�ect on banks’ welfare (ignoring the e�ects on future prices) is

43



then:

3,

3 6

����
 6=0

= (+ � −+ ') 3q
3 6

����
 6=0

+ 3+
'

3 6

����
 6=0

< 0

where the inequality follows given that (+ � −+ ') ≤ 0 and 3q/3 6 ≥ 0 given that q� = 0.

�e above makes clear that when there are no defaults in equilibrium, the losses by the

government policy generate welfare losses to the banking sector. Notice that this result holds

even if banks are borrowing constrained in equilibrium.

Equilibriumwith defaults. Consider now an initial equilibrium with an interiorq� . In general,

we can write the welfare e�ect as

3,

3 6
=

(
+ � −+ '

) 3q

3 6
+

[
q
3+ �

3 6
+ (1 − q)3+

'

3 6

]
(37)

In the absence of runs, the �rst term is zero. In addition, using that 3+ ' = 3+ �
and ignoring the

e�ects on future prices, we can use (36) evaluated at  6 = 0 to obtain that 3, /3 6 < 0. �at is,

welfare falls with credit easing in the absence of runs.

In the presence of runs, the �rst term in parenthesis, + � −+ ' , is not zero but strictly negative.

As discussed above, a bank that repays, obtains in equilibrium the value + (05 4 , which is larger

than+ �
. If the share of defaulting banks were to decrease with the policy, we would then have an

additional positive force for credit easing to raise welfare. To understand the welfare e�ects of

credit easing, we need to understand the sign of 3q/3 6.
Towards this, consider the market clearing condition (35). We can see that an increase in

 6 necessitates a reduction in the banks’ aggregate demand for capital: q �
1
+ (1 − q) '

1
. In

equilibrium, this could be achieved by an increase in q , as repaying banks have a lower demand

for capital than defaulting banks. So if anything, credit easing generates a force towards more

defaults, that is, higher q . But this ignores two additional e�ects. �e �rst is the lump-sum tax

required to cover the loss generated by the government policy, )0 > 0. �is loss reduces net

worth of all banks and as a result, reduces their demand for capital. �is works as a force for

reducing q .
34

A second, and potentially more important channel, is the e�ect of the policy on ?0.

A su�ciently high increase in ?0 could reduce the demands for capital enough so as to induce a

reduction in the share of defaults, q .

Under no runs, we �nd numerically, as we will see below, that both q and ?0 increase. By

contrast, in the presence of runs, we �nd that only ?0 goes up while q falls. �e reason for this

34
Note that if '6 is relatively close to ', this loss can be made arbitrary small at the margin. In addition, for a

defaulting bank, the reduction in demand as a fraction of  6 is less than one. �is implies that in an equilibrium with

q close to one, credit easing generates an excess demand for capital given prices.
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result arises because repaying banks in a fundamentals-driven crisis are net buyers of capital,

while repaying banks facing a run in a self-ful�lling crisis are net sellers of capital. Let us explain.

It is important to recall that repaying banks have higher marginal utility than defaulting banks

and thus face a higher marginal disutility from the taxes necessary to cover the government losses.

�us, keeping banks indi�erent between repaying and defaulting in a fundamentals-driven crisis

rules out a large increase in ?0—otherwise, banks’ value of repayment would be strictly lower than

the value of default. In a run-driven crisis, instead, keeping banks indi�erent between repaying

under a run and defaulting requires a large increase in ?0—since they are net sellers of capital,

this compensates for the higher relative cost of the tax. As a result of the larger increase in initial

asset prices, it follows that it is therefore possible that market clearing for capital is restored with

a reduction in the share of defaulting banks.

�ese results indicate that credit easing is ine�ective in a fundamentals-driven crisis—causing

more defaults and reducing welfare—while it may be e�ective in a run-driven crisis.

4.2.2 Numerical Results

Figure 6 presents the numerical results. We show the initial asset prices and the share of banks

defaulting for the two economies, the one without runs and the one with runs, as a function of

the size of the government asset purchases. �e top panels show that credit easing leads to a rise

in asset prices on impact in both economies.
35

Panels (c) and (d) show that the fraction of banks

defaulting increases in the economy driven by fundamentals, whereas fewer banks default in the

economy driven by runs. Moreover, one can also see that for large asset purchase, there are no

defaults in the economy without runs. �e insight is that the increase in asset prices increase the

liquidity of banks facing a run and deter investors from running in the �rst place. Credit easing

makes the banking system run-proof.

In terms of welfare, recall that equation (37) established that whenever the fraction of defaulting

banks falls, there is a positive welfare e�ect. However, the optimal credit easing policy does not

necessarily eliminate all defaults, as there are costs associated with the government losses (re�ected

in the �rst term in (37)). Moreover, as shown in Section 4.1, increases in the share of defaults may

have positive general equilibrium e�ects by reallocating wealth towards high marginal utility

repaying banks. Overall, it is possible to construct cases in which banks’ welfare goes up or down

with credit easing, depending on model parameters.
36

A result that remains general is that asset

35
For su�ciently large asset purchases, the return on capital becomes equal to the risk-free rate and further

increases in  6 lead to decline in asset prices. �is occurs because at that point banks are unconstrained and the

losses absorbed by the banks reduce the demand for capital.

36
Notice that if we were to consider the creditors’ welfare, the di�erences in the overall welfare implications of

credit easing would be even larger, as creditors bene�t from credit easing in the event of a run-driven crisis but

become worse o� in the event of a fundamentals-driven crisis.
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Fundamentals

(a) Initial asset price ?0 (b) Share of defaulting banks q

Self-Fulfilling Runs

(c) Initial asset price ?0 (d) Share of defaulting banks q

Figure 6: Credit Easing Policies

Notes: �e simulation was generated using ' = 1.1, V = 0.97/', I = V/(1− V), I = 1.15I,  = 1, and I6 = 0.8I.

�e values for initial debt are given by �0 = U�
A' + (1 − U)�A� and �0 = U�

' + (1 − U)�� with U = 0.93,

respectively for the economies with and without runs.

prices go up in both economies and the share of defaulting banks moves in opposite directions

(i.e., more banks default in the economy without runs and fewer banks default in the economy

with runs).

4.3 Discussion

�e central policy prescription of our model is that the desirability of credit easing during a

�nancial crisis depends on whether a crisis is driven by fundamentals or by self-ful�lling runs.
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�e result that credit easing is undesirable in the absence of a run may be surprising in light

of much of the literature on unconventional policies that a�ributes a stabilizing role to asset

purchases during �nancial crises. Two features of our analysis explain the di�erences in the

results.

First, our model allows for equilibrium strategic default in response to the policy intervention.

In particular, when asset prices go up in response to credit easing, the share of defaulting banks go

up in the absence of runs. When the government purchases assets and raise asset prices, the value

of repayment is reduced since a repaying bank is a net buyer of assets in a mixed equilibrium. On

the other hand, defaulting banks are net sellers, and so the value of default goes up relative to

the value of repayment, given everything else constant. In equilibrium, the value of default and

repayment are equated, but the share of defaulting banks increases.

Second, we assume that the government makes losses with the intervention. In particular,

the return on asset holdings is lower than the risk-free rate (thus, ensuring that investors are

not willing to hold capital). �e fact that the government purchases end up reducing resources

available implies that welfare is reduced with credit easing.

�e other key result is that credit easing may be desirable during runs. �e key intuition

for this result is that repaying banks facing a run are net sellers of assets and thus bene�t from

increases in asset prices.
37

�is makes investors less prone to run, and in equilibrium the share of

defaulting banks decrease. Even though banks ultimately bear the losses from the government

purchases, the reduction in ine�cient defaults implies that credit easing may raise welfare.

Finally, we also note that the importance of considering general equilibrium e�ects is also

likely to be relevant to examine the e�ectiveness, or ine�ectiveness, of other policies. One example

is lender of last resort. In fact, our analysis underscores that for lender of last resort policies to

be e�ective, they must cover a signi�cant share of the �nancial system. To �x ideas, consider

an equilibrium where 20% of the banks will face a run and default. A government guarantee to

provide liquidity to this speci�c subset of institutions would be successful at protecting them from

runs. However, since q is determined in general equilibrium, other banks would now be facing

runs. �us, despite the government policy being successful at protecting this subset, there would

still be 20% of banks defaulting.
38

37
Notice that the fact that repaying banks facing a run bene�t more than repaying banks that are safe is independent

of the speci�c assumptions about the outside option of the bank in case of default. In this sense, our model generally

predicts that credit easing is relatively more desirable in a crisis driven by runs.

38
�is result may shed some light of why during the 2008 �nancial crises, the �nancial system was vulnerable to

runs despite many banks having access to liquidity support by the Federal Reserve.
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5 Conclusions

We developed a tractable dynamic general equilibrium model of self-ful�lling bank runs. �e

model features banks that face limited commitment and optimally choose portfolios, equity, and

default decisions. �ese decisions are dynamic and depend on the entire sequence of asset prices,

which are endogenously determined in equilibrium. We provide an analytical characterization

of when an individual bank defaults because of fundamentals, when it defaults because of a

self-ful�lling run, and when it is solvent and liquid and continues to operate. We then characterize

the evolution of asset prices and the fraction of banks that default in general equilibrium. For

intermediate values of debt, we �nd that the only equilibrium features a strictly interior fraction

of defaulting banks.

We argue that the interplay between bank runs and general equilibrium has distinctive policy

implications. A policy insight is that the e�ectiveness of credit easing during a crisis depends on

whether the crisis is driven by fundamentals or by self-ful�lling runs. When a crisis is triggered

by fundamentals, credit easing leads to more banks defaulting in equilibrium, as the increase in

asset prices reduces the value of repaying banks who are net buyers of the assets. When a crisis is

instead triggered by self-ful�lling runs, credit easing becomes stabilizing. Repaying banks facing

a run bene�t from the increase in asset prices and therefore become less vulnerable to a run.

One may argue that in practice, it may be di�cult for policy makers to infer whether a crisis is

driven by fundamentals or by self-ful�lling beliefs. Indeed, our model argues that understanding

the source of the crisis is critical to evaluating the desirability of a policy such as credit easing.

At the same time, through the lens of our model, policy makers can infer the source of the crisis

based on the credit easing’s di�erential impact on the economy. We leave these issues for future

work.
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Online Appendix to “Bank Runs,

Fragility, and Credit Easing”

By Manuel Amador and Javier Bianchi

A Proofs for Section 2.1–2.2 (Partial Equilibrium)

A.1 Proof of Lemma 1

Proof. �e problem of a bank under default facing a sequence of prices {?C }∞C=0
is given by

+�C (:) = max

:′,2
log(2) + V+�C+1(: ′) (A.1)

subject to

2 = (?C + I): − ?C: ′

We conjecture that

+�C (:) = B�C +
1

1 − V log(: (I + ?C )) (A.2)

Replacing this conjecture into (A.1) and substituting out consumption from the budget constraint, we have

that

+�C (:) = max

:′
log(I: + ?C (: − : ′)) + V

[
1

1 − V log(: ′(?C+1 + I)) + B�C+1
]

(A.3)

�e �rst-order condition with respect to : ′ is given by

?C

I: + ?C (: − : ′)
=

(
V

1 − V

)
1

: ′

⇒ : ′ =
V (I + ?C )

?C
: (A.4)

By the method of undetermined coe�cients, we can now verify the conjecture and solve for B�C . We

substitute (A.4) into the right-hand side of (A.3) and replace the conjectured guess for +�C (:) on the

le�-hand side of (A.3).

B�C +
1

1 − V log((I + ?C ):) = log

(
(1 − V) (I + ?C ):

)
+ V

[
1

1 − V log

(
V'�C+1(I + ?C ):

)
+ B�C+1

]
where we have used the de�nition of '�C+1. Rearranging this equation, we can observe that the terms

multiplying log(:) cancel out. A�er simplifying, we obtain that the conjectured value function is veri�ed

when B�C satis�es:

B�C = log(1 − V) + V

1 − V log(V) + V

1 − V log

(
'�C+1

)
+ VB�C+1 (A.5)
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Iterating forward on this equation and imposing limg→∞ Vg log

(
'�g+1

)
= 0, as in Condition 1, we have

B�C =
1

1 − V

[
V

1 − V log(V) + log(1 − V)
]
+ V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
(A.6)

Replacing (A.6) in (A.2), we obtain that the value under default is given by

+�C (:) = � +
1

1 − V log((I + ?C ):) +
V

1 − V
∑
g≥C

Vg−C log

(
'�g+1

)
where

� =
log(1 − V) + V

1−V log(V)
1 − V .

We thus arrived at equation (7), as stated in the lemma. �

A.2 Proof of Lemma 2

Proof. Using the de�nition of net worth, = = (I + ?C ): − '1, and replacing in the budget constraint of the

bank (1), we obtain

2 = = + @C (1 ′, : ′)1 ′ − ?C: ′ (A.7)

Updating the de�nition of net worth for the following period, we have

=′ = (I + ?C+1): ′ − (1 + A )1 ′. (A.8)

�e value function under repayment can then be wri�en with net worth as a single state variable with the

law of motion given by (A.8).

We also have that 1 ′ > 1 C+1(: ′) cannot be a choice of the bank because this would imply @C = 0. As a

result, the bank faces the risk-free price @ = 1 as long as 1 ′ ≤ 1 C+1(: ′).
Using (A.7), (A.8) and the equilibrium price and borrowing constraint, we arrive at (8). �

A.3 Proof of Lemma 3

Proof. For part (i). Let = > 0 be the current networth. Consider a policy such that 2 = = > 0. Let 1 ′ = ?C: ′

for some : ′ > 0. �is means that the budget constraint holds. Note that the borrowing constraint is:

1 ′ ≤ WC?C+1: ′⇔ ?C ≤ WC?C+1

which is satis�ed given the premise of part (i). Next period networth is =′ = (I + ?C+1): ′ − '?C: ′ =
(':C+1 − ')?C: ′ which is strictly positive and strictly increasing in : ′ given that ':C+1 > '. �us a bank can

make its next period networth arbitrarly large by having an arbitrarly large demand for capital. Given that

the +̂ 'C+1(=′) ≥ +�C (: ′), and +�C (: ′) goes to in�nity as : ′ goes to in�nity, it follows the the bank valuation

is in�nite.

For part (ii). Note that from the budget constraint, together with the borrowing limit, we have

2 = = + 1 ′ − ?C: ′ ≤ = + (WC?C+1 − ?C ): ′

And thus, given that WC?C+1 < ?C , a su�ciently large : ′ will generate a negative consumption. �us, the
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demand for capital is �nite.

Suppose now that the borrowing constraint is slack. �at is 1 ′ < WC?C+1: ′. Consider now an increase in

1 ′ by Δ > 0, small enough. with an associate increase in : ′ given by Δ/?C . Note that this change leaves

current consumption unchanged. In addition, Δ > 0 can be chosen su�ciently small to keep the borrowing

constraint holding. �e change in networth next period implied by this policy is given by (':C+1 − ')Δ > 0,

and thus we have found an improvement. It must be then that the borrowing constraint is binding.

For part (iii). Suppose that the demand for capital is strictly positive. Let (2, : ′, 1 ′) be a potential solution

to the bank problem with : ′ > 0. Consider the following alternative policy with zero investment in capital:

(2, ˜: ′, ˜1 ′) = (2̃, 0, 1 ′ − (I + ?C+1): ′/'). Using the law of motion for net worth, we can see that next-period

net worth is given by

=̃′ = (I + ?C+1): ′ − '1 ′

which is the same net worth as the original allocation. In addition, current consumption is higher with the

new policy:

2̃ = = + 1 ′ − ?C:
′

'
> = + 1 ′ − ?C:

′ = 2

So the alternative policy delivers same continuation value and higher current consumption. Hence, an

allocation with : ′ > 0 cannot be optimal. �

A.4 Proof of Lemma 4

We conjecture that the value function is

+̂ 'C (=) =
1

1 − V log(=) + B'C (A.9)

�e borrowing constraint must be such that the bank does not default at C + 1. �at is,

B'C+1 +
1

1 − V log(=′) ≥ B�C+1 +
1

1 − V log((I + ?C+1): ′)

Replacing =′ for the law of motion and manipulating this expression, we arrive to

1 ′ ≤

[
(I + ?C+1) − (I + ?C+1)4 (1−V) (B

�
C+1−B'C+1)

]
'

: ′

�erefore, the borrowing constraint takes a linear form, as conjectured. In particular,

1 ′ ≤ WC?C+1: ′

where WC is the leverage parameter and is given by

WC =
(I + ?C+1) − (I + ?C+1)4 (1−V) (B

�
C+1−B'C+1)

'?C+1
. (A.10)

We establish now that if ':C+1 > ', the borrowing constraint binds at time C .

Lemma A.1. If ':C+1 > ', then the bank is against the borrowing constraint.

Proof. �e proof is by contradiction. Denote (2∗C , :∗C+1, 1∗C+1) the solution to the bank problem with 1∗C+1 <
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WC?C+1:∗C+1. Consider the following alternative policy (2∗C , ˜:C+1 + Δ, ˜1C+1 + Δ?C ) with 0 < Δ <
WC?C+1 ˜:C+1− ˜1C+1
?C−WC?C+1 .

�e alternative allocation is feasible and delivers higher net worth since:

=̃C+1 = ( ˜:C+1 + Δ) (I + ?C+1) − ' ˜1C+1 + Δ?C )
= ˜:C+1(I + ?C+1) − ' ˜1C+1) + Δ(':C+1 − ')
> ˜:C+1(I + ?C+1) − ' ˜1C+1 = =

∗
C+1

where =̃C+1 and =∗C+1 are respectively the net worth under the alternative and original allocations.

Since the alternative allocation delivers the same consumption and higher net worth, this contradicts

that the original allocation with a slack borrowing constraint is optimal. �

We now proceed to �nish the proof of Lemma 4.

Proof. Consider �rst the case with ':C+1 > '. From Lemma A.1, we know that borrowing constraint binds,

and hence we can use 1 ′ = WC?C+1: ′. Replacing this in the law of motion for net worth and consumption,

we obtain:

=′ = : ′(I + ?C+1) − WC?C+1: ′',

and

2 = = − : ′(?C − WC?C+1) .

Replacing these two expressions and the conjectured value function (10) into (8), we have

+̂ 'C (=) = max

:′
log(= − : ′(?C − WC?C+1)) + V

[
1

1 − V log(: ′(I + ?C+1(1 − WC')) + B'C+1
]

(A.11)

�e �rst-order condition with respect to : ′ is

?C − WC?C+1
= − : ′(?C − WC?C+1)

=

(
V

1 − V

)
1

: ′

and yield

: ′ =
V=

?C − W?C+1
, (A.12)

2 = (1 − V)=, (A.13)

and

=′ =
V=

?C − WC?C+1
(I + ?C+1(1 − WC'))

Notice that by de�nition of '4 , we have that

'4C+1 =
I + ?C+1(1 − WC')
?C − WC?C+1

(A.14)
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Using (A.12), (A.14), and replacing (A.9) on the le�-hand side of (A.11)

B'C +
1

1 − V log(=) = log ((1 − V)=) + V
[

1

1 − V log(V='4C+1) + B'C+1
]

Rearranging this equation, we can observe that the terms multiplying log(=) cancel out. We therefore

obtain that the conjecture is veri�ed when the B'C satis�es:

B'C =
V

1 − V log(V) + log(1 − V) + V

1 − V log('4C+1) + VB'C+1 (A.15)

Iterating forward and imposing limC→∞ VCB'C = 0, we have

B'C =
1

1 − V

[
V

1 − V log(V) + log(1 − V)
]
+ V

1 − V
∑
g≥C

Vg−C log

(
'4C+1

)
(A.16)

so the value under default is given by

+ 'C (=) =
1

1 − V log(=) + B'C

where B'C is given by (A.16). Equivalently, using de�nition of '4 and �, we arrive to

+̂ 'C (=) = � +
1

1 − V log(=) + V

1 − V

∞∑
g≥C

Vg−C log('4g+1),

which is the expression (10).

Notice also from (A.12) and (A.13) and the fact that 1 ′ = WC?C+1: ′ that we have also veri�ed the policies

in item (ii) of the lemma for the case of ':C+1 > '.

Finally, it is straightforward to verify that in the case of ':C+1 = ', the conjectured value function (A.9)

solves the Bellman equation and that the bank is now indi�erent across 1 ′, : ′ while consumption remains

given by (A.13). �is completes the proofs of the three items in the lemma. �

A.5 Proof of Proposition 1

Proof. From the de�nition of WC in (A.10), we obtain

V

1 − V log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V (B�C+1 − B'C+1) (A.17)

To obtain an expression for the right-hand side of (A.17), we use (A.6) and (A.15), and obtain that the

di�erence in the intercepts in the value functions is given by

B�C − B'C = V (B�C+1 − B'C+1) +
V

1 − V
[
log('�C+1) − log('4C+1)

]
) (A.18)

Using the de�nition of '� and '4 and replacing (A.17)

B�C − B'C = V (B�C+1 − B'C+1) −
V

1 − V

[
log

(
I + ?C+1(1 − WC')
?C − WC?C+1

)
− log

(
I + ?C+1
?C

)]
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Using that using that log(?C − WC?C+1) = log

(
1 − WC ?C+1?C

)
+ log(?C ) and simplifying,

B�C − B'C = V (B�C+1 − B'C+1)−
V

1 − V

[
log (I + ?C+1(1 − WC')) − log

(
1 − WC

?C+1
?C

)
+ log(?C ) − log

(
I + ?C+1
?C

)]
Replacing (A.17) and simplifying, we arrive to

B�C − B'C =
V

1 − V

[
log

(
1 − WC

?C+1
?C

)]
(A.19)

Updating (A.19) one period forward and replacing in (A.17):

log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V log

(
1 − WC+1

?C+2
?C+1

)
Simplifying we arrive

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
which is the expression in the proposition. �

A.6 Proof of Lemma 5

Proof. We have already argued that � is continuous, strictly increasing and strictly concave in [0, 1] and

that � (0) < 0 and � (1) ≤ 1.

Note that

� ′(W) = '

'�

1

V

(
':/' − W
'�/'

) 1−V
V

Let W0 be such that � ′(W0) = 1. �is implies that

W0 =
':

'
− 1

V

(
V'�

'

) 1

1−V

� (W0) = 1 −
(
V'�

'

) 1

1−V

Note that if V'�/' ≥ 1 then ': > '� ≥ '/V > ' and thus � (1) < 1. Note that this implies that

� (W0) < 0, and thus, together with concavity, it also implies that there is no �xed point in [0, 1].
For the case where V'�/' < 1, we have that there are two solutions if � (W0) > W0. If � (W0) = W0, then

there is just one �xed point. Finally if � (W0) < W0, then there are no solutions. �is amount to checking the

condition

V':/' < V + (1 − V) (V'�/')
1

1−V

for two solutions, with equality for one, and with reverse inequality for none. �
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A.7 Proof of Lemma 6

Part (i):

Proof. Based on Lemma 5, we �rst show that of the two �xed points of (11), one of them violates the no-Ponzi

condition. For this is su�cient to check that only one of the two �xed points satis�es W < W#% =
'−V':
(1−V)' .

Note that it su�ces then to show that � (W#% ) > W#% , which is equivalent to:

1 −
(
': − '

'� (1 − V)

)1/V
>
' − V':
'(1 − V)

If ': > ', the inequality is equivalent to V':/' < V + (1 − V)
(
V'�/'

) 1

1−V
, and thus, the two �xed points

lie at opposite sides of W#% and only the smaller one is valid.

If ': = ', then W#% = 1 is a �xed point, and thus the other �xed point is necessary valid as it is less

than W#% .

Let W★ denote the valid �xed point. Note W★ is the “unstable” solution to the dynamic system implied by

WC+1 = � (WC ). �us if WC < W
★

, then eventually the subsequent sequence of W must become negative. On the

other hand, if WC > W
★

, then the subsequent sequence of W converges to the highest �xed point from above,

violating the no-Ponzi condition.

�us the only equilibrium consistent sequence of borrowing limits keeps WC = W
★

at all times. �

Part (ii):

Proof. If V'�/' ≥ 1, or V':/' > V + (1 − V) (V'�/')1/(1−V) , then, from Lemma 5, there are no �xed points

and � (W) < W for all W ∈ [0, 1]. �is implies that any sequence of W that satisfy WC+1 = � (WC ) must eventually

reach negative, a contradiction.

Note that if V':/' = V + (1 − V) (V'�/')1/(1−V) , there is unique �xed point, which corresponds exactly

to W#% . Given that � (W) < W for W < W#% , this implies that any sequence where WC < W
#%

for some C must

eventually reach a negative value. In addition if WC > W
#%

, then the sequence converges to W#% , violating

the no-Ponzi condition. �

A.8 Proof of Corollary 1

Proof. Note that the function � (W) = 1 − ((': − 'W)/'� )1/V is increasing in ', decreasing in ': (and thus

in I), and increasing in '� (and thus in I). �is immediately implies that the lowest �xed point is decreasing

in ' and I and increasing in I.

For the comparative statics with respect to V note that � is decreasing in V for values of W such that

� (W) > 0; the relevant domain range for the �xed points. It follows then that the lowest �xed point is

increasing in V .

For the comparative statics with respect to ? note that� can be wri�en as 1−
(

1−W'/':
'�/':

)
1/V

. An increase

in ? increases '�/': and decreases ': and thus increases � . �us the lowest �xed point decreases with

? . �
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B Proofs for Sections 2.3– 2.5 (General Equilibrium)

B.1 Proof of Proposition 2

Part (i): Default equilibrium.

Proof. If all banks default, we have that the �rst-order condition for banks in equilibrium is

?� = V (I + ?� ) (B.1)

⇒ ?� =
V

1 − V I (B.2)

Denoting by W� , the value of W in a stationary equilibrium with default, we have, by (16) that

W� = � (W� , ?� ) (B.3)

To ensure existence of a default equilibrium, we must have a solution of � given the value of ?� . Note

that by construction V'� = 1 and thus V'�/' < 1. Using the other condition in item (i) of Lemma 5 and

replacing the value from ?� from (18), we arrive at the condition in the text. �e fact that q = 1,  �C+1 = ,

 'C+1 = 0 and �C+1 = 0, ?C = ?
�

and WC−1 = W
�

for all C ≥ 0, 2 = I if �0 ≥ W�?� is immediate. �

Part (ii): Repayment equilibrium.

Proof. Taking �rst order conditions when the bank repays, we have that

`2 = 1 − V (1 + A ) (B.4)

`W2 = 1 − V
(
I + ?
?

)
(B.5)

Combining these two we obtain an equation for ?' as a function of W' :

?' =
VI

1 − V − (1 − V')W'

Using the this, we have that a �xed point W = � (W, ?) requires that

(1 − W) =
(

I(1 − W)
(1 − V)I + VI − (1 − V')IW

)
1/V

Ignoring the solution W = 1 (which is never valid), we have that we are looking for a root of ℎ(W):

ℎ(W) ≡ I(1 − W)1−V − [(1 − V)I + VI − (1 − V')IW] .

Note thatℎ(0) > 0 andℎ(1) < 0, soℎ has a root in (0, 1). Note also thatℎ′(W) = −(1−V)I(1−W)−V +(1−V')I
and that ℎ′′(W) < 0 for W ∈ (0, 1). Given that ℎ′(0) = −(1 − V) (I − I) − V (' − 1)I < 0 it follows that ℎ is

strictly decreasing in (0, 1) and thus has a unique root, W' .

Finally, note that

W#% =
' − V':
'(1 − V) = W

' + (' − 1) 1 − W'
'(1 − V) > W

'
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and thus, the unique root W' < W#% and is valid �xed point (it satis�es the no-Ponzi condition).

Starting from �0 = W'?' , this implies that it is an equilibrium that no banks default, q = 0 and the

economy remains stationary at ? = ?� . �

B.2 Proof of Proposition 3

Proof. We have that indi�erence at the stationary points imply

+� ((I + ?� ) ;?� ) = + ' ((I + ?� ) − ' W�?� ; {?� , W� })

and

+� ((I + ?') ;?') = + ' ((I + ?') − ' W'?' ; {?', W'})

where we highlight the dependence of the stationary values on the equilibrium prices and borrowing limits.

In the stationary equilibrium with default, we have that defaulting banks choose to invest and consume

2� = I forever. In the stationary repayment equilibrium, a bank that defaults could also choose to invest ,

consuming 2� forever. �us, the value for a bank that defaults in the stationary repayment equilibrium

must be weakly higher than in the default equilibrium:

+� ((I + ?') ;?') ≥ +� ((I + ?� ) ; ?� )

�is implies that the value of repayment in a stationary equilibrium in which banks repay must also be

larger. �at is, the three equations above imply that

+ ' ((I + ?') − '�', {?' ;W'}) ≥ + ' ((I + ?� ) − '�� ; {?� , W� }) (B.6)

Assume towards a contradiction of the Proposition that�
'
= W'?' > W�?� = �

�
. We can then show that

(B.6) is violated.

In the stationary repayment equilibrium, consumption of a repaying bank is:

2''C ≡ I − (' − 1)�'

for all C .

In the stationary default equilibrium, a repaying bank can achieve a policy of purchasing every period,

keep the same level of debt and consume 2'� :

2'� ≡ I − (' − 1)�� > I − (' − 1)�' = 2''

where the inequality follows from�
'
> �

�
.

Given that it is feasible for a repaying bank in a stationary default equilibrium to have higher consump-

tion than a repaying bank in a stationary repayment equilibrium, it’s value must be strictly higher. But

then this contradicts (B.6). �

B.3 Proof of Proposition 4

�e proof has several parts. Let us �rst state some preliminary results.

�e evolution of  �C , the level of capital in defaulting banks, is as follows. Let #�
C denote the net worth

of defaulting banks, #�
C = (I + ?C ) �C . In equilibrium, #�

C+1 = V ((I + ?C+1)/?C )#�
C . As a result,  �C evolves
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according to:

 �C+1 = V
I + ?C
?C

 �C .

So, given a sequence of ?C and a initial value of  0, we can determined the sequence of  �C for all C ≥ 1.

Note that this in equilibrium also determines the sequence of  'C as = (1 − q) 'C + q �C .

For repaying banks, let net worth be #'
C = (I+?C ) 'C −'�C . �en, #'

C+1 = V'
4
C+1#

'
C . �us, the evolution

of �'C is

�C+1 =
1

'

[
(I + ?C+1) 'C+1 − V'4C+1

(
(I + ?C ) 'C − '�C

)]
where recall '4C+1 was de�ned in equation (9).

�e sequence of prices and borrowing limits must also be consistent with the optimal capital decisions

of repaying banks. If ':C+1 > ' then

 'C+1 =
V ((I + ?C ) 'C − '�C )

?C − WC?C+1
.

Otherwise, ?C+1 = '?C − I. Finally, equation (G) imposes a restriction on the evolution of WC and ?C .

We now derive the dynamic system. Let us de�ne

˜1C =
(1 − q)�C

 
, ˜:C =

(1 − q) 'C
 

, =̃C =
(1 − q)=C

 

Using that  �C+1 = V
(I+?C ):
?C

from the bank problem under default and market clearing, (14), we arrive to

(1 − ˜:C+1) = V
(
I + ?C
?C

)
(1 − ˜:C ) (B.7)

Using the de�nitions, we also have

=̃C = (I + ?C ) ˜:C − ' ˜1C (B.8)

From the bank’s budget constraint:

?C ˜:C+1 − ˜1C+1 = V=̃C (B.9)

Recall the equilibrium consistent borrowing limits are given by

I + ?C+1(1 − WC')
I + ?C+1

=

(
1 − WC+1

?C+2
?C+1

)V
(G)

Note that above also holds at C = −1, as q is interior.

Consider the le�-hand side. Using that the borrowing constraint binds (as ':C+1 > ' by the hypothesis

of the proposition), and that
˜10 = W−1?0:0, we obtain that

I + ?C+1(1 − WC')
I + ?C+1

=
(I + ?C+1) ˜:C+1 − ' ˜1C+1

(I + ?C+1) ˜:C+1
(B.10)

for all C ≥ −1.
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Consider now the right-hand side of (G).(
1 − WC+1

?C+2
?C+1

)V
=

(
V=̃C+1

?C+1 ˜:C+2

)V
=

(V=̃C+1)V[
?C+1 − V (I + ?C+1) (1 − ˜:C+1)

]V (B.11)

where the �rst line used (B.9) together with the binding borrowing constraint, and the second line used

(B.7).

Combining (B.10) and (B.11), we obtain[
(I + ?C+1) ˜:C+1 − ' ˜1C+1

]
1−V [

?C+1 − V (I + ?C+1) (1 − ˜:C+1)
]V

VV (I + ?C+1) ˜:C+1
= 1 (B.12)

which is the expression in the proposition. Together with (B.7), (B.8), and (B.9) they conform the dynamic

system.

To establish uniqueness, we �rst establish the following result

Lemma B.1. In a mixed equilibrium with q ∈ (0, 1) and ':C+1 > ' for all C , we have that (i) ' ˜1C > (I − I) ˜:C ;
and (ii) ?C >

V

1−V I for all C ≥ 0.

Proof. Part (i) Suppose ' ˜1C ≤ (I − I) ˜:C for some C ≥ 0. �en,

=̃C = ˜:C (Ī + ?C ) − ' ˜1C ≥ (Ī + ?C ) ˜:C − (Ī − I) ˜:C = (I + ?C ) ˜:C .

Hence a repaying bank at some point will have net-worth such that #'
C > (I + ?C ) 'C . �e fact that

'4C+1 > '�C+1, for all C ≥ 0, implies that such a bank cannot be indi�erent between default and repayment (and

most strictly prefer to repay). �us violating the binding borrowing constraint that requires indi�erence

between default and repayment. �us ' ˜1C > (I − I) ˜:C .
Part (ii) Suppose towards a contradiction that ?C ≤ V

1−V I.

Now consider (B.12). Summing and subtracting I:C , we obtain:

" ≡

[
(I + ?C ) ˜:C − (' ˜1C − (I− I) ˜:)

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C
= 1

Using that ' ˜1C > (I − I) ˜:C we have

" <

[
(I + ?C ) ˜:C

]
1−V [

?C − V (I + ?C ) (1 − ˜:C )
]V

VV (I + ?C ) ˜:C

=

[(
?

V (I + ?) − 1

)
1

:
+ 1

]V
≤ 1

where the last inequality follows from the fact that
?

V (I+?) − 1 ≤ 0 if and only if ?C ≤ V

1−V I. We therefore
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reaching a contradiction that " < 1. We must have ?C >
V

1−V I. �

From (B.7), we have that

˜:C+1 =1 − V
(
I + ?C
?C

)
(1 − ˜:C ) (B.13)

>1 − (1 − ˜:C ) = ˜:C (B.14)

where the inequality follows from ?C > V
I

1−V . Using also that :0 = 1 − q , we obtain 1 − (1 − q) '
1
/ < q ,

and  '
1
> . Market clearing then implies that  �

1
< . It follows then that  'C+1 >  �C+1.

We now establish uniqueness of the dynamic evolution. �at, we show that for any
˜:, ˜1 such that

' ˜1 > (I− I) ˜: , there exists a unique value of ? such that

" (?) ≡

[
(I + ?) ˜: − (' ˜1 − (I− I) ˜:)

]
1−V [

? − V (I + ?) (1 − ˜:)
]V

VV (I + ?) ˜:
= 1

To see this note that

lim

?→∞
" (?) =

˜:1−V (1 − V (1 − ˜:))V

:VV
=

1/V − 1 + ˜:

˜:
> 1 (B.15)

In addition,

"

(
VI

1 − V

)
<
((I + ?):)1−V

(I + ?):VV

[(
?

V (I + ?) − 1

)
1

:
+ 1

]V �����
?=VI/(1−V)

= 1 (B.16)

So there exists a solution to " (?) = 1 with ? >
VI

1−V .

For uniqueness, we have that " ′(?) > 0 for ' ˜1 > (I− I) ˜: and ? > VI/(1 − V). �us, there is a unique

solution to " (?) = 1.

Finally, we show that 2'
0
< 2�

0
. Given the linear policy rules, it su�ces then to show that (I+?0) −'�0 <

(I + ?0) . But this follows immediately from ' ˜10 > (I− I) ˜:0.

C Proofs for Section 3 (Bank Runs)

C.1 Proof of Lemma 7

Proof. Consider problem (22). We know, based on Lemma 4, that the continuation value can be expressed as

+
(05 4

C+1 (=) = B
(05 4

C+1 +
1

1 − V log(=) (C.1)

where B
(05 4

C has the same form as B'C from (A.15) but WC will be di�erent as we will see.

B
(05 4

C =
V

1 − V log(V) + log(1 − V) + V

1 − V log('4C+1) + VB
(05 4

C+1
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Replacing (C.1) into (22) and taking �rst-order conditions in (22), we obtain

1

= − ?C: ′
?C =

V

1 − V
1

: ′

⇒ : ′ = V
=

?C
(C.2)

Plugging back (C.2) into the right hand side of (22) and using (C.1), we obtain

+̂ 'D=C (=) = log(=) + log(1 − V) + V
[

1

1 − V log

(
V':C+1=

)
+ B(05 4

C+1

]
A�er simplifying, we can express

+̂C
'D= (=) = B'D=C + 1

1 − V log(=) (C.3)

where

B'D=C =
V

1 − V log(V) + log(1 − V) + V

1 − V log

(
':C+1

)
+ VB(05 4

C+1 (C.4)

Replacing the value for B
(05 4

C+1 from (C.1) in (C.4) and iterating forward, we obtain

B'D=C = � + V

1 − V

[
log

(
':C+1

)
+

∑
g≥C+1

Vg−C log('4g+1)
]

(C.5)

�is completes the proof. �

C.2 Proof of Proposition 5

Proof. As in Proposition 1, we can use +̂ 'D=C instead of +̂ 'C and obtain that:

V

1 − V log

(
I + ?C+1(1 − WC')

I + ?C+1

)
= V (B�C+1 − B'D=C+1 ) (C.6)

To obtain an expression for the right-hand side of (C.6), we �rst use

B'D=C − B(05 4C =
V

1 − V

[
log

(
':C+1

)
− log('4C+1)

]
Using (C.5) and (A.5)

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V (B�C+1 − B

(05 4

C+1 )

Adding and substracting VB'D=C+1 , we get:

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V (B�C+1 − B'D=C+1 ) + V (B'D=C+1 − B

(05 4

C+1 ) (C.7)
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Combining (C.7) with (C.5) and (C.6):

B�C − B'D=C =
V

1 − V

[
log

(
'�C+1

)
− log(':C+1)

]
+ V

1 − V log

(
I + ?C+1(1 − WC')

?C+1 + I

)
+ V2

1 − V

[
log

(
':C+1

)
− log('4C+1)

]
Updating one period forward and replacing in (C.6):

1

1 − V log

(
I + ?C+1(1 − WC')

?C+1 + I

)
=

V

1 − V

[
log

(
'�C+2

)
− log(':C+2)

]
+

V

1 − V log

(
I + ?C+2(1 − WC')

?C+2 + I

)
+ V2

1 − V

[
log

(
':C+2

)
− log('4C+2)

]
A�er algebraic manipulations, we arrive to the expression (G-run) in the proposition. �

C.3 Proof of Lemma 8

Proof. Recall that W#% =
'−V':
' (1−V) , We have already argued that�A is strictly concave in W ∈ [0, 1]. In addition,

�A (0) = 1 −
(
':

'�

)
1/V2

< 0 given that ': > '� and �A (1) ≤ 1. Hence �A admits at most two �xed points.

We are looking for a stationary value of W such that W = �A (W, ?) and W < W#% .

For part (i). First, note that V'�/' < 1 implies V':/' < 1. To see this, note that if V':/' ≥ 1, then

V + (1 − V) (V'�/')
1

1−V (V':/')−V < 1, and thus the �rst condition in part (i) generates a contradiction.

Next, we have that V':/' < 1 implies that W#% > 0. In addition, that ': ≥ ' guarantees that W#% ≤ 1.

�e �rst condition in part (i) implies that �A (W#% ) > W#% . �us, there are two �xed points in (0, 1], but

only the lowest one is valid (that is, strictly less than W#% ).

For part (ii). If V'�/' ≥ 1, then V':/' > 1 and W#% ≤ 0. �us any stationary solution in (0, 1)
necessarily violates No Ponzi condition.

Suppose instead that V'�/' < 1 and

V':/' ≥ V + (1 − V) (V'�/')
1

1−V (V':/')−V (C.8)

Note that

� ′A (W) =
(
1 + 1 − V

V2

) (
1 − '

':
W

) 1−V
V2

(
':

'�

) 1

V2 '

':

Note that (C.8) implies that � ′A (W#% ) > 1. To see this, suppose not and � ′A (W#% ) ≤ 1. �en, we have that

'� ≥
(
1 − V + V2

V

)V2

(': )V (1−V)
(
'

V

)V2 (
': − '
1 − V

)1−V

66



Given that
1−V+V2

V
≥ 1, the above implies by

'� > (': )V (1−V)
(
'

V

)V2 (
': − '
1 − V

)1−V

But this is equivalent to V':/' < V + (1 − V) (V'�/')
1

1−V (V':/')−V , a contradiction of (C.8). �us a

� ′A (W#% ) > 1.

Given that �A (W#% ) ≤ W#% (from the same argument in part i) and � ′A (W#% ) > 1, it follows that all

potential �xed points are such that W ≥ W#% , a violation of the no-Ponzi condition. �

C.4 Proof of Proposition 6

Proof. �e proof follows closely the proof of Proposition 2. Notice that, in fact, conditions (25) and (27) and

are identical to (18) and (20).

For part (i): the default equilibrium.

�e argument in the proof of Proposition 2 implies that ?� = VI/(1 − V). And the value of W� must be

a �xed point of �A given ?� .

Note that V'�/' < 1 as V'� = 1 given the value of ?� . �e condition that V':/' < V + (1 −
V) (V'�/')

1

1−V (V':/')−V can be rewri�en as requiring �at

G < V + (1 − V) G−V

'1/(1−V)

where G ≡ V':/'. �is is equivalent to

G1+V − VGV − 1 − V
'1/(1−V) < 0

�e le� hand side of the above inequality is strictly negative at G = V and strictly positive at G = 1. In

addition, ℎ is convex for G ∈ [V,∞) and thus there is a unique value G0 ∈ [V,∞) so that the le� hand side is

zero. �is value is such that G0 ∈ (V, 1), and G
V

0
(G0 − V) = (1 − V)'−1/(1−V)

.

For any value G < G0, then we have that

V':/' < V + (1 − V) (V'�/')
1

1−V (V':/')−V

and thus Lemma 8 implies that there is a valid stationary value of W given ?� .

Rearranging the condition that G < G0 we obtain the condition in part (i) of the Proposition.

For part (ii): the repayment equilibrium.

�e same argument as in the proof of Proposition 2 delivers that the stationary price must solve (27)

and that W must be a �xed point of �A given ? .

Plugging the price into the �xd point equation, and manipulating (and ignoring the W = 1 root, which

cannot be valid), we have that WA' must solve:

ℎ(W) ≡ I(1 − W)1−V (1 − (1 − V')W)V (1−V) − [(1 − V)I + VI − (1 − V')IW] = 0
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We note that ℎ(0) > 0 and ℎ(1) < 0. In addition ℎ is strictly convex in (0, 1), and thus it features a unique

root.

�e same argument as in the proof of Proposition 2 guarantees that such a root is strictly below the

associated W#% given the corresponding equilibrium price, completing the proof. �

C.5 Proof of Lemma 9

Proof. Part (i). Given that ?A� = ?� we dropped the dependence on the price in what follows.

We know that if a default equilibrium without runs exists, then

I

I
<

' − 1

V−1 − 1

+ '−
V

1−V .

But this implies that

I

I
<

' − 1

V−1 − 1

+ '
− V

1−V

G
V

0

as G0 ≤ 1. And thus, a default equilibrium with runs exists as well.

Consider now the following value of W :

WF ≡ '
:

'

[
1 −

(
'�

':

) 1

1−V
]

We have that W� ≥ WF . To see this note that

� (WF) = 1 −
(
': − 'WF

'�

) 1

V

= 1 −
(
'�

':

) 1

1−V
< WF

where the last inequality follows from ': > '� = 1/V ≥ '. Note also that

� ′(WF) = 1

V

(
': − 'WF

'�

) 1−V
V '

'�
=
'�

':
' =

'

V':

From the condition for the existence of a stationary equilibrium in Lemma 5, we know that V':/' < 1,

� ′(WF) > 1, and thus WF is a lower bound for the valid root W� as � is concave. �at is, W� > WF .

Now consider

�A (W� ) − W� = (1 − W� ) + (': − 'W� )1+
1−V
V2 (': )1/V−1('� )−1/V2

= (1 − W� ) − ('� (1 − W� )V )1+
1−V
V2 (': )1/V−1('� )−1/V2

= (1 − W� )
[
1 − (1 − W� )

(1−V )2
V (': )

1−V
V ('� )−

1−V
V

]
> (1 − W� )

[
1 − (1 − WF)

(1−V )2
V (': )

1−V
V ('� )−

1−V
V

]
> 0

where the second equality follows from � (W� ) = W� , the �rst inequality from W� > WF , and the last

inequality follows from the de�nition of WF and ': > '.
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�e above implies that�A (W� ) > W� , and thus the smallest �xed point of�A must be such thatWA� < W� .

�is also implies that�
A�

< �
�

as ?� = ?A� .

Part (ii). From the proof of Proposition 2, we have that W' is the unique solution to

ℎ(W) = I(1 − W)1−V − [(1 − V)I + VI − (1 − V')IW] = 0

while from the proof of Proposition 6, WA' is the unique solution to

ℎA (W) ≡ I(1 − W)1−V (1 − (1 − V')W)V (1−V) − [(1 − V)I + VI − (1 − V')IW] = 0

For the case V' = 1, note that both functions are the same, and so are their unique roots, implying the

same debt thresholds.

For the case V' < 1, note that ℎA (W) < ℎ(W) for W ∈ (0, 1). Note also that both functions cross zero from

above, and thus, it follows that their unique roots are strictly ordered: WA' < W' . �is implies that ?A' < ?' ,

as V' < 1 and the price is increasing in W . �at�
'
< �

A'
follows from their respective de�nitions. �

C.6 Proof of Lemma 10

Proof. A defaulting bank in period 0 chooses 2�
0
= (1− V) (I + ?0) . A repaying bank facing a run optimally

chooses 2'D=
0

= (1 − V) ((I + ?0) − '�0). So it su�ces to show that I + ?0 > (I + ?0) − '�0 (the net worth

under default is higher than under repayment facing a run). Suppose this were not the case. �en, it is

feasible for a repaying bank facing a run to select the consumption and capital choices of the defaulting

bank. �is guarantees the �rst period �ow utility for the repaying bank facing run is the same as that of

the defaulting bank. Because + (05 4 (0, :) > +� (:) for all : > 0, the continuation value for a repaying bank

facing a run will be strictly higher than that of a defaulting bank. �us, if I + ?0 ≤ (I+ ?0) −'�0, the value

of a repaying bank facing a run will be strictly higher than that of a defaulting bank, a contradiction of the

interiority of q .

Similarly, we know that the capital choices are ?0 
�
1

= V (I + ?0) and ?0 
'D=
1

= V ((I + ?0) − '�0).
�e previous result that ranks the net worth also implies that  'D=

1
<  �

1
. �

D Transitional dynamics

D.1 Case without bank runs: Convergence to the repayment equilib-

rium

In here we describe how the transition in the case of �0 < �
'

is obtained in the case without runs.

Recall that we consider in here the case of V' < 1. When debt is below�
'

, we conjecture that for )

periods, the return to capital is exactly ', aggregate net worth decreases at rate V', and the borrowing

constraint does not bind. In period ) , the borrowing constraint binds, the return to capital is higher than ',

and the economy remains at the stationary repayment equilibrium therea�er.
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To determine the value ) , we use the following thresholds, which are de�ned recursively:

? {)+1} =
I

'
+ 1

'
? {) } (D.1)

�
',)+1

=
1

'

[
(I + ? {)+1}) − 1

V'
(I + ? {) })

]
 + 1

V'
�
',)

(D.2)

with initial conditions ? {−1} = ?' , and�
',−1

= �
'

as de�ned above. �e idea behind the recursion above is

that the return to capital equals ' and the net worth decreases by a factor V'. �is occurs up to the point

where the economy hits the borrowing limit,�
'

, then the price equals ?' .

For any initial level of debt, �0, we locate the ) such that �0 ∈ [�',) ,�',)−1). A �nite value ) ≥ 0 exists

for any initial debt �0 < �
'

. Using this value of ) , we obtain the initial price of capital, ?0, by solving the

following system:

�) =
1

'

[
(I + ?) ) − (V'))

(
(I + ?0) − '�0

) ]
(D.3)

?0 =

)∑
9=1

I

' 9
+ ?)
')

(D.4)

?) = ?' + V'(�
' − �) )/ 
1 − V , (D.5)

where ?) and �) represent, respectively, the price and aggregate debt level in period ) , where ) is the

period right before the economy transitions to the stationary state.

�e price of capital in period ) , ?) , must guarantee that the aggregate demand for capital equals the

supply . Note that aggregate net worth in this period is #) = (I + ?) ) − '�) . Using the conjecture that

':
)
> ', the demand for capital from Proposition 4 is V#) /(?) − W'?'). Market clearing in this period then

implies

V [(I + ?) ) − '�) ]
?) − W'?'

= ,

which delivers, using the de�nition of �
'

and the value of ?' in the stationary repayment equilibrium,

equation (D.5). Using the conjectured evolution of net worth delivers equation (D.3). And �nally, using the

conjectured return equal to ' for the �rst ) periods delivers (D.4). Our threshold de�nition guarantees that

�) ∈ [�',0,�') and that ?) is such that (I + ?) )/?) ≥ '.

Having obtained an initial price ?0, we can determine ?C for all C < ) , using that the capital return is R.

�e sequence of {�C } can then be obtained using that

�C =
1

'

[
(I + ?C ) −

1

V'
(I + ?C+1)

]
 + 1

V'
�C+1, for any C < ) . (D.6)

Finally, we can obtain the associated WC for C ∈ {−1, 0, ..) } using equation (G), given the sequence of prices

and the terminal value of W) = W' .

D.2 Case with runs: Convergence to the repayment equilibrium

�e value of ) is determined in the same way as in the case without runs. �at is, we use equations (D.1)

and (D.2) but with initial conditions ?−1 = ?A' and�
',−1

= �
A'

. With these thresholds, we can locate the
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value of ) such that �0 ∈ [�',) ,�',)−1). Given this value of ) , we solve the system (D.3), (D.4), and (D.5),

which solves for the initial price ?0 and the price at ) , ?) . We can then use that the capital return equals '

for all C < ) to obtain all the prices for all C ∈ {1, . . . ,) − 1}. �e sequence of aggregate debt levels is then

obtained using equation (D.6). Finally, using that WC = W
A'

for all C ≥ ) , we can then use equation (G-run)

to obtain the sequence of WC for C < ) .
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